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Abstract. Model complexity in neural-network learning is investigated using
tools from nonlinear approximation and integration theory. Estimates of network
complexity are obtained from inspection of upper bounds on convergence of min-
ima of error functionals over networks with an increasing number of units to their
global minima. The estimates are derived using integral transforms induced by
computational units. The role of dimensionality of training data defining error
functionals is discussed.

1 Introduction

Many computational models currently used in soft computing can be formally described
as devices producing input-output functions in the form of linear combinations of sim-
ple computational units corresponding to the model (for example, free-node splines,
wavelets, trigonometric polynomials with free frequencies, sigmoidal perceptrons or
radial-basis functions). Coefficients of linear combinations as well as inner parameters
of computational units are adjustable by various learning algorithms (see, e.g., [1]).
Such models have been successfully used in many pattern recognition, optimization,
and classification tasks, some of them high-dimensional [2].

In all practical applications, model complexity is constrained. So it is important to
choose a type of computational units that allows efficient learning from the given data
by networks with a reasonably small number of units. Some insight into impact of the
choice of type of units on model complexity can be obtained from investigation of
speed of decrease of infima of error functionals over models with an increasing num-
ber of computational units. The faster the infima of the error functionals converge to
their global minima, the smaller computational models are sufficient for a satisfactory
learning from the data determining the functionals.

In this chapter, we derive estimates of rates of convergence of error functionals using
tools from approximation and integration theory. Applying upper bounds on rates of
nonlinear approximation of neural-network type, we obtain estimates of rates of con-
vergence of error functionals. The estimates are formulated in terms of special norms
tailored to various types of computational units. We propose to measure data complexity
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with respect to a type of computational units by magnitudes of these norms of functions
interpolating the data.

The chapter is organized as follows. In Section 2, basic concepts from learning the-
ory are recalled. In Section 3, some tools from nonlinear approximation theory are
presented. In Section 4, certain variational norms tailored to computational units are
introduced and a method for their estimation is described. In section 5, upper bounds
on rates of convergence of error functionals in terms of variational norms are derived
and they are exploited to get estimates of model complexity. In Section 6, the results
are illustrated by the example of perceptron networks and the impact of growth of data
dimensionality on model complexity is discussed.

2 Learning from Data

Learning from data has been modeled as minimization of error functionals over hypoth-
esis sets of functions which can be implemented by various computational models (see,
e.g., [3], [4]).

Error functionals are determined by training data and loss functions. Training data
are described either by a discrete sample of input-output pairs or a probability distribu-
tion from which such pairs are chosen. A loss function measures how much is lost when
the model computes f(x) instead of y. The most common loss function is the quadratic
loss V (f(x), y) = (f(x) − y)2.

A discrete sample z = {(xi, yi) ∈ R
d × R | i = 1, . . . , m} with all xi distinct (R

denotes the set of real numbers) determines the empirical error functional Ez , which is
defined for the quadratic loss function as

Ez(f) =:
1
m

m∑

i=1

(f(xi) − yi)2.

A nondegenerate (no nonempty open set has measure zero) probability measure ρ
on the set of input-output pairs Z = Ω × Y (where Ω is a compact subset of R

d, Y
a bounded subset of R), determines the expected error functional Eρ defined for the
quadratic loss function as

Eρ(f) =:
∫

Z

(f(x) − y)2 dρ.

Hypothesis sets of input-output functions of one-hidden-layer neural networks be-
long to a class of computational models called variable-basis schemes. Such models
compute functions from sets of the form

spann G =:

{
n∑

i=1

wigi

∣∣wi ∈ R, gi ∈ G

}
,

where G is a set of functions, which is sometimes called a dictionary. The number n
expresses the model complexity; in neurocomputing it represents the number of units in
the hidden layer.
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Typically, dictionaries G are parameterized sets of functions. For example, func-
tions computable by perceptrons, radial-basis-function units, trigonometric polynomi-
als or free-node splines. Such parameterized families of functions can be described by
mappings

φ : Ω × A → R,

where Ω is a set of variables and A is a set of parameters. Usually, Ω ⊆ R
d and A ⊆ R

p.
We denote by

Gφ = Gφ(A) =: {φ(., a) | a ∈ A}
the parameterized set of functions determined by φ.

