
Chapter 5
Approximating Multivariable
Functions by Feedforward Neural Nets

Paul C. Kainen, Věra Kůrková, and Marcello Sanguineti

Abstract. Theoretical results on approximation of multivariable functions
by feedforward neural networks are surveyed. Some proofs of universal ap-
proximation capabilities of networks with perceptrons and radial units are
sketched. Major tools for estimation of rates of decrease of approximation
errors with increasing model complexity are proven. Properties of best ap-
proximation are discussed. Recent results on dependence of model complexity
on input dimension are presented and some cases when multivariable func-
tions can be tractably approximated are described.

Keywords: multivariable approximation, feedforward neural networks, net-
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1 Introduction

Many classification, pattern recognition, and regression tasks can be formu-
lated as mappings between subsets of multidimensional vector spaces, using

Paul C. Kainen
Department of Mathematics and Statistics, Georgetown University
Washington, D.C. 20057-1233, USA
e-mail: kainen@georgetown.edu
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a suitable encoding of inputs and outputs. The goal of a computer scientist
modeling such tasks is to find a mathematical structure which operates by
adjusting parameters in order to classify or recognize different patterns and
to approximate the regression function associated to data.

Mathematical formalizations have shown that many types of feedforward
networks (including all standard types that are popular in applications as
well as many others that may not have been considered by experimental-
ists) satisfy these requirements. Provided they contain sufficiently many ba-
sic computational units, it is possible to adjust their parameters so that they
approximate to any accuracy desired a wide variety of mappings between sub-
sets of multidimensional spaces. In neural network terminology, such classes
of networks are called universal approximators. When network parameters are
adjusted using suitable learning methods (e.g., gradient-descent, incremental
or genetic algorithms), there is no need for explicit formulation of rules or
feature extraction. However, we remark that implicitly some estimate of the
number and nature of features may guide the practitioners choice of archi-
tectural parameters such as the number of hidden units and their type.

The universal approximation property has been proven for one-hidden
layer networks with almost all types of reasonable computational units.
Various interesting proof techniques have been used such as integral rep-
resentations (Carrol and Dickenson [7], Ito [25], Park and Sandberg [60]),
the Hahn-Banach Theorem (Cybenko [11]), the Stone-Weierstrass theorem
(Hornik, Stinchcombe and White [24]), and orthogonal polynomials (Mhaskar
[56], Leshno et al. [54]).

But universality cannot be proved within reasonable bounds on complex-
ity. Each kind of network implementation determines a different measure of
complexity. Currently, feedforward networks are mostly simulated on classical
computers. For such simulations, the limiting factor is the number of hidden
units and the size of their parameters. Thus, a suitable type of computational
units and a structure for their connections has to be found that can solve a
given task within the feasible limits of network complexity. Some guidelines
for the choice of a type of neural network can be derived from mathemati-
cally grounded complexity theory of neural networks. Its recent achievements
include estimates of rates of approximation by various types of feedforward
networks and comparisons of complexity requirements of approximation by
neural networks with linear approximation.

In this chapter, we first briefly sketch some ideas used in proofs of uni-
versal approximation capabilities of networks with perceptrons and radial
units. Then the focus changes to network complexity. Major tools are de-
scribed for estimating rates of decrease of approximation errors with in-
creasing model complexity. We start with the Maurey-Jones-Baron Theorem
holding in Hilbert spaces, present its extension to Lp-spaces, and finally give
an improvement to geometric rate due to Kůrková and Sanguineti [51]. We
discuss other improvements and their limitations and show how estimates
of rates of approximation of multivariable functions can be reformulated in
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terms of worst-case errors in sets of functions defined as balls in norms tai-
lored to computational units.

Further, we sketch the results of Kainen, Kůrková, and Vogt [32, 33, 34]
that similarly to linear approximation, approximation by a variable basis of
half-space characteristic functions always has a best approximant, but unlike
linear approximation, neural network approximation does not have continu-
ous best approximation. This leads to the initially surprising result that lower
bounds on the possible rate of continuous methods for approximation do not
apply to neural networks (cf. [13]).

Finally, recent results on dependence of model complexity on input di-
mension (so-called “tractability”) are considered; see [31]. We focus on those
which were found by Kainen, Kůrková, and Vogt [35], dealing with represent-
ing the Gaussian via half-space characteristic functions (i.e., by a perceptron
network using the Heaviside function as its sigmoidal activation function),
and on those found by the current authors, utilizing Gaussian networks and
the Bessel Potential function; see [30].

