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Outline

Introduction – high level overview
▶ AutoML and Neural Architecture Search
▶ Search Spaces and objectives
▶ Search algorithms
▶ Speedup techniques

Performance prediction
▶ Analyzed search spaces
▶ Performance prediction
▶ Zero-cost Proxies

New predictor – graph properties
▶ Motivation, experimental results
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AutoML and Neural Architecture Search

Automated Machine Learning
The process of automating all steps in the ma-
chine learning pipeline, from data cleaning, to
feature engineering and selection, to hyperpara-
meter and architecture search.

Neural Architecture Search (NAS)
Automating the design of neural network architecture. Given a
problem, NAS looks for an optimal architecture.
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Neural Architecture Search (NAS)

▶ Optimization problem
▶ Minimize given objectives over the given search space
▶ Our focus - speed up the optimization process using

performance prediction
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Search Spaces

▶ Space of possible solutions (architectures)
▶ Trade-off between human bias and search efficiency

▶ Macro search spaces
▶ Encode the entire architecture
▶ Focus on macro-level hyperparameters
▶ Slow to search

▶ Chain-structured search spaces
▶ A sequential chain of operation layers
▶ Easy to design and implement
▶ Lower chance of discovering novel architecture

▶ Cell-based search spaces
▶ Search for cells
▶ Skeleton fixed
▶ Popular, but have limits
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Objectives

▶ Measure the quality of a solution
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Optimisation

Black-box techniques
▶ Random search (baseline)
▶ Evolutionary and genetic algorithms
▶ Bayesian optimisation
▶ Reinforcement learning

One-shot techniques
▶ Training all at once using hypernet/supernet
▶ Differentiable architecture search
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Speed-up Techniques

Parallelisation
▶ Easy, parallel objective evaluation
▶ Evolution with islands

Performance prediction
▶ Regression of the objective
▶ Learning curve extrapolation
▶ Zero-cost proxies

Meta-learning
▶ Re-using information from previous experiments
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Our work

Setting
▶ What benchmarks and datasets?
▶ Performance prediction details
▶ Zero-cost proxies

Goals
▶ Analyze zero-cost proxies as predictors
▶ Properties of the neural graph as a novel predictor
▶ Interpretability analysis of predictions
▶ Compare with predictors from related work
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NAS Benchmarks

▶ Datasets of precomputed objectives on selected tasks
▶ Enables experiments and comparison of NAS algorithms,

performance prediction algorithms
▶ Important for reproducible research

▶ NAS-Bench-101, NAS-Bench-201, NAS-Bench-301
▶ HW-NAS-Bench, TransNAS-Bench-101, robustness NB201

Source: NAS-Bench-201: Extending the scope of reproducible NAS. ICLR 2020.
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Image Classification Datasets

CIFAR10, CIFAR100
▶ Learning Multiple Layers of Features from Tiny Images, Alex

Krizhevsky, 2009.
▶ 10/100 classes
▶ 60k images, 32x32 pixels

ImageNet-16-120
▶ A downsampled variant of Imagenet as an alternative to the

Cifar dataset, Chrabaszcz et al, 2017
▶ 1000 classes
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Limits of benchmarks

NAS-Bench-201
▶ Evaluated for different datasets and objectives
▶ Total of 15 625 candidates
▶ However, some of them are isomorphic
▶ Some have invalid branches
▶ The valid and unique set is quite small

NB101, NB301
▶ Larger, but evaluated only on CIFAR10
▶ Only one objective (accuracy)
▶ Cell-based – but models like LLMs are different
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Performance Prediction

Predict objectives
▶ Imprecise prediction is enough (coarse to grain)
▶ Ranking is enough (who is the best)

Our goals
▶ Performance prediction of diverse objectives
▶ Accuracy, robustness, energy
▶ Exploring/combining zero cost proxies
▶ Proposal of new network encodings
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Methodology

Regression
▶ Random forest regressor
▶ Predict accuracy or other metrics

Input data – network encodings
▶ Zero cost proxies
▶ One hot encoding (of chosen operations)
▶ Graph properties

Experiments
▶ Analyze predictions
▶ Compare different network encodings, predictors
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Zero-cost proxies (ZCP)