For example, perceptrons with an activation function σ : R → R induce a mapping
φσ on R

d+1 defined for (v, b) ∈ R
d × R = R

d+1 as

φσ(x, v, b) =: σ(v · x + b). (1)

Usually, σ is a sigmoidal function, i.e., limt→−∞ σ(t) = 0 and limt→∞ σ(t) = 1 and σ
is nondecreasing. A important sigmoidal is the Heaviside function ϑ : R → R defined
as ϑ(t) = 0 for t < 0 and ϑ(t) = 1 for t ≥ 0. We denote by φϑ : Sd−1 → R (where
Sd−1 denotes the sphere in R

d) the mapping defined as

φϑ(x, e, b) =: ϑ(e · x + b). (2)

Similarly, radial-basis functions (RBF) with a radial function β : R+ → R induce a
mapping φβ on R

d+1 defined for (v, b) ∈ R
d × R = R

d+1 as

φβ(x, v, b) = β(b‖x − v‖). (3)

Note that these two types of units are geometrically opposite. Perceptrons compute
functions of the form (1), which are plane waves (they are constant on all hyperplanes
parallel to the hyperplane {x ∈ R

d | v · x + b = 0}, and radial units compute functions
of the form (3), which are spherical waves (they are constant on spheres centered at v).

Learning algorithms aim to find network parameters generating input-output func-
tions with values of error functionals close to their infima. The algorithms either operate
on computational models with a fixed number of units chosen in advance or add units
to obtain input-output functions for which values of error functionals better approxi-
mate their global minima. In all practical applications, model complexity is constrained
and so it is important to choose among potential types of units such types for which
error functionals determined by the given training data can achieve smaller values over
networks with less units.

Some insight into impact of the choice of computational units on model complexity
in learning from a given type of data can be obtained from investigation of speed of
decrease of infima of error functionals over sets spannGφ with n increasing. The faster
the infima of an error functional converge to its global minimum, the smaller compu-
tational model is sufficient for a satisfactory learning from the data determining the
functional.

An advantage of the quadratic loss function is that it allows representations of er-
ror functionals in terms of distance functionals, for which rates of convergence can be
estimated using tools from approximation theory.
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The empirical error functional can be expressed as the square of the distance from
the function fz : {x1, . . . , xm} → R defined as f(xi) = yi for all i = 1, . . . , m. The
distance is measured in the weighted l2-norm on R

m defined as

‖x‖2
2,m =:

1
m

m∑

i=1

x2
i .

For f : Ω → R, let f|X denote f restricted to X = {x1, . . . , xm}. Then

Ez(f) =
1
m

m∑

i=1

(f(xi) − yi)2 =
1
m

m∑

i=1

(f|X(xi) − fz(xi))2 = ‖f|X − fz‖2
2,m. (4)

So the value of the empirical error Ez at f can be expressed as the square of the l2m-
distance of fz from the restriction of f to the set X = {x1, . . . , xm}.

The expected error functional Eρ can be expressed in terms of a distance from the
regression function fρ. This function is defined for all x ∈ Ω as

fρ(x) =:
∫

Y

y dρ(y|x),

where ρ(y|x) is the conditional (w.r.t. x) probability measure on Y .
Let (L2(Ω, ρΩ), ‖.‖L2

ρΩ
) be the space of functions satisfying

∫
Ω f2dρΩ < ∞,

where ρΩ denotes the marginal probability measure on Ω defined for every S ⊆ Ω
as ρΩ(S) = ρ(π−1

Ω (S)) with πΩ : Ω × Y → Ω denoting the projection. The global
minimum of the expected error Eρ over the whole space L2(Ω, ρΩ) with Ω compact is
achieved at fρ and for all f ∈ L2(Ω, ρΩ),

Eρ(f) = ‖f − fρ‖2
L2

ρΩ

+ Eρ(fρ). (5)

(see, e.g., [4, p.5]). So Eρ can be expressed as the square of the L2
ρΩ

-distance from fρ

plus a constant.

3 Tools from Approximation Theory

Due to the equivalence of minimization of error functionals with the quadratic loss
function to minimization of distance functionals, we can study minimization of these
functionals using tools from approximation theory. We can take an advantage of
Maurey-Jones-Barron’s theorem and its corollaries. For functions from the convex hull
of a bounded subset G of a Hilbert space, Maurey-Jones-Barron’s theorem gives an
upper bound on the square of the error in approximation by convex combinations of n
elements of G denoted by

convnG =:

{
n∑

i=1

wigi

∣∣wi ∈ [0, 1],
m∑

i=1

wi = 1, gi ∈ G

}
.

The upper bound was originally derived by Maurey (see [5]) using a probabilistic ar-
gument. Jones [6] derived a slightly weaker estimate constructively with an iterative
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algorithm. Barron [7] refined Jones constructive argument to obtain the same estimate
as Maurey. Here, we state their result in a slightly reformulated way with a proof from
[8] which is a simplification of Barron’s argument. By cl is denoted the closure with
respect to the topology induced by the ambient space norm.

Theorem 1 (Maurey-Jones-Barron). Let G be a nonempty bounded subset of a
Hilbert space (X , ‖.‖X ) and sG = supg∈G ‖g‖X , then for every f ∈ cl conv G and
for every positive integer n,

‖f − convnG‖2
X ≤ s2

G − ‖f‖2
X

n
.