The chapter is organized as follows. In Section 2, we introduce a general
model of approximation from a dictionary which includes one-hidden-layer
networks. Section 3 sketches some proofs of universal approximation property
of radial-basis function and perceptron networks, while the next section, Sec-
tion 4, presents quadratic estimates of model complexity following from the
Maurey-Jones-Barron Theorem and its extension by Darken et. al. In Sec-
tion 5 we give geometric estimates of model complexity. Then in Section 6
these estimates are reformulated in terms of norms tailored to computational
units. Section 7 shows that neural network approximation does not have a
continuous best approximation and Section 8 is devoted to tractability of
neural-network approximation. Section 9 is a brief discussion. A summary of
the main notations used in the paper is given in Section 10.

2 Dictionaries and Variable-Basis Approximation

Feedforward neural networks compute parametrized sets of functions depend-
ing both on the type of computational units and on the type of their inter-
connections. Computational units compute functions depending on two vector
variables: an input vector and a parameter vector. Generally, such units com-
pute functions of the form φ : X × Y → R, where φ is a function of two
variables, an input vector x ∈ X ⊆ R

d and a parameter y ∈ Y ⊆ R
s, where

R denotes the set of real numbers.
Sets of input-output functions of one-hidden-layer networks with one linear

output unit can be formally described as

spannG :=

{
n∑
i=1

wigi |wi ∈ R, gi ∈ G

}
,
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where the set G is called a dictionary [20], n is the number of hidden units,
and wi, i = 1, . . . , n, are output weights. We write spanG for the linear space
consisting of all finite linear combinations of elements from G; that is,

spanG =

∞⋃
n=1

spannG.

Such a computational model spannG is sometimes called a variable-basis
scheme [45, 46, 51], in contrast to fixed-basis schemes consisting of linear
combinations of first n elements from a set G with a fixed linear ordering.
Note that also networks with several hidden layers and one linear unit belong
to this scheme (however in this case, the set G depends on the number of
units in the previous hidden layers). Kernel models, splines with free nodes,
and trigonometric polynomials with variable frequencies and phases are also
special cases of variable schemes (see the references in [46].

The number n of computational units is often interpreted as model com-
plexity. Note that the set of input-output functions of networks with an ar-
bitrary (finite) number of hidden units is just spanG.

Dictionaries are usually given as parameterized families of functions mod-
elling computational units. They can be described as sets of the form

Gφ = Gφ(X,Y ) := {φ(., y) : X → R | y ∈ Y } ,
where φ : X × Y → R is a function of two variables, an input vector x ∈
X ⊆ R

d, where d is called input dimension, and a parameter y ∈ Y ⊆ R
s.

The most popular dictionaries used in neurocomputing include perceptrons,
radial, and kernel units.

An element h of spannGφ(X,Y ) then has the form

h =

n∑
i=1

wiφ(·, yi), wi ∈ R, yi ∈ Y,

so h is determined by the function φ and n(s+ 1) real parameters.
In practical applications, inputs are bounded so one often studies networks

with inputs in some compact (i.e., closed and bounded) subset X of Rd. How-
ever, even if inputs are bounded, one may not know a priori what the bound
is, so unbounded inputs are also considered, and the theoretical analysis is
sometimes easier in this case.

For suitable choices of φ, sets spannGφ model families of input-output
functions implemented by one-hidden-layer neural networks of various types.
For example, the perceptron with activation function ψ : R → R takes

φ(x, (v, b)) = ψ(v · x+ b).
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Geometrically, perceptrons compute functions which are constant on all hy-
perplanes parallel to the hyperplane {x ∈ R

d |v · x = −b}. The scalar b is
called bias while the components of v are called inner weights.

The terms “weights” or “parameters” are used to refer to both inner
weights and biases, as well as the outer weights, which are the linear co-
efficients of combination of multiple units. The units might be perceptrons or
other types. Thus, the distinction between inner and outer weights for these
one-hidden-layer neural networks is just the distinction between the inputs
and the outputs of the hidden units.

The most common activation functions are sigmoidals, i.e., bounded and
measurable functions σ : R → R with limits 0 and 1 at −∞ and ∞, resp. In
some literature, sigmoidals are also required to be non-decreasing. Widely-
used sigmoidals are the logistic sigmoid σ(t) := 1/(1 + exp(−t)) and the
Heaviside function, defined as ϑ(t) := 0 for t < 0 and ϑ(t) := 1 for t ≥ 0. For
a sigmoid σ, we let

P σd := {x �→ σ(v · x+ b) | v ∈ R
d, b ∈ R}, (1)

We write Hd instead of Pϑd . Since for t �= 0, ϑ(t) = ϑ(t/|t|),

Hd := {x �→ ϑ(e · x+ b) | e ∈ Sd−1, b ∈ R}, (2)

where Sd−1 := {x ∈ R
d | ‖x‖ = 1} denotes the sphere in R

d. Thus, Hd is the
set of characteristic functions of closed half-spaces of Rd parameterized by the
pair (e, b), where e is the direction of the orthogonal vector to the hyperplane
and b is the distance from 0 to the hyperplane along a perpendicular.

