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where we have applied

Finally, by lettingN' — oo and taking (22) into account, the result
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increase too fast with the dimensionality of certain tasks. Such theoredrresponds to computational units in the hidden layer. For a larger
ical results supplement experience with design criteria based on mathmber of layers, such a basis becomes more complex, as it depends
ematical models. on the number of units in the previous hidden layers.

Feedforward networks are often implemented on classical com-In the variable-basis approximation framework, Maurey—Jones—
puters; for such implementations, one of the crucial issues is tBarron’s upper bound can be expressed in term$waf norms of
number of hidden unitaeeded to guarantee a desired accuracy. Thee function to be approximated: 1) a norm in which the accuracy of
dependence of such accuracy on the number of hidden units carapgroximation is measured, and 2) a norm tailored to the given basis
theoretically studied in the context of approximation theory in ternd€.g., the computational units of a neural network).
of rates of approximation We demonstrate the limitations of improvements of Maurey—Jones—

Some insight into the reason why many high-dimensional tasks c&afron’s upper bound in the case of an orthonormal basis, for which the
be performed quite efficiently by neural networks with a moderafeorm 2) equalé; norm with respect to this basis. We derive tight upper
number of hidden units has been gained by Jones [4], who has cBAtnds in terms of both norms 1) and 2). Our results are extensions to
structed incremental approximants with a rate of convergence of fglimates derived by Kkova, Savicky, and Hlawkova [8] for finite-
order ofO(1/,/n). The same estimates of rates of approximation h&iimensional spaces. From our estimates it follows that for a general
earlier been proved by Maurey using a probabilistic argument (it h¥ariable basis, Maurey—Jones—Barron’s bound cannot be substantially
been quoted by Pisier [5]; see also Barron [6]). Barron [6] has improvéBiProved. In the orthonormal case, it can be improved at most by a
the constant in Jones's [4] upper bound and has applied such a bourf@€&°r dependent on the ratio between the above-mentioned norms, but
neural networks. Using a weighted Fourier transform, he has descriflég terml//n remains essentially unchanged (it is only replaced by
sets of multivariable functions approximable by perceptron networkg(2vn — 1)).
with » hidden units to an accuracy of the orderfl / /7). However, The correspondence is organized as follows. Section Il contains
it should be stressed that the sets of multivariable functions to whiBgsic concepts and notations concerning feedforward neural networks
such estimates apply may become more and more constrained asfibapproximation in normed linear spaces. Section Il presents tight
numberd of variables increases (see, e.g., Girosi, Jones, and poggwnds on rates of approximation for orthonormal bases. In Section IV,
[7]), and some quantities not appearing in the notatigi//n) may Our results are discussed. All proofs are deferred to Section V.
depend onl (see, e.g., Kikova, Savicky, and Hlagkova [8]).

Several authors have further improved or extended these upper Il. PRELIMINARIES
bounds. An extension td, spaces, withp € (1, o), has been A. Feedforward Neural Networks

derived by Darkeret al.[9] (with a rate of approximation of the order )
of 0(7151/q)’ whereq = max(p, p/(p — 1)). Similar upper bounds Feedforward neural networks compute parametrized sets of func-

for the L. space have been obtained by an extension of Maurey!@"S dependent on the type of computational units as well as on the
probabilistic argument (see, e.g., Barron [10], Girosi [11], GurvityPe Of their interconnections. We cajtnetworksone-hidden-layer
and Koiran [12], Makovoz [13], Rtkové, Savicky, and Hlawkova fgedfor\_Nard networks Wlth hidden units computing afunptinoemd a

[8]). An interesting improvement has been derived by Makovoz [14 llngle linear output unit. Thug;-networks compute functions of the
who has combined a concept from metric entropy theory with a prof®™

abilistic argument. Possibilities of simplifying Jones’s construction n

and/or modifying its parameters have been investigated by Dingankar Z wid(as, )

and Sandberg [15], Docampo, Hush, and Abdallah [16], and Docampo =1

[17]. Barron [6] and Kukova and Sanguineti [18] have described SEtvsvherea,- € 4 C R? (R denotes the set of real numbers)R? x RY —

of multivariable functions for which the worst case errors in Iineaﬁ . . . .
L . . 'R corresponds to edmputational unjtandp andd are the dimensions
approximation are larger than those in neural-network approximatio