▶ Fast to compute metrics that correlate with accuracy
▶ Zero-cost ... because we don’t train the network at all!
▶ Some proxies depend on input data
▶ Other use artificial batches, e.g. a batch full of 1

How to compute ZCP?
▶ Sample one minibatch of data (or create an artificial batch)
▶ Pass it through the (untrained) network
▶ Compute a metric as a function of the forward pass and/or the

gradient
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ZCP in performance prediction

Main approaches
▶ Direct approximation of performance – choose nets with the

highest score
▶ Warm-start search – initial generation are top-scored nets
▶ ZCP as net encoding – fit a regressor on multiple ZCP, predict

performance

Examples of proxies
▶ flops, params – just simple metrics (no batch pass)
▶ synflow – from network pruning, product of network

parameters
▶ nwot – activation of different ReLU regions (variance between

batch examples)
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ZCP limitations

▶ For NB201, ZCP correlate surprisingly well with accuracy
▶ On some other searchspaces, the correlation is rather low
▶ We discovered the reason for the good correlation on NB201
▶ For proxies like nwot, l2_norm, the score directly depends on

the number of convolutions in the network
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Properties of the neural graph

▶ Inspired by the finding, we look at properties of the network
graph – paths, counts, . . .

▶ Node degree (c3x3, skip) means input degree counting only
conv3x3 and skip

▶ Similarly, max path computes the maximum path over allowed
operations

zero
skip
conv 1x1
conv 3x3
avg pool

Node degree
(c3x3, skip): 2

Max path
(c3x3, skip): 3

Max path
(skip): 1
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Properties of the neural graph

▶ Number of operations
▶ Min path from input over operations O

▶ Max path from input to over operations O

▶ Out degree of the input node counting only operations O

▶ In degree of the output node counting only operations O

▶ Mean in/out degree of intermediate nodes counting only
operations O

Advantages
▶ Simple, interpretable, fast to compute

Disadvantages
▶ Highly correlated, dependent on search space
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Accuracy prediction

Usage in performance prediction
▶ Gathering all properties, we use them as input data to a

random forest regressor
▶ We compare with other network encodings – all ZCP, one-hot

encoding (OH), and their combinations

Results
▶ Our results (GRAF) are better than ZCP and OH
▶ ZCP combined with network properties is the best
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Interpretable prediction

▶ For network properties and ZCP, we compute Shapley
coefficients (considers feature set importance)

▶ We look at the most important features
▶ Results – different features are important for diverse tasks
▶ nwot is important for CIFAR10, but not for autoencoder
▶ autoencoder needs skip connections – result from related work!

NB201 - cifar-10 TNB101-micro - autoencoder
Feature name Mean rank Feature name Mean rank
jacov 0.00 min path over skip 0.00
nwot 1.12 jacov 1.00
flops 3.62 fisher 2.00
synflow 4.08 min path over [skip,C3x3] 5.50
min path over [skip,C3x3,C1x1] 4.78 snip 5.58
params 5.04 min path over [skip,C1x1] 5.64
epe_nas 6.04 grad_norm 6.64
zen 6.36 zen 8.08
min path over [skip,C3x3] 11.08 grasp 9.34
min path over skip 11.88 l2_norm 9.74
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HW metrics prediction

Prediction of EDGEGPU energy, random forest.

▶ HW metrics differ in difficulty of prediction
▶ edgegpu energy is one of difficult tasks
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Robustness prediction
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Comparison with existing predictors – NB101, CIFAR10

▶ Same experiment as in a predictor survey [1]
▶ Outperforms all available predictors
▶ Some predictors take much longer to train, e.g. graph neural

networks!
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[1] Colin White, Arber Zela, Binxin Ru, Yang Liu, & Frank Hutter (2021). How Powerful are Performance
Predictors in Neural Architecture Search?. In Advances in Neural Information Processing Systems.
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Usage in the NAS process – ImageNet16-120 search
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Discussion and future work

Pros
▶ Better and faster than most predictors
▶ Great interpretability
▶ Works across tasks and search spaces
▶ Baseline for complex predictors

Cons
▶ Properties need to be used with ZCP for best performance
▶ Some graph neural networks with ZCP can be better

Future work
▶ Extension to transformer or LLM search spaces
▶ Study why ZCP are still needed
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Thank you! Questions?

Images in the presentation generated by DALL-E3.