Radial-basis functions (RBF) are given by

φ(x, (v, b)) := ψ(b‖x− v‖),

where ψ : R → R, v ∈ R
d, and b ∈ R. For a radial unit, the parameter b is

called the width, and v the center. An RBF unit is constant on the set of all
x at each, fixed distance from its center. The corresponding sets spannGφ
are called RBF networks; a typical activation function for a radial unit is
the Gaussian function ψ(t) = exp(−t2) := e−t

2

. This leads to the usual
picture of “Gaussian hills” which makes plausible the density of their linear
combination.

Note that sigmoidal perceptrons and RBF units are geometrically oppo-
site: perceptrons apply a sigmoidal function to a weighted sum of inputs
plus a bias, so they respond to non-localized regions of the input space by
partitioning it with fuzzy hyperplanes (or sharp ones if the sigmoid is Heav-
iside’s step function). The functions computed by perceptrons belong to the
class of plane waves. In contrast, RBF units calculate the distance to a cen-
ter, multiply it by a width factor and finally apply an activation function
which is often an even function – hence they respond to localized regions.
The functions computed by radial units belong to the class of spherical waves.
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Although perceptrons were inspired neurobiologically (e.g., [64]), plane waves
have long been studied by mathematicians, motivated by various problems
from physics (e.g., [10]).

3 The Universal Approximation Property

The first theoretical question concerning a given type of a feedforward net-
work architecture is whether a sufficiently elaborate network of this type can
approximate all reasonable functions encountered in applications. In neural
network terminology, this capability of a class of neural networks is called
the universal approximation property, while mathematically it is defined as
density of the set of input-output functions of the given class of networks.
Recall that a subset F of a normed linear space is dense if clF = X , where
the closure cl is defined by the topology induced by the norm ‖.‖X , i.e.,

clG := {f ∈ X | (∀ε > 0)(∃g ∈ G)(‖f − g‖X < ε) } .
Density of sets of input-output functions has been studied in both the sup-
norm and Lp(X)-cases. We write (C(X), ‖·‖sup) for the space of all continuous
bounded functions on a subset X of Rd with the supremum norm ‖ · ‖sup,
defined for every continuous function on X as

‖f‖sup := sup
x∈X

|f(x)| .

For p ∈ [1,∞) let (Lp(X), ‖ · ‖p) denote the set of all equivalence classes
(w.r.t. equality up to sets of Lebesgue measure zero) of Lebesgue-measurable
functions f on X such that the following Lp-norm is finite:

‖f‖p :=
(∫

X

|f(x)|pdx
)1/p

<∞ .

Choice of norm is problem-dependent. Predicting the movement of a robotic
welding tool might best utilize the supremum norm, while minimizing cost
might be more likely over L2.

For RBF networks, the universal approximation property is intuitively
quite clear - imagine the surface as a combination of Gaussian hills of various
widths and heights. The classical method of approximation by convolutions
with a suitable sequence of kernels enables one to prove this property for
many types of radial functions. For d ∈ N+, where N+ denotes the set of
positive integers, and ψ an even function, let Fψd (X) denote the dictionary

Fψd (X) := {f : X → R | f(x) = ψ(b‖x− v‖), v ∈ R
d, b ∈ R}

of functions onX ⊆ R
d computable by RBF networks with the radial function

ψ and the distance from centers measured by a norm ‖ · ‖ on R
d. In the

following, we shall consider the Euclidean norm.
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First, Hartman et al. [22] proved density of RBF networks with Gaussian
radial function in (C(X), ‖.‖sup) for X compact convex. This proof used the
special property of the Gaussian function that a d-dimensional Gaussian is
the product of d one-dimensional Gaussians. Later, Park and Sandberg [61]
extended the density property to RBFs with fairly general radial functions
in (Lp(Rd), ‖.‖p). Their proof exploits classical results on approximation of
functions by convolutions with a sequence of kernel functions converging in
the distributional sense to the Dirac delta function δ (see, e.g., [73]). The
next theorem is from [61]; we sketch the idea of the proof.