Using an argument much simpler than the proof techniques employﬁéheparameter spacand thenput spacerespectively. We denote by
by Maurey, Jones, and Barron, Mhaskar and Micchelli [19] have Gy ={o(a,):a e ACR"}

obtained similar upper bounds for orthonormal approximating se%ﬁ. . . . .
For finite-dimensional spaces, Kewva, Savicky, and Hlakova [8] e parametrized set of functions corresponding to the computational

have improved Mhaskar and Micchelli’'s bounds up to tight ones. FHP't ¢ h . hi .
perceptron networks, the tightness of Maurey—Jones—Barron’s boun(lJI3 erc_:t;ptrons a re_t emeSt. w?eﬂ;preaﬂ% type o |d?en qnpsmﬁ:pt;
has been studied by Barron [10], Makovoz [14], antrkeya and tron with anactivation functiony: R — R computes functions of the
Sanguineti [20]. el
This work is motivated by recent papers by Dingankar [21], [31], o((v. b), 2) = (v -z +b): R « R = R
and Levretsky [32], which explore the possibility of improving '
Maurey-Jones-Barron’s upper bound of the ordedof/\/n) upto  wherev € R is aninput weight vectoandb € R is abias
a bound ofO(1/n”). We investigate the limitations of improvements Estimates of rates of approximation by feedforward neural networks
of Maurey—Jones—Barron’s upper bound in the general context £ a function of the number of hidden units can be formulated in a more

nonlinear approximation of the variable-basis type, i.e., approximati@@nera| context ofariable-basis approximation
by linear combinations of-tuples of elements of a given set of basis

functions. This approximation scheme has been widely studied:Bt Approximation by Variable-Basis Functions
includes free-nodes splines (see, e.g., Petrushev [22] and DeVore a
Lorentz [23, Ch. 13]), nonlinear trigonometric approximation (i.e
approximation by trigonometric polynomials with free frequencie
see, e.g., Maiorov [24], Belinsk[25] and DeVore and Temlyakov ace) with norrij - ||, thenB, (- ||) denotes the ball of radiuswith
[26]), sums of wavelets (see, e.g., DeVore, Jawerth, and Popov [2 :
) i j . ““respect to the norrji - ||, i.e.,

as well as feedforward multilayer neural networks with a single linear
output unit. In the case of one-hidden-layer networks, a variable basis B.(||-Ih={f e X:|Ifll < r}.

rEiy linear spacenve mean a linear space over real numberd’ i§ a
gl_near space, then thdimensiorof X is denoted bylim X.
" Let (X, || - ||) be a Banach space (i.e., a complete normed linear
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When it is clear from the context which norm is considered, we shabnsists of all linear combinations of at mesparametrized functions

simply write X instead of(X, || - ||). Recall that a Hilbert space is ¢(a;, -) (the variable basis is obtained by varying the parameter vector
a complete normed linear space with the norm induced by an inredithe computational unit). Also multilayer feedforward networks with
product. a single linear output unit and units in the last hidden layer belong
If G is asubset o andc € R, then we define to this approximation scheme, but the correspondingGedse more
G ={cg: g € G) complex and depend on the number of units in the previous hidden
layers.
and, fore positive For elements of the convex closure of a bounded subsef a

. Hilbert space, Maurey (see [5]), Jones [4], and Barron [6] have derived
Gle) ={wg: g € G,w € R, |w| < c}. an upper bound of the order 6f(1/+/r) on the rate of approximation
Theclosureof G is denoted by G and defined as by conv,, G. The following theorem presents this upper bound (see
AG={feX: Ve>0 FgeG |f—gll<ech Barron [6, Lemma 1]) in a slightly reformulated way.

Gisdenséan (X, ||-||)whencl G = X. (X, || - ||) is separablevhen
it has a countable dense subset.
Thelinear spanof G, which we denote bypan G, consists of all

linear combinations of elements 6Gf, i.e., ERE
il ||f —conv, G|| < 4/ ————.
span G = Zuugi: w; ER, ¢ € G, n € Ny n

