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a b s t r a c t

Complexity of Gaussian-radial-basis-function networks,with vary-
ing widths, is investigated. Upper bounds on rates of decrease of
approximation errors with increasing number of hidden units are
derived. Bounds are in terms of norms measuring smoothness
(Bessel and Sobolev norms) multiplied by explicitly given func-
tions a(r, d) of the number of variables d and degree of smooth-
ness r . Estimates are proven using suitable integral representations
in the form of networks with continua of hidden units computing
scaled Gaussians and translated Bessel potentials. Consequences
on tractability of approximation by Gaussian-radial-basis function
networks are discussed.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Radial-basis function (RBF) networks with Gaussian computational units are known to be able to
approximate with an arbitrary accuracy all continuous and all L2-functions on compact subsets of
Rd [10,23,27,30,31]. In such approximations, the number n of RBF units plays the role of a measure of
model complexity and its size determines the feasibility of network implementation.
Several authors have investigated rates of approximation by RBF networks with n Gaussians

units of fixed width. Girosi and Anzellotti [9] derived an asymptotic upper bound of order n−1/2 on
approximation error measured by the supremum norm for band-limited functions with continuous
derivatives up to order r with r > d/2, where d is the number of variables [9, p. 106]. Using results
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from statistical learning theory, Girosi [8] extended these bounds to more general classes of kernels.
For Gaussians of varying widths, Kon, Raphael, and Williams [14, Corollary 3] obtained bounds on a
weightedL∞-distance from the target function to a linear combination of Gaussians.
Somebounds improve on the exponent of−1/2.Mhaskar [24,25] andNarcovich et al. [29] obtained

bounds of order n−r/2d, and in one special case, Maiorov [21] found n−r/(d−1). Although order with
respect to n improves, the remaining multiplicative factors in such bounds involve constants that are
unknown and these upper bounds increase as d increases. Also, they apply to different classes of target
and approximating functions. Moreover, dependence on parameters may differ, and approximation
error is computed with respect to different metrics. Thus, it is not easy to compare these bounds.
In this paper, we approximate smooth functions by Gaussian RBF networks with units of varying

widths, usingL2-distance with respect to the Lebesgue measure. We derive upper bounds on rates of
approximation in terms of the Bessel and Sobolev norms of the functions to be approximated. Bessel
norms are defined in terms of convolutions with Bessel-potential kernels, while Sobolev norms use
integrals of partial derivatives. The Bessel norm ‖ · ‖L2,r and the Sobolev norm ‖ · ‖W2,r are equivalent
but the ratio between them depends on the number d of variables.
Our estimates hold for all numbers n of hidden units and all degrees r > d/2 of Bessel potentials.

The estimates are of the form n−1/2 times the Bessel norm ‖f ‖L1,r of the function f to be approximated
times a factor k(r, d). For a fixed c > 0 and the degree rd = d/2 + c , the factor k(rd, d) decreases
to zero exponentially fast. We also derive estimates in terms of L2 Bessel and Sobolev norms. Our
results show that reasonably smooth functions can be approximated quite efficiently by Gaussian-
radial-basis networks. A preliminary version of the results appeared in [13].
The paper is organized as follows. Section 2presents some concepts, notations, and auxiliary results

for studying approximation by Gaussian RBF networks. Section 3 derives upper bounds on rates of
approximation of Bessel potentials by linear combinations of scaled Gaussians in terms of variation
norms obtained from integral representations of Bessel potentials and their Fourier transforms. In
Section 4, for functions representable as convolutionswithBessel potentials, upper bounds are derived
in terms of Bessel-potential norms. These bounds are then combined with estimates of variational
norms from the previous section to obtain bounds for approximation by Gaussian RBFs in terms of
Bessel norms. Section 5 uses the relationship between Sobolev and Bessel norms to obtain bounds
in terms of Sobolev norms. In Section 6, we discuss consequences for tractability of multivariate
approximation by Gaussian-radial-basis networks.