Theorem 1 (Park and Sandberg). For every positive integer d, every
p ∈ (1,∞), every integrable bounded function ψ : R → R with finite non-zero

integral and such that ψ ∈ Lp(R), spanFψd (R
d) is dense in (Lp(Rd), ‖ · ‖p).

Proof. When
∫
R
ψ(t)dt = c �= 0, by letting ψ0 = ψ

c we define a sequence

{ψn(t) |n ∈ N+} as ψn(t) = ndψ0(nt). By a classical result [4, p. 101] (see
also [60, Lemma 1]), for every f ∈ Lp(Rd) one has f = limn→∞ f ∗ ψn in
‖.‖p. Approximating the integrals

∫
Rd

f(x)
nd

c
ψ(n(x− v))dv

by Riemann sums we get a sequence of functions of the form of RBF networks
with ψ as a radial function.

Exploiting a similar classical result on approximation of functions in
(C(X), ‖.‖sup) with X compact by convolutions with a sequence of bump
functions, one gets an analogous proof of universal approximation property
for RBF networks in (C(X), ‖.‖sup). Note that these arguments can be ex-
tended to other norms on R

d than the Euclidean one. Using a more sophis-
ticated proof technique based on Hermite polynomials, Mhaskar [56] showed
that for the Gaussian radial function, the universal approximation property
(in sup norm) can even be achieved using networks with a given fixed width.

In one dimension, perceptron networks can also be localized as a pair
of overlapping sigmoidal units with opposite-sign weights create a “bump”
function. Hence, for d = 1, every “reasonable” function can be written as a
limit of linear combinations of Heaviside perceptron units.

However, in contrast to localized Gaussian radial units and the one-
dimensional case, for d greater than 1, the universal approximation property
is far from obvious for perceptrons. But mathematics extends the range of
visualization and offers tools that enable us to prove universal approximation
for perceptrons with various types of activations.

One such tool is the Stone-Weierstrass theorem (Stone’s extension of the
classical result of Weierstrass regarding density of polynomials on a compact
interval). A family of real-valued functions on a set X separates points if for
any two distinct points in X there is a function in the family which takes on
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distinct values at the two points (i.e., for each pair of distinct points x, y ∈ X
there exists f in the family such that f(x) �= f(y)). A family A of real-valued
functions on X is an algebra if it is closed with respect to scalar multiplication
and with respect to pointwise addition and multiplication of functions, e.g.,
for f, g ∈ A, and r ∈ R, the functions rf , x �→ f(x)+g(x), and x �→ f(x)g(x)
belong to A. The Stone-Weiestrass Theorem (e.g., [65, pp. 146-153]) states
that an algebra A of real-valued functions on any compact set X is dense in
(C(X), ‖ · ‖sup) if and only if A separates points and is nontrivial in the sense
that it contains a nonzero constant function.

For a function ψ : R → R we denote by Pψd (X) the dictionary

Pψd (X) := {f : X → R | f(x) = ψ(v · x+ b), v ∈ R
d, b ∈ R}

of functions on X ⊆ R
d computable by perceptron networks with the acti-

vation function ψ. The linear span of this dictionary, spanPψd (X), is closed
under addition and for reasonable ψ, it also separate points, but for many ψ
it is not closed under multiplication. An exception is the function exp(t) = et

which does produce a multiplicatively closed set P dexp(X) and so can serve
as a tool to prove the universal approximation property for other activation
functions.

The following “input-dimension-reduction theorem” by Stinchombe and
White [69] exploits properties of P dexp(X) to show that for perceptron net-
works, it suffices to check the universal approximation property for networks
with a single input.

Theorem 2 (Stinchombe and White). Let ψ : R → R, d be a positive
integer, and X a compact subset of Rd. Then spanP 1

ψ(X) is dense in (C(X), ‖·
‖sup) if and only if spanP dψ(X) is dense in (C(X), ‖ · ‖sup).
Proof. By the Stone-Weierstrass Theorem, spanP dexp(X) is dense in (C(X), ‖·
‖sup). Using composition of two approximations, the first one approximating
f ∈ C(X) by an element of spanP dexp(X), and the second one approximating
exp on a suitable compact subset Y ⊂ R by an element of P 1

ψ(Y ), one gets

density of spanP dψ(X) in (C(X), ‖ · ‖sup).
The Stone-Weierstrass Theorem was first used by Hornik, Stinchcombe, and
White [24] to prove universal approximation property for one-hidden-layer
sigmoidal perceptron networks. Later, Leshno et al. [54] characterized ac-
tivation functions which determine perceptron networks with the universal
approximation property. They showed that the universal approximation prop-
erty is not restricted to (biologically motivated) sigmoidals but, with the ex-
ception of polynomials, it is satisfied by any reasonable activation function.