=1

Theorem 1: Let (X, || - ||) be a Hilbert spacef its subset, and
a positive real number such that for everg G, ||g|| < b. Then, for
everyf € clconv G and for every positive integer

whereN_. denotes the set of positive integers. The set of all linear AS couve G C span,, G, the upper bound given in Theorem 1 also
combinations of at most elements of7 is denoted bypan, G, and applies to rates of approximation kyan, G. However, wherG: is
defined as not closed up to multiplication by scalaksinv G is a proper subset
" of span GG, and hence alsd conv G is a proper subset of span G.
span, G = {Z“”g“ w; €ER, ¢; € G}. Thus, the density ofpan G in (X, || - ||) does not guarantee that The-
P orem 1 can be applied to all elementsof

conv G denotes theonvex hullof G, consisting of all convex combi- ~ AS conv,, G(c) C span,, G(c) = span, G for any positivec, re-

nations of elements o, i.e., placing the seti with G(¢) = {wg:g € G, w € R,|w| < ¢}, we
n n can apply Theorem 1 to all elementslafer , cl conv G(¢). This ap-
conv G = {Z aigi: a; €10, 1], Z‘“ =1,¢4€G ne N+} . proach can be mathematically formulated in terms of a norm tailored
i=1 i=1 to a set (in particular, to setér,, corresponding to various computa-

conv,, G is the set of all convex combinations of at mastlements of tional unitsé in feedforward networks), calle@-variation (variation
G, ie., with respect ta7) and defined as the Minkowski functional of the set

n n clconv (GU —-@G), e,
conv,, G = {Z(L,‘,g,;:a;, € [0, 1],2@,;:1, i EG}. o N

i=1 i=1 [|fllc = inf{c € Ry: = € clconv (GU —G)}.
If M is a subset of a Banach spac¥, || - ||) andf € X, then ¢
f = M| = inf ||f — gl G-variation has been introduced by Kova [28] as an extension of

’ T gem g Barron’s [10] concept of variation with respect to half-spaces. It is a

denotes thelistanceof f from A/. Approximation of functions from norm on the subspade € X:||f|lc < oo} C X. The closure in the
a setY’ by elements of an approximating skt can be investigated in definition depends on the topology induced &nby the norm|| - ||.

terms of theworst case errarwhich is formalized by the concept of WhenX is finite-dimensional, all norms are topologically equivalent
deviation of Y from M defined as and, thus(7-variation does not depend on the choice of a nornXon

F he definiti ‘-variation it foll hat, f X
SV, M) =8(Y, M, (X, || ) rom the definition ofz-variation it follows that, for every €

= sup [|f — M| = sup inf ||f - gl 171l < scllflle,  wherese = sup llgll-

fey Fey 9eM ¢

Linear approximation theorynvestigates approximation by linear ntuitively, || f||¢ shows us how much the sét should be “dilated,”
subspaces, which are often generated by thefirslements of a lin-  so thatf is in the closure of the convex symmetric hull of the “dilated”
early independent subsétof X with afixed ordering For example, set.G-variation is a generalization of two concepts: total variation (see,
whenG is the set of powergz'~":i € N}, then the linear space e.g., Kolmogorov and Fomin [29, p. 328]) ahdnorm. WhenG is an
generated by its first elements is the set of all polynomials of ordeforthonormal basis of a separable Hilbert spake || - ||), then/; norm

at mostn — 1. with respect td, denoted by|| - |1, ¢, is defined as
We callnonlinear approximation by variable-basis functiadhs ap-

proximation by linear combinations of all-tuples of elements of a fll1, ¢ = Z |f - gl

given setG. This corresponds to approximation by the sein,, G geG

of all linear combinations of at most elements ofG, i.e., approxi-
mation by theunion of at most:.-dimensional subspacggnerated by
elements of7. One-hidden-layer feedforward networks with a linear Proposition 1: Let (X, |- ||) be a separable Hilbert space afidbe
output unit andr units computing the function in the hidden layer its orthonormal basis. Thep-
belong to this approximation scheme. The set

So|| - |li,aisanormon{f € X:||f|li,a < co}.

a=1"1ha

Using Proposition 1, we obtain the following upper bound as a spe-

span, Gy = i wid(ai, ) wi €ER a; € A CRP cial case of Kukova's [28] (see also [81) r.eformulation of Maurey—
— Jones—Barron’s theorem in terms@#variation.