2. Approximation by Gaussian RBF networks

For Ω ⊆ Rd, L2(Ω) denotes the space of real-valued functions on Ω with norm ‖f ‖L2(Ω) =(∫
|f (x)|2dx

)1/2. Two functions are identified if they differ only on a set of Lebesgue-measure zero.
WhenΩ = Rd, we omit it in the notation.
For nonzero f ∈ L2, f o = f /‖f ‖L2 denotes the normalization of f ; for convenience, we put 0

o
= 0.

For F ⊂ L2, F |Ω denotes the set of functions from F restricted toΩ , F̂ the set of Fourier transforms of
functions in F , and F o the set of their normalizations. For n ≥ 1, define

spannF :=

{
n∑
i=1

wifi | fi ∈ F , wi ∈ R

}
.

In this paper, we investigate accuracymeasured byL2-normwith respect to the Lebesguemeasure
λ in approximation by Gaussian-radial-basis-function networks.
A Gaussian-radial-basis-function unit with d inputs computes all scaled and translated Gaussian

functions on Rd. For b > 0, let γb : Rd → R denote the Gaussian function of width b defined by

γb(x) = e−b‖x‖
2
.

A simple calculation shows that

‖γb‖L2 = (π/2b)
d/4. (1)
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Let

G0 = {γb | b > 0}

denote the set of the Gaussians centered at 0with varying widths. For τy the translation operator defined
for any y ∈ Rd and any f on Rd as (τyf )(x) = f (x− y), let

G =
{
τyγb | y ∈ Rd, b > 0

}
denote the set of all translations of the Gaussians with varying widths.
We investigate rates of approximation by networks with n Gaussian RBF units and one linear output

unit, which compute functions from the set spannG.
We exploit properties of the Fourier transform of the Gaussian function. The d-dimensional Fourier

transform is the operator F onL2 ∩L1 given by

F (f )(s) = f̂ (s) =
1

(2π)d/2

∫
Rd
eix·sf (x) dx, (2)

where · denotes the Euclidean inner product on Rd.
For every b > 0,

γ̂b(x) = (2b)−d/2γ 1
4b
(x) (3)

(cf. [34, p. 43]). Thus

spannG0 = spannĜ0. (4)

Plancherel’s identity [34, p. 31] asserts that the Fourier transform is an isometry onL2, i.e., for all
f ∈ L2

‖f ‖L2 = ‖f̂ ‖L2 , (5)

and directly by (1) we have

‖γb‖L2 =
( π
2b

)d/4
= ‖γ̂b‖L2 . (6)

In a normed linear space (X, ‖.‖X), for f ∈ X and A ⊂ X,

‖f − A‖X = inf
g∈A
‖f − g‖X

denotes the distance from f to A. The following proposition shows that in estimating rates of
approximation by linear combinations of scaled Gaussians centered at 0, one can switch between
a function and its Fourier transform.

Proposition 2.1. For all positive integers d, n and all f ∈ L2, ‖f − spannG0‖L2 = ‖f − spannĜ0‖L2 =
‖f̂ − spannĜ0‖L2 = ‖f̂ − spannG0‖L2 .

Proof. Using (5) and (4), respectively, we get ‖f − spannG0‖L2 = ‖f̂ − spannĜ0‖L2 = ‖f −
spannĜ0‖L2 = ‖f̂ − spannG0‖L2 . �

To derive our estimates, we use a result on approximation by convex combinations of n elements
of a bounded subset of a Hilbert space derived by Maurey [32], Jones [11] and Barron [2,3]. Let F be a
bounded subset of a Hilbert space (H, ‖.‖H ), and

uconvnF =

{
1
n

n∑
i=1

fi | fi ∈ F

}
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denote the set of n-fold convex combinations of elements of F with all coefficients equal. By the result
of Maurey–Jones–Barron [3, p. 934], for every function h in cl conv (F ∪−F), i.e., in the closure of the
symmetric convex hull of F , we have