Proof. Since the distance from convnG is continuous onX (see e.g., [9]), it is sufficient
to verify the statement for f ∈ conv G. Let f =

∑m
j=1 ajhj be a representation of f as

a convex combination of elements of G. Set c = s2
G − ‖f‖2

X .
We show by induction that there exists a sequence {gi} of elements of G such that

the barycenters fn =
∑n

i=1
gi

n satisfy e2
n = ‖f − fn‖2

X ≤ c
n . First check that there

exists g1 ∈ G such that g1 satisfies e2
1 = ‖f − f1‖2

X ≤ c. We estimate the convex
combination:

m∑

j=1

aj‖f − hj‖2
X = ‖f‖2

X − 2f ·
m∑

j=1

ajhj +
m∑

j=1

aj‖hj‖2
X ≤ s2

G − ‖f‖2
X = c.

Thus there must exist at least one j ∈ {1, . . . , m} for which ‖f − hj‖2
X ≤ c and we set

f1 = g1 = hj .
Assuming that we already have g1, . . . , gn, we express e2

n+1 in terms of e2
n as

e2
n+1 = ‖f − fn+1‖2

X = ‖ n

n + 1
(f − fn) +

1
n + 1

(f − gn+1)‖2
X =

n2

(n + 1)2
e2

n +
2n

(n + 1)2
(f − fn) · (f − gn+1) +

1
(n + 1)2

‖f − gn+1‖2
X . (6)

Similarly as in the first step, where we considered a convex combination, in this case
we also estimate a convex combination of the last two terms from the equation (6):

m∑

j=1

aj

(
2n

(n + 1)2
(f − fn) · (f − hj) +

1

(n + 1)2
‖f − hj‖2

X

)
=

2n

(n + 1)2
(f −fn) ·(f −

m∑

j=1

ajhj)+
1

(n + 1)2

(
‖f‖2

X − 2f · (
m∑

j=1

ajhj) +

m∑

j=1

aj‖hj‖2
X

)
=

1

(n + 1)2
(

m∑

j=1

ajgj − ‖f‖2
X ) ≤ 1

(n + 1)2
(s2

G − ‖f‖2
X ) =

c

(n + 1)2
.

Thus there must exist some j ∈ {1, . . . , m} such that

2n

(n + 1)2
(f − fn) · (f − gn+1) +

1
(n + 1)2

‖f − gn+1‖2
X ≤ c

(n + 1)2
.

Setting gj = hj , we get e2
n+1 ≤ n2

(n+1)2 e2
n + c

(n+1)2 .
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It can be easily verified by induction that this recursive formula together with e2
1 ≤ c

gives e2
n ≤ c

n . �

4 Variational Norms

Maurey-Jones-Barron’s theorem can be reformulated in terms of a norm called G-
variation. This norm is defined for any bounded nonempty subset G of any normed
linear space (X , ‖.‖X ) as the Minkowski functional of the closed convex symmetric
hull of G, i.e.,

‖f‖G,X = ‖f‖G =: inf
{
c > 0 | c−1f ∈ cl conv (G ∪ −G)

}
, (7)

where the closure cl is taken with respect to the topology generated by the norm ‖.‖X
and conv denotes the convex hull. Note that G-variation can be infinite. It is a norm on
the subspace of X formed by those f ∈ X , for which ‖f‖G < ∞. G-variation depends
on the norm on the ambient space, but when this is implicit, we omit it in the notation.

Variational norms were introduced by Barron [10] for characteristic functions of
certain families of subsets of R

d, in particular, for the set of characteristic functions of
closed half-spaces of the form {x ∈ R

d | e · x + b ≥ 0}, which correspond to the set
of functions computable by Heaviside perceptrons. For functions of one variable (i.e.,
d = 1), the variation with respect to half-spaces coincides, up to a constant, with the
notion of total variation [10,11]. The general concept was defined in [12]. The next
corollary from [12] (see also [8]) gives an upper bound on rates of approximation by
spannG for all functions in a Hilbert space.

Corollary 1. Let (X , ‖.‖X ) be a Hilbert space, G its bounded nonempty subset, sG =
supg∈G ‖g‖X . Then for every f ∈ X and every positive integer n,

‖f − spannG‖2
X ≤ s2

G‖f‖2
G − ‖f‖2

X
n

.