2662 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 6, SEPTEMBER 2001

Theorem 2: Let (X, || - ||) be a separable Hilbert space afdts and of the factor

orthonormal basis. Then, for evefye X and every positive integer Il e . 111, ¢
LALE  with ZELE
s — n 24/n —1
I —span,, G|l < AT, & = ILAIP _ Wlle [ AP Whenf is a finite linear combination of elements of an orthonormal
T n v 1T, subsetG of a Hilbert space, thefif — span,, G| can be easily cal-

culated. The proof of the following lemma is a straightforward conse-
As0 € span, G, we have, forallf € X, ||f — span, G| < ||f||, 9uence of the definition ofpan,, G and the orthonormality ofr.
which implies the trivial upper bounlf|| on||f — span,, G||. Hence,

X Lemma 1: Let (X, || - ||) be a Hilbert space(s its orthonormal
when| /]| is such that subset, andd = Zle w;g;, where, foralli = 1, ..., k,w; € R
I < W73 & = I£11? andg; € G. Then, for all positive integers < %
n A )
or, equivalently, ||f — span, G| = min iezj'wig,- ccardl =k —mn .
£l < ! Using a simple proof technique based on a rearrangement of an or-
Iflle = Vn+1 thonormal basis of a separable Hilbert space, Mhaskar and Micchelli

o ) ] ~[19] have obtained bounds @& ,, in terms ofl; norm with respect to
the trivial upper bound| ||, is better than the upper bound given in; They have shown that, for all positive integers

Theorem 2. For example, iff||1, ¢ = 1, then the trivial upper bound b b
is better wher|f|| < 1/+/n + 1. —= < ba,a(Bu(ll - I1, ) <

. . 2 vV '
The upper bound in Theorem 2 can also be formulated in terms'\%fh K q l\\fh i . h b nd+ .1 d usi imol
deviation. We denote theviation fromspan, G by 6., ie., askar and Michelli's estimates have been derived using simple ar-

guments, but they are weaker than the estimates obtained by Maurey,

ba,n(Y) = 6(Y, span,, G). Jones, and Barron, as they are formulated only in termis-dfi,
without taking into account the value pf ||.

For finite-dimensional Hilbert spaces, ‘Kawva, Savicky, and
Hlavéakova [8] have improved Mhaskar and Michelli's upper bound

Proposition 2: Let (X || . ||) be a Banach space addandY its up to b/(Z\/ﬁ), and have shown that this bound is tight when
subsets. Then, for all positive integers dim X > 2n. Moreover, they have derived a tight estimate of the

i) for anye € R, 86, n () = ||, (V) deviationég, » frqm span, G of sets defined by constraints on both

e s norms,/; norm with respect t@, and|| - ||.

The following properties of;, , can be easily derived from its defini-
tion.

i) dc,n(clY) = bda,n(Y); The following theorems extend the results in [8] to infinite-dimen-
i) 6a,nt1(Y) < b6, o (Y); sional separable Hilbert spaces. Their proofs exploitideas contained in
iv) if V' C Y, thenda, . (Y") < 8. n(Y). the papers by Mhaskar and Micchelli [19] and byrKova, Savicky,

and by Hlav@kova [8].
Theorem 2 implies the following upper bounds &1 ,, of balls in

I, norm with respect t@x and onéc. , of their subsets defined by a _11eorem 3:Let (X, || - [|) be an infinite-dimensional separable
constraint on the value of the noriin ||. Hilbert space and its ortht_)norr_nal basis. Then, for every positive
real numbei and every positive integer
Corollary 1: Let (X, || - ||) be a separable Hilbert spac®,its or- b
thonormal basis, and b real numbers such that< » < b. Then, for ba.n(Bo(ll - l1,a)) = N
every positive integen -
) S (Bl - 1)) < %; Whend is a countable infinite orthonormal basis, Theorem 3 im-
" proves the upper bound i) in Corollary 1 up to an exact value of the
i) 6a,n({f € Bo(||- ll1,0):lIfll = 7}) < lf 1- b—i deviation fromspan,, G of balls inl; norm with respect t@r. In con-

trast to Corollary 1ii), which expresses an upper bound in terms of both
I f1l1, . and|| f||, Theorem 3 does not tal¢|| into account. However,
even without using the value §ff||, it gives a better bound than Corol-
lary 1 ii) when the ratid| f||/|| f]|1, < is sufficiently small

Thus, balls of radius in 71 norm with respect td@- can be approxi-
mated byspan,, G with accuracyp//n, independently of the number
of variables of the functions in the spa&e However, it should be noted
that the condition of being in the unit ball in norm with respect ta+

may become more and more constraining with an increasing number " 1Kl V3 h £l A5 & = IIFI1?
of variables [8]. I 7o <5 en NG < - .