‖h− uconvnF‖H ≤ n−1/2
(
s2F − ‖h‖

2
H

)1/2
, (7)

where sF = supf∈F ‖f ‖H . The bound (7) implies an estimate of the distance from spannF holding for
any function fromH . The estimate is formulated in terms of a norm tailored to F , called F-variation,
which was introduced in [15] as an extension of ‘‘variation with respect to half-spaces’’ defined in [2].
For any bounded subset F of any normed linear space (X, ‖.‖X), F-variation is defined as the

Minkowski functional of the closed convex symmetric hull of F (where closure is taken with respect
to the norm ‖.‖X). The variational norm with respect to F inX is denoted by ‖.‖F ,X, i.e.,

‖h‖F ,X = inf
{
c > 0 | c−1h ∈ cl conv(F ∪ −F)

}
. (8)

Note that F-variation can be infinite (when the set on the right-hand side is empty) and that it depends
on the ambient space norm. When we consider variation with respect to theL2-norm, we omitL2 in
the notation of variational norm.
The Maurey–Jones–Barron estimate (7) implies that for any bounded subset F of a Hilbert space

(H, ‖.‖H ) and all positive integers n

‖h− spannF‖H ≤ n
−1/2 (

‖h‖2Fo,H − ‖h‖
2
H

)1/2
(9)

(see [16]). To apply the upper bound (9) to approximation by Gaussian RBFs we take advantage of
properties of variational norms given in the remainder of this section.
From the definitions, if ψ is any linear isometry of (X, ‖.‖X), then for any f ∈ X, ‖f ‖F ,X =

‖ψ(f )‖ψ(F),X. In particular,

‖f ‖Go0,X = ‖f̂ ‖Go0,X. (10)

Variations with respect to two subsets satisfy the following inequality [19, Proposition 3(iii)].

Lemma 2.2. Let F ,H be nonempty, nonzero subsets of a normed linear space (X, ‖.‖X) and sH,F :=
suph∈H ‖h‖F ,X. Then for every f ∈ X,

‖f ‖F ,X ≤ sH,F‖f ‖H,X.

The next lemma states that the variation of the limit of a sequence of functions is bounded by the
limit of variations (see [18, Lemma 7.2]) and [12, Lemma 3.5]).

Lemma 2.3. Let F be a nonempty bounded subset of a normed linear space (X, ‖ · ‖X), h ∈ X, and
{hi} ⊂ X such that limi→∞ ‖hi − h‖X = 0. For all i, let bi = ‖hi‖F ,X <∞ and suppose that there exists
limi→∞ bi = b. Then ‖h‖F ,X ≤ b.

Variation with respect to a parameterized family of functions can be estimated for functions
representable by a suitable integral formula, where integration is with respect to the parameter. Let
Ω ⊆ Rd, φ : Ω × Y → R. If for all y ∈ Y , φ(., y) ∈ L2(Ω), then we denote by Φ : Y → L2 the
mapping defined for every y ∈ Y asΦ(y) = φ(., y) and

Φ(Y ) := {φ(., y) : Ω → R | y ∈ Y }.
The following theoremwas proven in [12, Corollary 5.1] using properties of Bochner integral of the

mapping Φ together with the limit property of variational norms given in Lemma 2.3. We denote by
wΦ : Y → L2(Ω) the mapping defined for all y ∈ Y aswΦ(y) = w(y)Φ(y).

Theorem 2.4. Let Ω ⊆ Rd be Lebesgue measurable, f ∈ L2(Ω) be such that for a.e. x ∈ Ω ,

f (x) =
∫
Y
w(y)φ(x, y)dy,

where Y ,w, and φ satisfy the following three conditions:
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(i) Y ⊆ Rp is Lebesgue measurable, p is a positive integer, Y \ Y0 = ∪∞m=1 Ym, where λ(Y0) = 0 and for
all positive integers m, Ym is compact and Ym ⊆ Ym+1,

(ii) Φ(Y ) is a bounded subset of L2(Ω),w ∈ L1(Y ), andwΦ : Y \ Y0 → X is continuous,
(iii) φ : Ω × Y → R is Lebesgue measurable.
Then ‖f ‖Φ(Y ) ≤ ‖w‖L1(Y ) and for all positive integers n,

‖f − spannΦ(Y )‖
2
L2(Ω)

≤

s2Φ‖w‖
2
L1(Y )
− ‖f ‖2

L2(Ω)

n
.