Proof. Let b = ‖f‖G. If b is infinite, the statement holds trivially, otherwise set

G′ = b G = {b g | g ∈ G}. By Theorem 1, ‖f − convnG′‖X ≤ s2
G′−‖f‖2

X
n . As

convnG′ ⊆ spannG, we have ‖f−spannG‖X ≤ ‖f−convnG′‖X ≤ (sG b)2−‖f‖2
X

n =
s2

G‖f‖2
G−‖f‖2

X
n . �

To apply Maurey-Jones-Barron’s theorem to neural networks, one has to estimate
variational norms with respect to common types of network units. One method of
such estimation exploits integral representations of functions in the form of “net-
works with infinitely many hidden units” which instead of finite linear combinations∑n

i=1 wiφ(., ai) compute ∫

A

w(a)φ(x, a)dμ(a). (8)

Many functions can be expressed as such networks with infinitely many units or as
limits of sequences of such networks. For example, all smooth functions, which are ei-
ther compactly supported or sufficiently rapidly decreasing to zero, can be expressed
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as networks with infinitely many perceptrons [11,13]. All continuous compactly sup-
ported functions and all Lp-functions with p ∈ [1,∞) are limits of convolutions with
suitable kernels including the Gaussian one and thus they are limits of networks with
kernel and radial units [14,15] and all smooth functions (functions in Sobolev spaces)
can be expressed as networks with infinitely many Gaussian radial units [16,17].

The following theorem from [18] shows that for functions representable as infinite
networks of the form (8), Gφ-variation can be estimated by the L1-norm of the output
weight function w. For the Lebesgue measure λ, we write shortly Lp(Ω) = Lp

λ(Ω).

Theorem 2. Let Ω ⊆ R
d be Lebesgue measurable, f ∈ Lp(Ω), p ∈ [1,∞), be such

that for all x ∈ Ω,

f(x) =
∫

A

w(a)φ(x, a)da,

where φ : Ω × A → R is such that Gφ(A) = {φ(., a) | a ∈ A} is a bounded subset of
(Lp(Ω), ‖.‖Lp) and w ∈ L1(A). Then

‖f‖Gφ(A) ≤ ‖w‖L1(A).

Note that various special cases of this theorem were proven earlier: the case of φ being a
trigonometric function [7] and a general theorem requiring compactness of the parame-
ter set A or continuity of the hidden unit function φ [11,19]. Theorem 2 has minimal as-
sumptions which are necessary for formulation of the estimate ‖f‖Gφ(A) ≤ ‖w‖L1(A).
The set Gφ(A) has to be bounded so that Gφ(A)-variation is defined and the output-
weight function w has to be in L1(A) so that the upper bound is defined.

5 Data Complexity with Respect to Computational Units

Often, neither the regression function fρ nor any function interpolating the sample z
is computable by a network of a given type. Even if some of these functions can be
represented as an input-output function of a network from the given class, the network
might have too many hidden units to be implementable.

For all common types of computational units, the sets

spanGφ = ∪∞
n=1spannGφ

are dense in Lp-spaces and in the space (C(Ω), ‖.‖sup) of continuous functions with the
supremum norm with Ω ⊂ R

d compact (see, e.g., [20], [21] and the references therein).
The next proposition show that the global minima of error functionals over L2-spaces
are equal to their infima over sets of functions computable by neural networks.

Proposition 1. (i) Let both Ω ⊂ R
d and Y ⊂ R be compact, ρ be a nondegenerate

probability measure on Z = Ω × Y , fρ the regression function, and φ : Ω × Y → R

be such that spanGφ is dense in L2
ρΩ

(Ω). Then

Eρ(fρ) = min
f∈L2

ρΩ
(Ω)

Eρ(f) = inf
f∈span Gφ

Eρ(f) = lim
n→∞ inf

f∈spann Gφ

Eρ(f);
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(ii) Let Ω ⊆ R
d, z = {(xi, yi) ∈ Ω × R | i = 1, . . . , m} with all xi distinct, and

φ : Ω × Y → R be such that spanGφ is dense in (C(Ω), ‖.‖sup). Then

0 = min
f∈L2

μΩ

Ez(f) = inf
f∈span Gφ

Ez(f) = lim
n→∞ inf

f∈spann Gφ

Ez(f).

Proof. The representations (5) and (4), resp., show that Eρ is continuous on L2
ρΩ

(Ω)
and Ez is continuous on C(Ω). It is easy to see that a minimum of a continuous func-
tional over the whole space is equal to its infimum over any dense subset. �

So the infima of error functionals over sets spannGφ converge with n increasing to
their global minima. Note that when sets of hidden unit functions Gφ are linearly inde-
pendent, then sets spannGφ are not convex and thus results from theory of convex op-
timization cannot be applied. So we have to consider merely infima over sets spannGφ

because minima might not be achieved.
The speed of convergence of these infima with n increasing to the global minima

is critical for capability of networks with reasonable numbers of units computing φ
to learn from the data described by the distribution ρ or the sample z. Inspection of
estimates of this speed can suggest some characterizations of complexity of the data
with respect to the given type of computational units.

The following theorem show that Gφ-variation can play a role of a measure of com-
plexity of data with respect to the computational units computing the function φ.