In the _next _section, we shall investigate how tight are the upper pe following theorem gives, fa orthonormal, the maximum im-
bounds given in Theorem 2 and Corollary 1. provement of Corollary 1 ii) achievable in terms|pf||:, s and|| - ||.

. TIGHT BOUNDS ON RATES OF APPROXIMATION EOR Theorem 4: Let (X, || - ||) be an infinite-dimensional separable
ORTHONORMAL BASES Hilbert space( its orthonormal basis, arid » real numbers such that

] S ) 0 < r < b. Then, for every positive integer > 2
Let G be an orthonormal basis of an infinite-dimensional separable

Hilbert space. We shall show that, in this case, the maximum possibleif § > —z— then
improvement of the bound in Theorem 2 lies in the replacements of the
factor

2
= (177 ) Stan(lr € Xl =0 1Al = )

5 2
S iy 1 W AR
”f”i(, ||f||1,G ~2yn—1 b2 )’
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i) if Vi—yn—1<1<

ﬁ <bc.a({f €X:Iflla=b Ifll =r})

;
= then

b 2
——m1\(1- = };
_2\/71—1< bz)’

iy if £+ < /n—+n—1,then

m <San({f €X:Iflha="blIfll=r}) <

Theorem 4 i) and iii) give, up to a constant factor, the best pofer all m € N4. Thus, for all: > 0, we have

sible upper bounds ofpf — span,, G|| that can be obtained in terms

of [|£]l. < and|| £]].

IV. DISCUsSION

Our results contribute to investigation of tightness of the upp&: Proof of Theorem 3
bounds on rates of approximation by neural networks derived byBy Proposition 2 i)
Maurey (see [5]), Jones [4], and Barron [6]. We have studied such

bounds in the context of nonlinear approximation of the variable-basis
type, which includes feedforward neural networks with a single linear

output unit. For approximation by a variable orthonormal bésisf

an infinite-dimensional separable Hilbert space we have derived tight

2663
lim; oo fim,: = fm in|| - ||. As all norms on a finite-dimensional
space are topologically equivalent, we also hbwe .. fr..; = fm
in|| - ||1, ¢. Using the triangle inequality, we get

Z('frn,i 'gj| - |fm : gj') < ZKfm,i - fm) . g]'

j=1 7=1
hence

1111’1 Z |fm,7j . g,| == Z |fm * g7|
£l e <be < |Ifllc+e
which implies|| - [|1.c < || - || o
bdc,n(Bi(ll - 111,@)) = dc.n(Bo(ll - ll1.c))-
So itis sufficient to verify thabe, . (B1(|| - [l1,¢)) = 1/(2/n).
To derive the upper bound, lgt € Bi(]| - ||1,¢) and, using the

bounds in terms of two norms: the norm in which the accuracy of tl'?é‘me trick as Mhaskar and Micchelli [19], reordéin such a way that

approximation error is measured, and th@orm with respect te-.

f =32, wigi, where, foralli € N, |w;| > |wiy1]| andg; € G.

When the set? of variable-basis functions is not orthonormal, theset

technique used to prove the results of Section Ill cannot be applied.
In the special case of a variable basis corresponding to perceptrons
with a sigmoidal activation function, Barron [10] and Makovoz [14]

i3
fo = E wigi.
=1

have derived tight bounds. Both have used probabilistic argumentsgip | emma 1
[14] combined with concepts from metric entropy theory. The applica-

tion of metric entropy tools to derive tight bounds for perceptron net-
works with a sigmoidal activation function has been further developed -

by Klrrkova and Sanguineti [20].

From our results it follows that the upper bound obtained by Maurey,
Jones, and Barron (stated here in the form of Theorem 1) cannotbe es-
sentially improved, unless some additional properties of the set of belaR 21
functions are guaranteed (see, e.g., Makovoz [14]). Thus, our results
contribute to clarifying the issues recently discussed in [21], [31], and

132].
V. PROOFS
A. Proof of Proposition 1
We first check thaf| - [l < || - I, ¢. LetG = {gi:i € N1 }. Then

everyf € X canbe expressed s, (f - gi)gi. Form € N, set

m

fm = Z(f ' fli).(]i-
=1

If & = ||flli,a, then, for allm € N, fn € convG(d).
f=limm—o fmin|-||, and sof is in the closure ofonv G(b) with
respect td| - [|. Hence||f{l¢ < b = [|f[|1, .