Theorem 3 (Leshno, Lin, Pinkus, and Schocken). Let ψ : R → R be a
locally bounded piecewise continuous function, d be a positive integer, and X
a compact subset of Rd. Then spanP dψ(X) is dense in (C(X), ‖.‖sup) if and
only if ψ is not an algebraic polynomial.
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Proof. We give only a sketch. The trick of Leshno et al.’s proof in [54] consists
in expressing all powers as limits of higher-order partial derivatives with
respect to the weight parameter v of the function ψ(v ·x+b) (ψ being analytic
guarantees that all the derivatives exist). It follows directly from the definition
of iterated partial derivative that

∂k ψ(v · x+ b)

δvk

can be expressed as a limit of functions computable by perceptron networks
with activation ψ. More precisely,

∂ψ(v · x+ b)

∂v
= lim

η→0

ψ((v + η)x + b)− ψ(v · x+ b)

η
,

and similarly for k > 1. Since ∂kψ(v·x+b)
∂vk = xkψ(k)(v · x + b), and for ψ

non-polynomial, none of the ψ(k) is identically equal to zero for all k, set-
ting v = 0 and choosing some bk, for which ψ(k)(bk) = ck �= 0, one gets
a sequence of functions from spanP dψ(X) converging to ckx

k. As all poly-
nomials are linear combinations of powers, they can be obtained as limits
of sequences of functions from spanP dψ(X). So by Weierstrass’ theorem and

Theorem 2, spanPψd (X) is dense in (C(X), ‖·‖sup) for any ψ which is analytic
and non-polynomial. The statement can be extended to nonanalytic functions
satisfying the assumptions of the theorem using suitable convolutions with
analytic functions.

Inspection of the proof given by Leshno et al. [54] shows that the theorem
is valid even when input weights are bounded by an arbitrarily small upper
bound. However to achieve density, the set of hidden unit parameters must
have either a finite or an infinite accumulation point.

Another standard method for treating approximation problems is based
on the Hahn-Banach Theorem: to verify density of a set of functions, it is
sufficient to show that every bounded linear functional that vanishes on this
set must be equal to zero on the whole linear space. This method was used by
Cybenko [11] to establish universal approximation for sigmoidal perceptron
networks.

Other proofs of universal approximation property of perceptron networks
took advantage of integral representations based on Radon transform (Carroll
and Dickinson [7] and Ito [25]) and on Kolmogorov’s representation of contin-
uous functions of several variables by means of superpositions of continuous
one-variable functions (Kůrková [37]).

In practical applications the domain of the function to be computed by
a network is finite and so one can apply results from interpolation theory,
which show that for finite domain functions, one can replace arbitrarily close
approximation by exact representation. A major result of interpolation theory,
Micchelli’s theorem [58], proves that any function on a finite subset of Rd can
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be exactly represented as a network with Gaussian RBF units. An analogous
result for sigmoidal perceptron networks has been proven by Ito [26].

However, development of interpolation theory has been motivated by the
need to construct surfaces with certain characteristics fitted to a small num-
ber of points. Although its results are valid for any number of pairs of data,
the application to neurocomputing leads to networks with the same number
of hidden units as the number of input-output pairs. For large sets of data,
this requirement may prevent implementation. In addition, it is well-known
that fitting input-output function to all the training data may produce “over-
fitting”, in which characteristics of noise and other random artifacts mask the
intrinsic nature of the function. In such cases, estimates of accuracy achiev-
able using networks with fewer hidden units are needed. These can be derived
from estimates of rates of approximation by variable basis schemes that apply
to both finite and infinite domains.

4 Quadratic Rates of Approximation

The cost of universality is arbitrarily large model complexity and hence the
set of network parameters has to also be sufficiently large. Dependence of
accuracy of approximation on the number of hidden units can be studied in
the framework of approximation theory in terms of rates of approximation.
In other words, rates of approximation characterize the trade-off between
accuracy of approximation and model complexity.

Jones [27] introduced a recursive construction of approximants with rates
of order O(1/

√
n). Together with Barron [2] he proposed to apply it to sets

of functions computable by one-hidden-layer sigmoidal perceptron networks.
The following theorem is a version of Jones’ result as improved by Barron
[2]. It was actually discovered and proved first by Maurey (see [63]) using
a probabilistic argument to guarantee existence rather than the incremental
algorithm given here.