Theorem 3. (i) Let both Ω ⊂ R
d and Y ⊂ R be compact, ρ be a nondegenerate

probability measure on Z = Ω × Y , fρ the regression function, and G be a bounded
subset of L2(Ω, ρΩ) with sG = supg∈G ‖g‖L2

ρΩ
. Then for all n

inf
f∈spannG

Eρ(f) − Eρ(fρ) ≤ s2
G‖fρ‖2

G

n
;

(ii) Let d, m be positive integers, Ω ⊆ R
d, μ a measure on Ω, z = {(xi, yi) ∈ Ω ×

R | i = 1, . . . , m} with all xi distinct, and G be a bounded subset of L2(Ω, μ) with
sG = supg∈G ‖g‖L2

μ(Ω). Then for every h ∈ L2
μ(Ω) interpolating the sample z,

inf
f∈spannG

Ez(f) ≤ s2
G‖h‖2

G

n
.

Proof. By the representation (5), for every f ∈ L2
ρΩ

(Ω), Eρ(f) − Eρ(fρ) = ‖fρ −
f‖2

L2
ρΩ

and so inff∈spannG Eρ(f) − Eρ(fρ) = ‖fρ − spannG‖2
L2

ρΩ

. Thus it remains to

estimate the distance of fρ from spannG. By Corollary 1, this distance is bounded from

above by sG‖fρ‖G√
n

. So inff∈spannG Eρ(f) − Eρ(fρ) ≤ s2
G‖fρ‖2

G

n .

Let G|X denote the set of functions from G restricted to X = {x1, . . . , xm}. By the
representation (4), for every f ∈ L2

μ(Ω), Ez(f) = ‖f|X −fz‖2
2,m, where f|X denotes f

restricted to X . So inff∈spannG Ez(f) = ‖fz − spannG|X‖2
2,m. By Corollary 1, ‖fz −

spannG|X‖2,m ≤ sG|X ‖fz‖G|X√
n

. Hence inff∈spannG Ez(f) ≤ s2
G|X ‖fz‖2

G|X
n . It follows
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directly from the definition of variational norm that if h|X = fz, then ‖fz‖G|X ≤ ‖h‖G.
Thus for every h interpolating the sample z,

inff∈spannG Ez(f) ≤ s2
G‖h‖2

G

n . �

Theorem 3 implies estimates of the number of network units sufficient for a given ac-
curacy of approximation of the global minima of error functionals.

Corollary 2. (i) Let both Ω ⊂ R
d and Y ⊂ R be compact, ρ be a non degenerate

probability measure on Z = Ω×Y , fρ the regression function, and Gφ = {φ(., y) |y ∈
Y } be a bounded subset of L2(Ω, ρΩ) with sφ = supy∈Y ‖φ(., y)‖L2

ρΩ
, and ε > 0.

Then for all n ≥ s2
φ‖fρ‖2

Gφ

ε , the infimum of the functional Eρ over a network with n
units computing φ is within ε from its global minimum Eρ(fρ) over the whole space
L2(Ω, ρΩ);
(ii) Let d, m be positive integers, Ω ⊆ R

d, μ a measure on Ω, and z = {(xi, yi) ∈
Ω × R | i = 1, . . . , m} with all xi distinct, Gφ be a bounded subset of L2(Ω, μ) with
sG = supg∈G ‖g‖L2

μ(Ω), and ε > 0. Then for every n such that for some function

h ∈ L2
μ(Ω) which interpolates the sample z,

n ≥ s2
φ‖h‖2

Gφ

ε
,

holds, the infimum of Ez over a network with n units computing φ is smaller or equal
to ε.

So the infima of error functionals achievable over sets spannGφ decrease at least as
fast as 1

n times the square of the Gφ-variational norm of the regression function or
some interpolating function. When these norms are small, good approximations of the
global minima of error functionals can be obtained using networks with a moderate
number of units.

The critical factor in these estimates is the magnitude of the Gφ-variational norm
of the function from which the training data are chosen (the regression function fρ or
any function interpolating the discrete sample). Thus comparing magnitudes of Gφ-
variations for various types of computational unit functions φ, one can get some under-
standing how model complexity of a neural network is influenced by the choice of a
type of its units. The magnitudes of the Gφ-variational norms of the regression func-
tion or some function interpolating the sample z can be used as measures of complexity
of data given by the probability measure ρ or a finite sample z with respect to units
computing φ.