Theorem 2.4 guarantees that if f can be represented as a neural network with a continuum of
hidden units computing functions fromΦ(Y ), then theΦ(Y )-variational norm of f is bounded by the
L1-norm of the weight function.

3. Approximation of Bessel potentials by Gaussian RBFs

In this section, we estimate rates of approximation by spannG for certain special functions, called
Bessel potentials, which are defined by means of their Fourier transforms. For r > 0, the Bessel
potential of order r , denoted by βr , is the function on Rd with Fourier transform

β̂r(s) = (1+ ‖s‖2)−r/2.

The L2-norm of βr can be calculated by switching to β̂r and using Plancherel’s equality (5). For
every r > d/2

‖βr‖L2 = ‖β̂r‖L2 = λ(r, d) := π
d/4
(
0(r − d/2)
0(r)

)1/2
. (11)

Indeed, using radial symmetry ‖β̂r‖2L2 =
∫

Rd(1+‖x‖
2)−rdx = ωdI , where ωd := 2πd/2/0(d/2) is

the area of the unit sphere in Rd [7, p. 303] and I =
∫
∞

0 (1+ ρ
2)−rρd−1dρ. Substituting σ = ρ2, one

gets dρ = (1/2)σ−1/2dσ ; hence,

I = (1/2)
∫
∞

0

σ d/2−1

(1+ σ)r
dσ =

0(d/2)0(r − d/2)
20(r)

(see [6, p. 60] for the last equality).
To estimate Go0-variations of βr and β̂r , we use Theorem 2.4 with representations of these two

functions as integrals of scaled Gaussians.
For r > 0, it is known [33, p. 132] that βr is non-negative, radial, exponentially decreasing at

infinity, analytic except at the origin, and belongs to L1. It can be expressed by the integral formula
(see [22, p. 296] or [33])

βr(x) = c1(r, d)
∫
∞

0
e−t/(4π) t−d/2+r/2−1e−(π/t)‖x‖

2
dt, (12)

where

c1(r, d) = (2π)d/2(4π)−r/2/0(r/2)

and0(z) =
∫
∞

0 t
z−1e−t dt is theGamma function. The factor (2π)d/2 occurs since our choice of Fourier

transform (2) includes the factor (2π)−d/2. Combining (12) with (1), we get a representation of the
Bessel potential as an integral of normalized scaled Gaussians.

Proposition 3.1. For every r > 0, d a positive integer, and x ∈ Rd

βr(x) =
∫
∞

0
vr(t)γ oπ/t(x) dt,

where vr(t) = c1(r, d) 2−d/4 e−t/4π t−d/4+r/2−1 .
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The next proposition estimates Go0-variation of βr .

Proposition 3.2. For d a positive integer and r > d/2,

‖βr‖Go ≤ ‖βr‖Go0
≤

∫
∞

0
vr(t) dt = k(r, d),

where k(r, d) = (π/2)d/40(r/2−d/4)
0(r/2) .

Proof. As Go0 ⊂ Go, we get ‖βr‖Go ≤ ‖βr‖Go0 . To estimate ‖βr‖Go0 , we apply Theorem 2.4 with
w = vr , φ(x, y) = φ(x, t) = γ oπ/t(x), Y = (0,∞), and Ω = Rd to the integral representation
from Proposition 3.1, getting

‖βr‖Go0
≤

∫
∞

0
vr(t) dt = c1(r, d) 2−d/4

∫
∞

0
e−t/(4π) t−d/4+r/2−1 dt

= (4π)−d/4+r/2 c1(r, d) 2−d/4
∫
∞

0
u−d/4+r/2−1 e−u du.

