News:
-
[15. 12. 2021]
Papers published during autumn:
-
[4. 11. 2021] Presentation at RELIK 2021
J. Kalina, P. Vidnerová
Application Of Implicitly Weighted Regression Quantiles: Analysis Of The 2018 Czech Presidential Election.
-
[30. 9. 2021] New release of model M available on Github.
Model-M
v1.0
-
[26. 9. 2021] Presentation at ITAT 2021
conference
P. Vidnerová et al.
Simulation of non-pharmaceutical interventions in an agent based epidemic
model
-
Preprint
Importance of epidemic severity and vaccine mode of action and availability for delaying the second vaccine dose
Luděk Berec, René Levínský, Jakub Weiner, Martin Šmíd, Roman Neruda, Petra Vidnerová, Gabriela Suchopárová
doi: 10.1101/2021.06.30.21259752
-
Preprint
Rotation-based schedules in elementary schools to prevent COVID-19 spread: A simulation study
Cyril Brom, Tomáš Diviák, Jakub Drbohlav, Václav Korbel, René Levínský, Roman Neruda, Gabriela Suchopárová, Josef Šlerka, Martin Šmíd, Jan Trnka, Petra Vidnerová
doi: 10.1101/2021.06.28.21259628
-
Presentation at IWFOS 2021
J. Kalina, P. Vidnerová
On Robust Training of Regression Neural Networks
(poster),
(slides)
-
Presentation at ICAISC 2021
J. Kalina, P. Vidnerová, J. Tichavský
A Comparison of Trend Estimators under Heteroscedasticity
-
Konference
Poučení z pandemie COVID-19 (16. 6. 2021)
Prezentace Simulace
epidemiologických opatření v modelu M (P. Vidnerová, G. Suchopárová,
R. Neruda)
-
Preprint
Model-M: An agent-based epidemic model of a middle-sized municipality
Ludek Berec, Tomas Diviak, Ales Kubena, Rene Levinsky, Roman Neruda, Gabriela Suchoparova, Josef Slerka,
Martin Smid, Jan Trnka, Vit Tucek, Petra Vidnerova, Milan Zajiceak, Frantisek
Zapletal
doi: 10.1101/2021.05.13.21257139
-
Paper:
J. Kalina, A. Neoral, P. Vidnerová: Effective Automatic Method Selection for Nonlinear Regression Modeling.
Published in International Journal of Neural Systems .
-
Článek M. Šmída:
Spočítat to Covidu
(Vesmír, duben 2021)
-
Konference
Covid v modelech (13. 11. 2020)
-
Conference papers:
-
Preprint L. Berec at al The COVID-19 epidemic in the Czech Republic: retrospective analysis of measures (not) implemented during the spring first wave
-
Presentation at ICAISC 2020
P. Vidnerová, Š. Procházka, R. Neruda:
Multiobjective evolution for convolutional neural network architecture search
-
Presentation at
The 14th International Days of Statistics and Economics:
P. Vidnerová, J. Kalina:
Least Weighted Absolute Value Estimator with an Application to Investment Data
-
Several conference papers published:
-
J. Kalina, P. Vidnerová: A Metalearning Study for Robust Nonlinear Regression.
Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference. Springer, 2020
https://link.springer.com/chapter/10.1007%2F978-3-030-48791-1_39
-
J. Kalina, P. Vidnerová: On Robust Training of Regression Neural Networks.
Functional and High-Dimensional Statistics and Related Fields. Springer,
2020. IWFOS conference.
http://hdl.handle.net/11104/0309464
-
J. Kalina, P. Vidnerová: Robust Multilayer Perceptrons: Robust Loss Functions and Their Derivatives.
Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference. Springer, 2020
https://link.springer.com/chapter/10.1007%2F978-3-030-48791-1_43
-
P. Vidnerová, J. Kalina, Y. Güney: A Comparison of Robust Model Choice Criteria Within a Metalearning Study.
AMISTAT 2019, Liberec. Analytical Methods in Statistics, Springer,
2020.
http://hdl.handle.net/11104/0310207
- Presentation at EANN 2020 conference :
A Metalearning Study for Robust
Nonlinear Regression, J. Kalina, P. Vidnerová
-
Conference paper: J. Kalina, P. Vidnerová: Regression Neural Networks with a Highly Robust Loss Function.
AMISTAT 2019, Liberec. Springer, 2020.
hdl.handle.net/11104/0306871
-
Iniciativa Model antiCOVID-19 pro ČR
Tisková zpráva z 20. 4.,
Změmy chování české populace v
době COVID-19 a jejich reflexe v epidemiologických modelech(CERGE-EI,
19. 5. 2020),
konference NZIS a ISIN Open 2020(ÚZIS, 27.5. 2020)
-
Paper:
P. Vidnerová, R. Neruda:
Vulnerability of classifiers to evolutionary generated adversarial examples
Published
in Neural
Networks .
Vulnerability of classifiers to evolutionary generated adversarial examples.
Petra Vidnerová, Roman Neruda. Neural Networks, Volume 127, July 2020, Pages 168-181.
-
Presentation at a
workshop
in Nová Seninka:
From perceptron to
deep neural networks.
-
Presentation at our institute's open day (in Czech):
Umělá inteligence: dobrý sluha, zlý pán?
-
RBF Layer updated for Tensorflow 2.0. (tf.keras in fact)
I moved the code to
the new
repository .
-
Conference paper: J. Kalina, P. Vidnerová: Implicitly weighted
robust estimation of quantiles in linear regression.
37th International Conference on Mathematical Methods in
Economics 2019. České Budějovice.
hdl.handle.net/11104/0300322
- Presentation at AMISTAT
conference :
Metalearning for Robust
Regression: Sensitivity and Robustification
Petra Vidnerová, Jan Kalina, Aleš Neoral
(book of abstracts)
- Jan Kalina's talk
at Prague
Stochastics 2019:
Quantile Estimation in Neural Networks , Jan Kalina, Petra Vidnerová,
Tomáš Jurica, Jan Tichavský, Nicole Tobišková
-
Conference paper:
J. Kalina, P. Vidnerová: Robust Training of Radial Basis Function Neural Networks
Presented at ICAISC 2019
conference (poster).
Kalina J.,
Vidnerová P. (2019) Robust Training of Radial Basis Function Neural
Networks. In: Rutkowski L., Scherer R., Korytkowski M., Pedrycz W.,
Tadeusiewicz R., Zurada J. (eds) Artificial Intelligence and Soft
Computing. ICAISC 2019. Lecture Notes in Computer Science, vol
11508. Springer, Cham
-
Book review:
Hitoshi Iba: Evolutionary approach to machine learning and deep neural networks: neuro-evolution and gene regulatory networks
Vidnerová, P. Genetic Programming and Evolvable Machines (2019).
https://doi.org/10.1007/s10710-019-09350-8
|