6 Data Complexity with Respect to Perceptrons

To apply Corollary 2 to perceptrons, we need to estimate variation with respect to per-
ceptrons. As for all sigmoidals σ, Gφσ -variation in L2(Ω) with Ω compact is equal to
Gφϑ

-variation [11], it is sufficient to estimate variation with respect to Heaviside per-
ceptrons. This norm is sometimes called variation with respect to half-spaces [10] as



106 V. Kůrková

perceptons with the Heaviside activation function compute characteristic functions of
closed half-spaces of R

d intersected with Ω.
Variation with respect to half-spaces of smooth functions can be estimated applying

Theorem 2 to a representation of such functions as networks with infinitely many Heav-
iside perceptrons. The following theorem gives such a representation for all functions
from Cd(Rd) (functions having all partial derivatives up to the order d continuous),
which are of a weakly controlled decay. These are the functions which satisfy for all
multi-indexes α with 0 ≤ |α| = α1 + . . . αd < d, lim‖x‖→∞(Dαf)(x) = 0 (where
Dα = (∂/∂x1)α1 . . . (∂/∂xd)αd) and for some ε > 0, all multi-indexes α with |α| = d
satisfy

lim
‖x‖→∞

(Dαf)(x)‖x‖d+1+ε = 0.

Note that the class of functions of weakly controlled decay contains the class of all
compactly supported functions from Cd(Rd)) and the Schwartz class S(Rd) (all func-
tions from C∞(Rd) which are together with all their derivatives rapidly decreasing [22,
p. 251]). In particular, the Gaussian function γd(x) = exp(−‖x‖2) belongs to the class
of functions of a weakly controlled decay.

By Sd−1 is denoted the unit sphere in R
d, by D

(d)
e the directional derivative of the

order d in the direction e, and by He,b = {x ∈ R
d |x · e + b = 0} the hyperplane

determined by the normal vector e ∈ Sd−1 and the bias b.

Theorem 4. Let d be an odd integer and f ∈ Cd(Rd) be of a weakly controlled decay,
then for all x ∈ R

d

f(x) =
∫

Sd−1×R

wf (e, b)ϑ(e · x + b) de db,

where wf (e, b) = a(d)
∫

He,b
D

(d)
e (f)(y) dy and a(d) = (−1)(d−1)/2(1/2)(2π)1−d.

Theorem 5 shows that many smooth functions can be expressed as networks with
infinitely many Heaviside perceptrons. The output-weight functions wf (e, b) in such
a network is the product of a function a(d) of the number of variables d converg-
ing with d increasing exponentially fast to zero and a “flow of order d through the
hyperplane” He,b.

The integral representation from Theorem 5 was first derived by Ito [23] for all func-
tions from the Schwartz class. Ito used the Radon transform (see, e.g., [22, p.251]) to
prove universal approximation property of perceptron networks and the representation
from Theorem 5 is not explicitly stated in the paper [23], but can be obtained by com-
bining Theorem 3.1, Proposition 2.2 and an equation on p.387 in [23]. In [11] the same
formula was derived for all compactly supported functions from Cd(Rd), d odd, via an
integral formula for the Dirac delta function. In [24], the integral representation from
Theorem 5 was extended to functions of weakly controlled decay. Note that in Theo-
rem 5, we have stated the integral representation of smooth functions as networks with
infinitely many Heaviside perceptrons only for d odd, but a similar representation also
holds for d even, but the output weight function is much more complicated

All proofs of above mentioned representations require rather advanced tools.
Here we present the proof for compactly supported functions in Cd(Rd) from
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[11, Theorem 4.1], which is relatively self-contained. The proof is takes an advantage
of the representation of the Heaviside function as the first distributional derivative of
the Dirac delta function and a representation of the d-dimensional Dirac delta function
δd as an integral of one-dimensional Dirac delta functions δ1. We use the following
relationship between d-dimensional and one-dimensional Dirac delta functions from
[25, p.680].

Proposition 2. For every odd positive integer d

δd(x) = ad

∫

Sd−1
δ
(d−1)
1 (e · x) de,

where ad = (−1)
d−1
2 /(2(2π)d−1).

We first prove a technical lemma.

Lemma 1. For all positive integers d,k, every f ∈ Cd(Rd), every e ∈ Sd−1, and every

b ∈ R, ∂k

∂bk

∫
He,b

f(y) dy =
∫

He,b
De

(k)f(y) dy.

Proof. First, we verify that the statement is true for k = 1:
∂
∂b

∫
He,b

f(y) dy = limt→0 t−1
(∫

Heb
f(y)dy − ∫

Heb+t
f(y) dy

)
=

limt→0 t−1
∫

He,b
(f(y + te) − f(y)) dy =

∫
He,b

limt→0 t−1(f(y + te) − f(y)) dy =∫
He,b

Def(y) dy.