Hence, by the definition of the Gamma function, one has

‖βr‖Go0
≤ c1(r, d) 2−d/4(4π)−d/4+r/20(r/2− d/4)

=
(π/2)d/40(r/2− d/4)

0(r/2)
= k(r, d). �

The Fourier transform of the Bessel potential can also be expressed as an integral of normalized
scaled Gaussians.

Proposition 3.3. For every r > 0, d a positive integer, and s ∈ Rd

β̂r(s) =
∫
∞

0
wr(t)γ ot (s) dt,

wherewr(t) = (π/2t)d/4 t r/2−1 e−t/0(r/2).

Proof. First we show that β̂r(s) = I/0(r/2), where

I =
∫
∞

0
t r/2−1 e−t e−t‖s‖

2
dt.

Indeed, putting u = t(1+ ‖s‖2), so dt = du(1+ ‖s‖2)−1, we get

I = (1+ ‖s‖2)−r/2
∫
∞

0
ur/2−1 e−u du = β̂r(s)0(r/2).

By (1), ‖γt‖L2 = (π/2t)
d/4, so β̂r(s) =

∫
∞

0 (π/2t)
d/4 t r/2−1 e−t/0(r/2) γ ot (s)dt . �

The next proposition gives an upper bound on Go0-variation of β̂r .

Proposition 3.4. For d a positive integer and r > d/2,

‖β̂r‖Go ≤ ‖β̂r‖Go0
≤

∫
∞

0
wr(t)dt = k(r, d),

where k(r, d) = (π/2)d/40(r/2−d/4)
0(r/2) .

Proof. A straightforward calculation shows that the L1-norm of the weighting function wr is the
same as theL1-norm of the weighting function vr and the upper bound follows from Theorem 2.4 as
in Proposition 3.2 but with φ(x, y) = φ(x, t) = γ ot (x). �
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Since the Fourier transform is an isometry on L2, by (10) the functions βr and β̂r have the same
variation with respect to Go0. Propositions 3.2 and 3.4 give the same upper bound k(r, d) on this
number. If for some fixed c > 0, rd = d/2+ c , then k(rd, d)→ 0 exponentially fast as d→∞.
As all elements of Gβr have the sameL2-norm equal to λ(r, d),

‖.‖Goβr
= λ(r, d)‖.‖Gβr . (13)

An application of (9) and (11) with Propositions 3.2 or 3.4 shows the following result:

Theorem 3.5. For d, n positive integers and r > d/2

‖βr − spann G0‖L2 = ‖β̂r − spann G0‖L2 ≤ n
−1/2 (k(r, d)2 − λ(r, d)2)1/2 .

As above, for c > 0 and d large enough, the theorem shows that the Bessel potential of order
rd = d/2+ c can be well-approximated by a network with just one Gaussian unit; hence, βrd is close
inL2-norm to a multiple of some d-dimensional Gaussian centered at the origin.

4. Approximation of smooth functions by Gaussian RBFs

In this section we estimate rates of approximation by Gaussian RBF for functions in the Bessel-
potential spaces. To obtain the estimates we first derive upper bounds on variation with respect to
the set of translated Bessel potentials and then combine them with the estimates of G0-variation of
Bessel potentials from the previous section.
Let h ∗ g denote the convolution of two functions h and g ,

(h ∗ g)(x) =
∫

Rd
h(y)g(x− y)dy.

For d a positive integer, r > d/2, and q ∈ [1,∞], the Bessel-potential space (with respect to Rd) [33,
pp. 134–136] denoted by (Lq,r , ‖.‖Lq,r) is defined as

Lq,r := {f | f = w ∗ βr , w ∈ Lq}

and

‖f ‖Lq,r := ‖w‖Lq for f = w ∗ βr .