The following theorem restates the Maurey-Jones-Barron’s estimate. Its
proof is from [41], where the argument of Barron [2, p. 934, Lemma 1] is sim-
plified. Let convnG denote the set of all convex combinations of n elements
from the set G, i.e.,

convnG :=

{
n∑
i=1

aigi
∣∣ ai ∈ [0, 1],

n∑
i=1

ai = 1, gi ∈ G

}
,

while convG denotes the convex hull of G

convG :=

n⋃
i=1

convnG.

For X a normed linear space, in approximating an element f ∈ X by elements
from a subset A of X , the error is the distance from f to A,
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‖f −A‖X := inf
g∈A

‖f − g‖X .

Theorem 4 (Maurey-Jones-Barron). Let (X , ‖.‖X ) be a Hilbert space, G
be a non empty bounded subset of X , and sG := supg∈G ‖g‖X . Then for every
f ∈ cl convG and for every positive integer n,

‖f − convnG‖X ≤
√
s2G − ‖f‖2X

n
.

Proof. Since distance from convnG is continuous on (X , ‖.‖X ), i.e., f �→
‖f − convnG‖X is continuous for f ∈ X [67, p. 391], it suffices to verify the
statement for f ∈ convG. Let

f =
m∑
j=1

ajhj

be a representation of f as a convex combination of elements of G. Set

c := s2G − ‖f‖2.

By induction we construct {gn}n≥1 ⊆ G such that for all n

e2n = ‖f − fn‖2 ≤ c

n
, where fn =

n∑
i=1

gi
n
.

Indeed, for the basis case of the induction, note that

m∑
j=1

aj‖f − hj‖2 = ‖f‖2 − 2 〈f,
m∑
j=1

ajhj〉+
m∑
j=1

aj‖hj‖2 ≤ s2G − ‖f‖2 = c,

so there exists j ∈ {1, . . . ,m} for which ‖f − hj‖2 ≤ c. Take f1 = g1 := hj .
Suppose g1, . . . , gn satisfy the error-bound. Then

e2n+1 = ‖f − fn+1‖2 = ‖ n

n+ 1
(f − fn) +

1

n+ 1
(f − gn+1)‖2 =

=
n2

(n+ 1)2
e2n +

2n

(n+ 1)2
〈f − fn, f − gn+1〉+ 1

(n+ 1)2
‖f − gn+1‖2.

As in the basis case,

m∑
j=1

aj

(
2n

(n+ 1)2
〈f − fn, f − hj〉+ 1

(n+ 1)2
‖f − hj‖2

)
=
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=
1

(n+ 1)2
(

m∑
j=1

ajgj − ‖f‖2) ≤ 1

(n+ 1)2
(s2G − ‖f‖2) = c

(n+ 1)2

So there must exist j ∈ {1, . . . ,m} such that

2n

(n+ 1)2
〈f − fn, f − hj〉+ 1

(n+ 1)2
‖f − hj‖2 ≤ c

(n+ 1)2
.

Setting gn+1 := hj, we get e2n+1 ≤ n2

(n+1)2 e
2
n + c

(n+1)2 ≤ c/(n+ 1)2.

Inspection of the proof shows that approximants in the convex hull of G can
always be taken to be barycenters of simplices - i.e., with all parameters of
the convex combination equal.

Theorem 4 actually gives an upper bound on incremental learning algo-
rithms (i.e., algorithms which at each step add a new hidden unit but do not
change the previously-determined inner parameters for the already chosen
units, see e.g., Kůrková [40]). In principle, non-incremental algorithms might
do better. Darken at al. [12] extended Maurey-Jones-Barron’s estimate to
Lp-spaces, p ∈ (1,∞). They used a more sophisticated argument replacing
inner products with peak functionals and taking advantage of Clarkson’s in-
equalities (see [23, pp. 225, 227]). Recall that for a Banach space (X , ‖ · ‖X )
and f ∈ X , we denote by Πf a peak functional for f , i.e., a continuous linear
functional such that ‖Πf ‖X = 1 and Πf (f) = ‖f‖X [5, p.1].

The next theorem is a slight reformulation of [12, Theorem 5] with a sim-
plified proof.

Theorem 5 (Darken-Donahue-Gurvits-Sontag). Let Ω ⊆ R
d be open,

G a subset of (Lp(Ω), ‖ · ‖p), p ∈ (1,∞), f ∈ cl convG, and r > 0 such that
G ⊆ Br(f, ‖ · ‖). Then for every positive integer n

‖f − spannG‖p ≤
21/ar

n1/b
,

where q := p/(p− 1), a := min(p, q), and b := max(p, q).