Suppose that the statement is true for k − 1. Then
∂k

∂bk

∫
He,b

f(y) dy = limt→0 t−1
(∫

Heb
D

(k−1)
e f(y) dy − ∫

Heb+t
D

(k−1)
e f(y) dy

)
=

limt→0 t−1
∫

He,b

(
D

(k−1)
e f(y + te) − D

(k−1)
e f(y)

)
dy =

∫
He,b

limt→0 t−1
(
D

(k−1)
e f(y + te) − D

(k−1)
e f(y)

)
dy =

∫
He,b

D
(k)
e f(y) dy. �

Proof of Theorem 5. We first prove the theorem for test functions, i.e., compactly
supported functions from Cd(Rd). For any test function f by the definition of the
delta distribution we have f(x) = (f ∗ δd)(x) =

∫
Rd f(z)δd(x − z) dz (see e.g.,

[26]). By Proposition 2, δd(x − z) = ad

∫
Sd−1 δ1

(d−1)(e · x − e · z) de. Thus,

f(x) = ad

∫
Sd−1

∫
Rd f(z) δ1

(d−1)(x · e − z · e) dz de. So rearranging the inner inte-
gration, we get

f(x) = ad

∫

Sd−1

∫

R

∫

He,b

f(y) δ1
(d−1)(x · e + b) dy db de.

Setting u(e, b) = ad

∫
He,b

f(y) dy, we obtain

f(x) =
∫

Sd−1

∫
R

u(e, b)δ1
(d−1)(x · e + b) db de.

By the definition of distributional derivative,
∫

R
u(e, b)δ1

(d−1)(e · x + b) db =

(−1)d−1
∫

R

∂d−1u(e,b)
∂bd−1 δ1(e · x + b) db for every e ∈ Sd−1 and x ∈ R

d. Since d is odd,

we have
∫

R
u(e, b)δ1

(d−1)(e · x + b) db =
∫

R

∂d−1u(e,b)
∂bd−1 δ1(e · x + b) db.
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Since the first distributional derivative of the Heaviside function is the delta dis-
tribution (see e.g.,[26, p. 47]), it follows that for all e ∈ Sd−1 and x ∈ R

d

∫
R

u(e, b)δ1
(d−1)(e · x + b)db = − ∫

R

∂du(e,b)
∂bd ϑ(e · x + b)db.

By Lemma 1, ∂du(e,b)
∂bd = ∂d

∂bd

∫
He,b

f(y) dy =
∫

He,b
D

(d)
e f(y) dy. Hence,

f(x) = −ad

∫

Sd−1

∫

R

(∫

He,b

D(d)
e f(y)dy

)
ϑ(e · x + b) db de.

Now let f ∈ Cd(Rd) be compactly supported. Then there exists a sequence {fi}
of test functions converging to f uniformly on R

d (see e.g., [26, p.3]. It is easy to
check that for every e ∈ Sd−1, {D(d)

e fi} converges uniformly on R
d to D

(d)
e f .

Hence we can interchange limit and integration (see e.g., [27, p.233]) to obtain
limi→∞

∫
He,b

D
(d)
e fi(y) dy =

∫
He,b

D
(d)
e f(y) dy. Let gi(x, e, b) =

∫
He,b

(
D

(d)
e fi(y) dy

)
ϑ(e · x + b) and g(x, e, b) =

∫
He,b

(
D

(d)
e f(y)dy

)
ϑ(e · x + b).

Then it is easy to see that for all x ∈ R
d, limi→∞ gi(x, e, b) = g(x, e, b) uniformly on

Sd−1 × R. Thus for all x ∈ R
d,

f(x) = lim
i→∞

∫

Sd−1

∫

R

gi(x, e, b) db de =
∫

Sd−1

∫

R

g(x, e, b)dbde =

∫

Sd−1

∫

R

(∫

Heb

D(d)
e f(y)dy)

)
ϑ(e · x + b) db de

(using again interchangebility of integration and limit for a sequence of functions con-
verging uniformly). �

Combining Theorems 2 and 3, we obtain the following corollary.

Corollary 3. Let d be an odd integer and f ∈ Cd(Rd) be of a weakly controlled decay,
then

‖f‖Gφϑ
(Ω),L2 ≤ ‖f‖Gφϑ

(Rd),sup ≤ ‖wf‖L1(Rd),

where wf (e, b) = a(d)
∫

He,b
D

(d)
e (f)(y) dy and a(d) = (−1)(d−1)/2(1/2)(2π)1−d.

The L1-norm of the weighting function wf can be estimated by a product of a function

k(d) ∼
(

4π

d

)1/2 ( e

2π

)d/2

<

(
4π

d

)1/2 (
1
2

)d/2

with the Sobolev seminorm ‖f‖d,1,∞ of the function f [24]. The seminorm ‖.‖d,1,∞ is
defined as

‖f‖d,1,∞ = max
|α|=d

‖Dαf‖L1(Rd),

where α = (α1, . . . , αd) is a multi-index with nonnegative integer components, Dα =
(∂/∂x1)α1 . . . (∂/∂xd)αd and |α| = α1 + · · · + αd .
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Thus by Corollary 3

‖f‖Gφϑ
(Rd),sup ≤ ‖wf‖L1(Rd) ≤ k(d)‖f‖d,1,∞ = k(d) max

|α|=d
‖Dαf‖L1(Rd) (9)

where k(d), which is decreasing exponentially fast with the number of variables d.
Note that for large d, the seminorm ‖f‖1,d,∞ is much smaller than the standard

Sobolev norm ‖f‖d,1 =
∑

|α|≤d ‖Dαf‖L1(Rd) [22] as instead of the summation of 2d

iterated partial derivatives of f over all α with |α| ≤ d, merely their maximum over α
with |α| = d is taken.