We now verify that|-||c > ||-||1, . Letb. <|| f||g+< for somes >0,
then, by the definition of| /||, there exists a sequenéé;: i € Ny}
such thatf; € conv G(b.) foralli € N4, andf = lim; . f; in
|| -]|. Form € Ny, set

m m

froi=> (fi-gi)g; and fu = (f-g,)9;-

i=1 j=1
Since the projection onto the m-dimensional subspace
span{gi, ..., gm } iS continuous (see, e.g., [30, p. 145]), we have

IIf = span, G|I* < ||If — full®

o0
Z |w;.

i=n+1

= > wi < |waii
1

i=n-+

2, lwi| = 1, we have
o0
Z [wi] < 1= njwn41]
i=n+1
and hence

1F = span, GII* < Jw,st] (1 = nfw.t ).
Settingt = |w,41], we get

88, n(Bi(] - l1.c)) < t(1 — nt).

The right-hand side of this inequality achieves its maximum, equal to

1/(4n), fort = 1/(2n). Thus,

1

6G,n(Bl(|| : ”LG)) S zﬁ

To verify the lower bound, let

2n

1
fn = %;gz

Then||fxll1.¢ = 1 andéc, n(Bi(ll - [1,¢)) = [|fn» — span, G]||. By
Lemma 1 and the orthonormality 6f

. 1
1. = span, Gl = | 5= > 4.

el
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wherecard I = n. So By Lemma 1 and the definition ¢f,., we have, foreverg < n < k
1
. — span, G|| = . | ) k—

o = span Gl = 5 7 1 = span, Gl = Y= (1 o)

C. Proof of Theorem 4 _V kk_ n <1 _ k;z _11 )
By Proposition 2 i) / o
k—n 1—72

b ({f € Xe I fll.c = b Il = ) =

= boc.n({f € X:llfllia = 1. £l = /b)), I

Thus, it is sufficient to verify the statement of the theoremifer 1.
First, we derive the upper bound. L€ X be such thal f||i, =1
and||f|| = r. Using the same trick as Mhaskar and Micchelli [19]
reorderG in such a way thaf can be represented gis= > >, wig;,

where, for all; € Ny, |w;| > |wit1| andg; € G. As

It is easy to check that the expressigfi — n/(k — 1) achieves its
maximum, equal td /(2v/n — 1), for k = 2n — 1.

" Now, we need to distinguish between two case$: 1//2n — 1
(corresponding to item i)) and < 1/+/2n — 1 (corresponding to the
items ii) and iii)). In the first case, sét=2n—1. As2n—1>1/7%,

. X, we havek > 1/r%; thus, f is properly defined. As* < 1, we have
1A =D wi < Jwilllflh, e = |wi] (kr? —1)/(k—1) < 1, and hence
=1
— 2
we havelur| > 7] = . e = span, & = Y T
> Thae/5
N I 1—?
fr=> wig > > )
; ~2yn—1 2 T 4yn—1
G'=G~{g}

In the second case, whém — 1 < 1/¢?, setk = [1/7%]. Then
" k> 1/72; thus, fx is properly defined and, moreové@n < k. Now

h = Wig;.
Z Vk—n (1_ kz/'2—1>

and

=2 t
||fk —Sp'clll”GH = L k—1
By Lemma 1 and Theorem 3 '

= ”f|2|1\’/(,%|1w1| = 21\/_% As1/r® > k —1and2n < k, we have
HeSnitéi,ngh:wlm—i-h’, we geth Espan,, G and||f—h||=|/f'—1']. s — span, G| > ’H <\/? _ k(:_ . )

As 0 € span, G, for everyf € X we have the trivial upper bound

. Asn > 2, we havek > 4, and so
If = span, G|| < ||f|l = r. Itis easy to check that "= =

172 . . L<1—3)> i O
r<m ifand only if 0 <r < /n —v/n — 1. V2 k)= 22
So in both the cases i) and ii), we have the upper bound
(1 —+%)/(2/n — 1), whereas in the case iii), we have the upper ACKNOWLEDGMENT
boundr. The authors wish to thank Prof. S. Giulini (University of Genoa)
To derive the lower bound, for every positive integemd every real and prof. P. C. Kainen (Georgetown University) for helpful discussions,
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fe = T <(1 +(k=1e)g + Z(l - f’)%)
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