Proof. As in the proof of Theorem 4, it is sufficient to verify the statement
for f ∈ convG. Let f =

∑m
j=1 wjhj be a representation of f as a convex

combination of elements of G. We show by induction that there exist a se-
quence {gi} of elements of G such that the barycenters fn =

∑n
i=1

gi
n satisfy

en := ‖f − fn‖ ≤ 21/a r
n1/b .

First we check that there exists g1 ∈ G such that f1 = g1 satisfies e1 =
‖f − f1‖p ≤ 21/a r. This holds trivially as G ⊆ Br(f, ‖ · ‖), so for any g ∈ G
we have ‖f − g‖ ≤ r < 21/a r. Hence we can set f1 := g1 for any g1 ∈ G.

Assume that we already have g1, . . . , gn. Then

fn+1 =
n

n+ 1
fn +

1

n+ 1
gn+1 =

1

n+ 1

n+1∑
i=1

gi .
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We shall express ean+1 in terms of ean.
Let Πn be a peak functional for f − fn. Since

∑m
j=1 wj (f − hj) = 0, by

linearity of Πn we have 0 = Πn

(∑m
j=1 wj (f − hj)

)
=

∑m
j=1 wj Πn(f − hj).

Thus, there must exist j ∈ {1, . . . ,m} such that Πn(f − hj) ≤ 0. Set gn+1 =
hj , so Πn(f − gn+1) ≤ 0. For every p ∈ (1,∞), q =: p/(p− 1), a := min(p, q),
and f, g ∈ Lp(Ω) , Clarkson’s inequalities imply

‖f + g‖ap + ‖f − g‖ap ≤ 2
(‖f‖ap + ‖g‖ap

)
(see, e.g., [47, Proposition A3 (iii)]. Hence we get

ean+1 = ‖f − fn+1‖ap =

∥∥∥∥ n

n+ 1
(f − fn) +

1

n+ 1
(f − gn+1)

∥∥∥∥
a

p

≤ 2

(∥∥∥∥ n

n+ 1
(f − fn)

∥∥∥∥
p̄

p

+

∥∥∥∥ 1

n+ 1
(f − gn+1)

∥∥∥∥
a

p

)

×
∥∥∥∥ n

n+ 1
(f − fn)− 1

n+ 1
(f − gn+1)

∥∥∥∥
a

p

. (3)

As ‖Πn‖ = 1 and Πn(f − gn+1) ≤ 0, we have ‖ n
n+1 (f −

fn) − 1
n+1 (f − gn+1)‖p ≥

∥∥∥Πn

(
n
n+1 (f − fn)− 1

n+1 (f − gn+1)
)∥∥∥

p
≥∥∥∥Πn

(
n
n+1 (f − fn)

)∥∥∥
p
= n

n+1 ‖Πn(f − fn)‖p = n
n+1 ‖f − fn‖p. Hence

−
∥∥∥∥ n

n+ 1
(f − fn)− 1

n+ 1
(f − gn+1)

∥∥∥∥
a

p

≤ −
(

n

n+ 1
‖f − fn‖p

)a
. (4)

By (3) and (4),

ean+1 = ‖f − fn+1‖ap ≤

2

(
‖ n

n+ 1
(f − fn)‖ap + ‖ 1

n+ 1
(f − gn+1)‖ap

)
−
(

n

n+ 1
‖f − fn‖p

)a
=

2

(n+ 1)a
‖f − gn+1‖ap +

(
2

n+ 1

)a
‖f − fn‖ap =

2

(n+ 1)a
‖f − gn+1‖ap +

(
2

n+ 1

)a
ean .

As en = ‖f − fn‖ ≤ 21/a r
n1/b , we get ean+1 ≤ 2 ra

(n+1)a +
(

n
n+1

)a (
21/a r
n1/b

)a
=

2 ra

(n+1)a

(
1 + na

na/b

)
= 2 ra

(n+1)a

(
1 + na−a/b

)
. It can easily be verified that a −

a
b = 1 in both cases, a = p (and so b = q = p

p−1 ) and a = q (and so

b = p). Thus ean+1 ≤ 2 ra

(n+1)a (n+1) . Hence, ean+1 ≤ 2 ra

(n+1)a−1 = 2ra

(n+1)a/b , i.e.,

en+1 ≤ 21/ar
(n+1)1/b

.
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The Maurey-Jones-Barron Theorem and its extension to Lp-spaces received
a lot of attention because they imply an estimate of model complexity of the
order O(ε−2). Several authors derived improvements and investigated tight-
ness of the improved bounds for suitable sets G such as G orthogonal [45, 52],
G formed by functions computable by sigmoidal perceptrons, and precom-
pact G with certain covering number properties [49, 55]. In particular, for a
dictionary G of functions computable by perceptrons with certain sigmoidal
activations, impossibility of improving the exponent − 1

2 in the upper bound
from Theorem (4) over −(12 + 1

d) (where d is the number of variables) was
proved in [1, 55, 49].