Since the Fourier transform (2) of a convolution is (2π)d/2 times the product of the transforms, we
have ŵ = (2π)−d/2 f̂ /β̂r . Thus w = (2π)−d/2(f̂ /β̂r) ˇ is uniquely determined by f and so the Bessel-
potential norm is well-defined.
For τy the translation operator given by (τyf )(x) = f (x− y) let

Gβr = {τyβr | y ∈ Rd}

denote the set of translates of the Bessel potential of order r . For r > d/2, βr belongs to L2; since
translation does not change theL2-norm, Gβr ⊂ L2.
Functions in the Bessel-potential space are convolutions with βr which are integral formulas. Thus

we get the following upper bound:

Proposition 4.1. Let d be a positive integer, r > d/2, w : Rd → R continuous except on a set Z0 of
measure zero,w ∈ L1, and f = w ∗ βr . Then ‖f ‖Gβr ≤ ‖w‖L1 = ‖f ‖L1,r .

Proof. The bounds follow from Theorem 2.4, applied to the integral formula f (x) =
∫
w(y)βr(x −

y)dy =
∫
w(y)λ(r, d)βor (x− y)dy combined with (13). Take Y = Rd, Y0 = Z0, let φ(x, y) = βor (x− y),

and let w(y)λ(r, d) be the weight function. The condition r > d/2 is needed to ensure that Gβr ⊂
L2. �
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For h : U → R, U a topological space, let

supp h = cl {u ∈ U | h(u) 6= 0}.

Proposition 4.2. Let d be a positive integer, r > d/2,w ∈ L2 continuous except on a set of measure zero,
λ(suppw) = ν <∞, and f = w ∗ βr . Then

‖f ‖Gβr ≤ ν
1/2
‖f ‖L2,r .

Proof. By the Cauchy–Schwartz inequality, ‖w‖L1 ≤ ν1/2‖w‖L2 = ν1/2‖f ‖L2,r . But by
Proposition 4.1, ‖f ‖Gβr ≤ ‖w‖L1 . �

These estimates of variations give an upper bound on rates of approximation by linear
combinations of n translates of the Bessel potential βr .

Theorem 4.3. Let d, n be positive integers, r > d/2, w continuous except on a set of measure zero,

f = w ∗ βr , and λ(r, d) = πd/4
(
0(r−d/2)
0(r)

)1/2
.

(i) For w ∈ L1,

‖f − spannGβr ‖L2 ≤ n
−1/2 (λ(r, d)2‖f ‖2L1,r − ‖f ‖2L2)1/2 .

(ii) For w ∈ L2 with ν = λ(suppw) <∞,

‖f − spannGβr ‖L2 ≤ n
−1/2 (ν λ(r, d)2‖f ‖2L2,r − ‖f ‖2L2)1/2 .

Proof. (i) By Proposition 4.1, (13) and (9).
(ii) As in Proposition 4.2, w ∈ L2 and supp(w) = ν < ∞ imply w ∈ L1; the rest follows from
Proposition 4.2. �

Composing estimates of variations with respect to sets of translated Bessel potentials and
Gaussians, we get an upper bound on rates of approximation by networks with n Gaussian RBF units
for functions from Bessel spaces.

Theorem 4.4. Let d, n be positive integers, r > d/2, w continuous except on a set of measure zero,
f = w ∗ βr , and k(r, d) =

(π/2)d/40(r/2−d/4)
0(r/2) .

(i) For w ∈ L1,

‖f − spannG‖L2 ≤ n
−1/2 (k(r, d)2 ‖f ‖2L1,r − ‖f ‖2L2)1/2 .

(ii) For w ∈ L2 and λ(suppw) = ν <∞,

‖f − spannG‖L2 ≤ n
−1/2 (k(r, d)2 ν ‖f ‖2L2,r − ‖f ‖2L2)1/2 .

