Petra Vidnerová, née KudováDepartment of Machine Learning
Institute of Computer Science, The Czech Academy of Sciences
phone: (+420) 266 053 630 |
|
![]() |
Research interests:

Hyper-parameter setup, metalearning. Neural architecture search.
Genetic algorithms, evolutionary and hybrid approaches.
Combining RBF networks and Deep Networks. (RBF Layer for Keras)
Epidemic modelling.
Projects:
22-02067S | AppNeCo: Approximate neurocomputing | Czech Grant Agency | 2022 - 2024 (team member) |
Past projects:
TN01000024 | National Competence Center - Cybernetics and Artificial Intelligence | Technology Agency of the Czech Republic | 2019-2022 (team member) |
TL04000282 | Město pro lidi, ne pro virus | Technology Agency of the Czech Republic | 2020/2021 (team member) |
18-23827S | Capabilities and Limitations of Shallow and Deep Networks | Czech Grant Agency | 2018-6/2021 (team member) |
15-18108S | Model complexity of neural, radial, and kernel networks | Czech Grant Agency | 2015-2017 (team member) |
News:
- [13. 2. 2023] Vyšla monografie Rok s pandemií covid-19 (Reflexe v poločase) .
- [6. 12. 2022] Talk at the seminar Hora Informaticae: Model M - an agent-based epidemiological model .
-
[22. 7. 2022]
Presentation at IJCNN conference (WCCI 2022):
J. Kalina, P. Vidnerová, P. Janáček: Sparse Versions of Optimized Centroids . -
[24. 6. 2022]
Conference paper:
G. Suchopárová, P. Vidnerová, R. Neruda, M. Šmíd:
Using a Deep Neural Network in a Relative Risk Model to Estimate Vaccination Protection for COVID-19
Published in Conference proceedings of EANN 2022. -
[21. 6. 2022]
Paper:
L. Berec, J. Smyčka, R. Levínský, E. Hromádková, M. Šoltés, J. Šlerka,
V. Tuček, J. Trnka, M. Šmíd, M. Zajíček, T. Diviák, R. Neruda,
P. Vidnerová:
Delays, Masks, the Elderly, and Schools: First Covid-19 Wave in the Czech Republic.
Published in Bulletin of Mathematical Biology . -
[20. 6. 2022]
Presentation at ICAISC 2022
conference:
P. Vidnerová, J. Kalina Multi-objective Bayesian Optimisation for Neural Architecture Search -
[10. 5. 2022]
Paper:
L. Berec, R. Levínský, J. Weiner, M. Šmíd, R. Neruda, P. Vidnerová, G. Suchopárová:
Importance of vaccine action and availability and epidemic severity for delaying the second vaccine dose.
Published in Scientific Reports . - [10. 5. 2022] R. Neruda's talk Tested on agents - how we designed an agent-based epidemiological model
-
[15. 12. 2021]
Papers published during autumn:
-
J. Kalina, P. Vidnerová, J. Tichavský: A Comparison of Trend Estimators under Heteroscedasticity.
In Artificial Intelligence and Soft Computing. ICAISC 2021 Proceedings, Part I. Cham: Springer, 2021. Lecture Notes in Artificial Intelligence, 12854. I -
J. Kalina, P. Vidnerová: On kernel-based nonlinear
regression estimation.
In The 15th International Days of Statistics and Economics Conference Proceedings. Slaný: Melandrium, 2021. -
P. Vidnerová, R. Neruda: Air Pollution Modelling by Machine Learning Methods.
In Modelling (2021), pp. 659-674. E-ISSN 2673-3951
-
J. Kalina, P. Vidnerová, J. Tichavský: A Comparison of Trend Estimators under Heteroscedasticity.
-
[4. 11. 2021] Presentation at RELIK 2021
J. Kalina, P. Vidnerová Application Of Implicitly Weighted Regression Quantiles: Analysis Of The 2018 Czech Presidential Election. - [30. 9. 2021] New release of model M available on Github. Model-M v1.0
-
[26. 9. 2021] Presentation at ITAT 2021
conference
P. Vidnerová et al. Simulation of non-pharmaceutical interventions in an agent based epidemic model -
Preprint
Importance of epidemic severity and vaccine mode of action and availability for delaying the second vaccine dose
Luděk Berec, René Levínský, Jakub Weiner, Martin Šmíd, Roman Neruda, Petra Vidnerová, Gabriela Suchopárová
doi: 10.1101/2021.06.30.21259752 -
Preprint
Rotation-based schedules in elementary schools to prevent COVID-19 spread: A simulation study
Cyril Brom, Tomáš Diviák, Jakub Drbohlav, Václav Korbel, René Levínský, Roman Neruda, Gabriela Suchopárová, Josef Šlerka, Martin Šmíd, Jan Trnka, Petra Vidnerová
doi: 10.1101/2021.06.28.21259628 -
Presentation at IWFOS 2021
J. Kalina, P. Vidnerová On Robust Training of Regression Neural Networks (poster), (slides) -
Presentation at ICAISC 2021
J. Kalina, P. Vidnerová, J. Tichavský A Comparison of Trend Estimators under Heteroscedasticity -
Konference
Poučení z pandemie COVID-19 (16. 6. 2021)
Prezentace Simulace epidemiologických opatření v modelu M (P. Vidnerová, G. Suchopárová, R. Neruda) -
Preprint
Model-M: An agent-based epidemic model of a middle-sized municipality
Ludek Berec, Tomas Diviak, Ales Kubena, Rene Levinsky, Roman Neruda, Gabriela Suchoparova, Josef Slerka, Martin Smid, Jan Trnka, Vit Tucek, Petra Vidnerova, Milan Zajiceak, Frantisek Zapletal
doi: 10.1101/2021.05.13.21257139 -
Paper:
J. Kalina, A. Neoral, P. Vidnerová: Effective Automatic Method Selection for Nonlinear Regression Modeling.
Published in International Journal of Neural Systems . - Článek M. Šmída: Spočítat to Covidu (Vesmír, duben 2021)
- 2020 - 2019
Tweets by PetraVidnerova
- Curriculum Vitae (pdf) [last update: January, 2022]
- PhD Thesis