The following theorem estimates speed of decrease of minima of error functionals
over networks with an increasing number n of Heaviside perceptrons.

Theorem 5. Let d, m be positive integers, d odd, both Ω ⊂ R
d and Y ⊂ R be compact,

z = {(xi, yi) ∈ Ω × Y | i = 1, . . . , m} with all xi distinct, ρ be a non degenerate
probability measure on Ω × Y , such that the regression function fρ : Ω → R is a
restriction of a function hρ ∈ Cd(Rd) of a weakly controlled decay and let h ∈ Cd(Rd)
be a function of a weakly controlled decay interpolating the sample z. Then for all n

min
f∈spannGφϑ

(Ω)
Ez(f) ≤ c(d)‖h‖2

d,1,∞
n

and min
f∈spannGφϑ

(Ω)
Eρ(f) − Eρ(fρ) ≤

c(d)‖hρ‖2
d,1,∞

n
,

where c(d) ∼ 4π
d

(
e
2π

)d
< 4π

d2d .

Proof. It was shown in [28] that each function in L2
ρΩ

(Ω) has its best approximations
in sets spannGφϑ

for all n. Thus by (5) and (4), both the functionals Eρ and Ez achieve
over spannGφϑ(Ω) their minima. By (9), for all d odd and all h of a weakly controlled
decay

‖h‖Gφϑ
(Ω),L2 ≤ k(d)‖h‖d,1,∞,

where k(d) ∼ (
4π
d

)1/2 (
e
2π

)d/2
. The statement follows by Theorem 3. �

Theorem 5 shows that when a sample of data z can be interpolated by a function
h ∈ Cd(Rd) which is vanishing sufficiently quickly at infinity and the squares of the
maxima of the L1-norms of its partial derivatives of the order |α| = d do not exceed an
exponentially increasing upper bound d

4π 2d, i. e.,

‖h‖2
d,1,∞ = max

|α|=d
‖Dαf‖2

L1
λ(Rd) ≤

1
c(d)

∼ d

4π

(
2π

e

)d

<
d

4π
2d , (10)

then the minima of the empirical error Ez defined by the sample z over networks with
n sigmoidal perceptrons decrease to zero rather quickly – at least as fast as 1

n .
The estimate (10) shows that with increasing dimensionality of data, tolerance on its

“oscillatory behavior” measured by the partial derivatives of an interpolating function
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h is increasing exponentially fast. For example, for d > 4π, when all the L1-norms of
the partial derivatives of the order d of h are close to 2d, a convergence faster than 1

n is
guaranteed.

Our estimates of data complexity can be illustrated by the example of the Gaussian
function γd(x) = exp(−‖x‖2). It was shown in [24] that for d odd, ‖γd‖Gφϑ

(Ω) ≤ 2d
(see also [29] for a weaker estimate depending on the size of Ω, which is valid also for
d even). Thus by Theorem 3, when the regression function fρ = γd and the sample z of
the size m is such that the γd |X = fz, then

min
f∈spannGφϑ

(Ω)
Eρ(f) ≤ 4d2

n
and min

f∈spannGφϑ
(Ω)

Ez(f) ≤ 4d2

n
.

This estimate gives some insight into a relationship between two geometrically
opposite types of computational units - Gaussian radial-basis functions and Heavi-
side perceptrons. Minima of the error functionals defined by data chosen from the d-
dimensional Gaussian over networks with n Heaviside perceptrons converge to zero
faster than 4d2

n . Thus to approximate their global minima within ε, it is sufficient to use

a network with n ≥ 4d2

ε units. Note that the upper bound 4d2

ε grows with the dimension
d only quadratically and it does not depend on the size m of a sample.

On the other hand, there exist samples z = {(xi, yi) | i = 1, . . . , m}, the sizes of
which influence the magnitudes of the variations of the functions fz defined as fz(xi) =
yi. For example, for any positive integer k, consider Ω = [0, 2k], Y = [−1, 1] and the
sample z = {(2i, 1), (2i+ 1,−1) | i = 0, . . . , k− 1} of the size m = 2k. Then one can
easily verify that ‖fz‖Gφϑ

= 2k (for functions of one variable, variation with respect to
half-spaces is up to a constant equal to their total variation, see [10], [11]). This example
indicates that the more the data “oscillate”, the larger the variation with respect to half-
spaces of functions interpolating such data.
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