Proof. By (9), ‖f − spannG‖L2 ≤
(
‖f ‖2Go − ‖f ‖

2
L2

)1/2
n−1/2. By Lemma 2.2 with X = L2, F =

Go,H = Gβr , using Proposition 3.2 and the fact that G
o is closed under translations, we have

‖f ‖Go ≤ sup{‖τy(βr)‖Go | y ∈ Rd}‖f ‖Gβr ≤ k(r, d)‖f ‖Gβr .

Thus ‖f − spannG‖L2 ≤ n
−1/2

(
k(r, d)2‖f ‖2Gβr − ‖f ‖

2
L2

)1/2
.

Then the statements follow from the upper bounds on ‖f ‖Gβr given in Propositions 4.1 and 4.2
respectively. �

5. Upper bounds in terms of Sobolev norms

In this section, bounds on approximation by Gaussian RBFs are given in terms of Sobolev norms.
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Let r be a positive integer and letW 2,r denote the Sobolev space of functions with tth-order partials
inL2 for t ∈ {0, 1, . . . , r} and norm

‖f ‖W2,r =

(∑
|α|≤r

‖Dα f ‖2
L2

)1/2
,

where α denotes a multi-index (i.e., a vector of non-negative integers), Dα denotes the corresponding
partial derivative operator, and |α| = α1 + · · · + αd.
Two norms are equivalent if each is bounded by a multiple of the other. For integer smoothness,

equivalence of the Sobolev norm ‖·‖W2,r and the Bessel-potential norm ‖·‖L2,r iswell-known (e.g., [34]
or [1, p. 252]). As constants of equivalence were not readily available, we derive one of them here.
Let d and r be positive integers, r > d/2,w ∈ L2, and f = w ∗ βr . Then

‖f ‖L2,r ≤ (2π)
−d/2(r!)1/2‖f ‖W2,r . (14)

Indeed, since f = w ∗ βr , f̂ = (2π)d/2ŵβ̂r and so

‖f ‖L2,r = (2π)
−d/2
‖f̂ /β̂r‖L2 = (2π)

−d/2
(∫

Rd
|f̂ (s)|2(1+ |s|2)rds

)1/2
.

Let
( r
σ

)
denote the multinomial coefficient r!/σ1! . . . σt !. Note that (1+ |s|2)r =

∑
|σ |=r

( r
σ

)
|u2σ |, for

u ∈ Rd+1 defined by uj = sj, j = 1, . . . , d, ud+1 = 1, for σ = (σ1, . . . σd+1) ∈ Nd+1 a multi-index of
length d+ 1, and |u2σ | = |u2σ11 · · · u

2σd+1
d+1 |. Hence, we have∫

Rd
|f̂ (s)|2(1+ |s|2)rds ≤ C(r, d)

∫
Rd
|f̂ (s)|2

∑
|α|≤r

|s2α|ds,

where C(r, d) = max
{( r

σ

)
| |σ | = r

}
. It follows from basic properties of the Fourier transform that

the integral on the right-hand side is the square of the Sobolev norm of f ; see, e.g., [34, p. 162]. Clearly,
C(r, d) ≤ r!, and equality holds if and only if r ≤ d. This establishes (14).
Thus the larger the dimension, the more the magnitudes of these two equivalent norms differ. We

can nowestimate the rate of approximation by scaled and translatedGaussians in terms of the Sobolev
norm of the function to be approximated.

Theorem 5.1. Let d, n, r be positive integers, r > d/2,w continuous except on a set of measure zero, and
f = w ∗ βr . For w ∈ L2 and λ(suppw) = ν <∞,

‖f − spannG‖L2 ≤ n
−1/2

((π
8

)d/2 (0(r/2− d/4)
0(r/2)

)2
ν r!‖f ‖2W2,r − ‖f ‖

2
L2

)1/2
.

Proof. Using Theorem 4.4(ii) and (14), theL2-distance from f to spannG is at most (k(r, d)2 ν (2π)−d
(r!)1‖f ‖2

W2,r
− ‖f ‖2

L2
)1/2n−1/2, and the result follows. �

6. Tractability of approximation by RBFs

Our results can be interpreted in terms of tractability (see below for the definition) ofmultivariable
approximation by Gaussian-radial-basis networks.
For Ad ⊆ L2(Rd) and n a positive integer, let en(Ad) denote the worst-case L2-error in

approximating the elements ofAd by elements from spann G; i.e.,
en(Ad) = sup

f∈Ad
inf

g∈spannG
‖g − f ‖L2 ,

where G is the family of all scaled and shifted Gaussians. Let d be a positive integer, r > d/2, ν > 0,
and let w be continuous except on a set of measure zero. ForAd equal to any of two subsets defined
below, we have shown that

en(Ad) ≤ n−1/2a(r, d)
and a(r, d) tends to zero exponentially fast as d→∞, as explained below.
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Define the following two subsets ofL2:

A
(1)
d = {w ∗ βr | ‖w‖L1 ≤ 1},

and

A
(2)
d = {w ∗ βr | ‖w‖L2 ≤ 1, λ(suppw) ≤ ν}.

In Theorem 4.4(i) and (ii), we have shown that

en(A
(1)
d ) ≤ n

−1/2 (π/2)
d/40(r/2− d/4)
0(r/2)

(15)

and

en(A
(2)
d ) ≤ n

−1/2 (π/2)
d/40(r/2− d/4)
0(r/2)

ν1/2, (16)

respectively.
Considering only the dependence on n, better rates have been obtained under different hypotheses

than ours on the functions to be approximated by Gaussians without scaling, providing constructive
algorithms; see, e.g., [24–26]. But many estimates available in the literature for en(Ad), whereAd is a
suitable set of functions of d variables (see, e.g., [3,5,9,28] for sigmoidal-neural networks and radial-
basis-function networks), are of the form

en(Ad) ≤ n−δ κ(d), (17)

where δ > 0 and κ(d) is an increasing function of the number d of variables. In some literature, the
term κ(d) in (17) is referred to as ‘‘a constant’’; however, this means constant only with respect to n
but not with respect to the number d of variables.
For example, rates of approximation of functions on Rd with all l-order partial derivatives

uniformly bounded for some positive integer lwere investigated in [36], but it was not specified how
the multiplicative factors in the estimates depend on d.
The dependence of κ(d) on dmay not be crucial for small values of d; however, for large values of

d, approximation error en(Ad) can even grow exponentially with d as a consequence of exponential
growth in κ(d) (see, e.g., [3, item 9, p. 940]), when the ‘‘curse of dimensionality’’ [4] strikes. However,
if κ(d) ≤ C dα for some C, α > 0 independent of n and d, then

en(Ad) ≤ C n−δ dα (18)

and the approximation problem is said to be tractable in the number d of variables [35–37,26].
As remarked in [36], in general estimating the dependence of en(Ad) on d is much harder

than estimating its dependence on n and only a few results are available. For neural-network
approximation, upper bounds that depend polynomially on d, hence ensuring tractability, were
derived in [3,17,19,20]. In [26, Theorem 4.2], a tractability result for approximation by RBF networks
was obtained in the supremum norm on Rd which also gives an upper bound of the form (18).
The bounds (15) and (16) are of the form n−1/2 aj(r, d), where aj(r, d) is given by

a1(r, d) =
(π/2)d/40(r/2− d/4)

0(r/2)
(19)

and

a2(r, d) =
(π/2)d/40(r/2− d/4)

0(r/2)
ν1/2, (20)

respectively. For j = 1, 2, aj(c + d/2, d) → 0 exponentially fast for d → ∞ . Also, r ′ > r > d/2
implies aj(r ′, d) < aj(r, d).
This behavior implies the tractability ofmultivariable approximation forA(1)

d andA
(2)
d byGaussian-

radial-basis networks. In fact, for these two classes, for d sufficiently large Eq. (18) holds for all negative
α > −∞.
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