To illustrate an improvement of the Maurey-Jones-Barron Theorem, we
state an upper bound by Makovoz [55, Theorem 1], which brings in the en-
tropy numbers of G. Recall that the n-th entropy number en(G) of a subset
G of a normed linear space is defined as

en(G) := inf{ε > 0 | (G ⊆ ∪ni=1Ui)& (∀i = 1, . . . , n) ( diam(Ui) ≤ ε )},

where diam(U) = supx,y∈U ‖x− y‖.
Theorem 6 (Makovoz). Let G be a bounded subset of a Hilbert space
(X , ‖ · ‖X ). Then for every f ∈ spanG of the form f =

∑∞
i=1 cigi such

that
∑∞
i=1 |ci| <∞ and every positive integer n there exists g =

∑n
i=1 ai gi ∈

spannG such that

‖f − g‖X ≤ 2 en(G)
∑∞

i=1 |ci|√
n

,

where
∑n

i=1 |ai| ≤
∑∞

i=1 |ci|.

5 Geometric Rates of Approximation

Throughout this section let (X , ‖.‖X ) be a Hilbert space with G a non empty
bounded subset of X . The Maurey-Jones-Barron Theorem and its improve-
ments presented in the previous section are worst-case estimates (i.e., they
give upper bounds holding for all functions from the closure of the symmetric
convex hull of G). Thus, one can expect that for suitable subsets of this hull,
better rates may hold.

Lavretsky [53] noticed that a certain geometric condition would allow sub-
stantial improvement in the Jones-Barron’s iterative construction [2, 27].
More precisely, for δ > 0, he defined the set

Fδ(G) :=
{
f ∈ cl convG

∣∣ ∀h ∈ convG, f �= h ∃g ∈ G :

(f − g) · (f − h) ≤ −δ ‖f − g‖X ‖f − h‖cX
}

(5)

and proved the following result.
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Theorem 7 (Lavretsky). Let (X , ‖.‖X ) be a Hilbert space with G any
bounded symmetric subset containing 0, sG := supg∈G ‖g‖, and δ > 0. Then
for every f ∈ Fδ(G) and every positive integer n,

‖f − convnG‖X ≤
√
(1− δ2)n−1(s2G − ‖f‖2X ) .

In [51], Kůrková and Sanguineti improved the idea of Lavretsky by showing
that for every function f in the convex hull of a bounded subset G of a
Hilbert space there exists τf ∈ [0, 1) such that the rate of approximation of
f by convex combinations of n functions from G is bounded from above by√
τn−1
f (s2G − ‖f‖2X ).

Theorem 8 (Kůrková-Sanguineti). Let (X , ‖ · ‖X ) be a Hilbert space, G
its bounded nonempty subset, and sG := supg∈G ‖g‖X . For every f ∈ convG
there exists τf ∈ [0, 1) such that for every positive integer n

‖f − convnG‖X ≤
√
τn−1
f (s2G − ‖f‖2X ).

Proof. Let f =
∑m
j=1 aj gj be a representation of f as a convex combination

of elements of G with all aj > 0 (and
∑
j aj = 1). Let G′ be the set of

elements combined; i.e.,

G′ := {g1, . . . , gm} .
For each n = 1, . . . ,m, we find fn ∈ convnG, and ρn > 0 such that

‖f − fn‖2X ≤ (1− ρ2n)
n−1

(
s2G − ‖f‖2X

)
. (6)

Let gj1 ∈ G′ be nearest to f , i.e.,

‖f − gj1‖X = min
g∈G′ ‖f − g‖X ,

and set f1 := gj1 . As

m∑
j=1

aj‖f − gj‖2X = ‖f‖2X − 2f ·
m∑
i=1

ajgj +

m∑
j=1

aj‖gj‖2X

≤ s2G − ‖f‖2X ,

we get ‖f−f1‖2X ≤ s2G−‖f‖2X and so (6) holds for n = 1 with any ρ1 ∈ (0, 1).
Assuming that we have fn−1, we define fn. When fn−1 = f , we set fn :=

fn−1 and the estimate holds trivially.
When fn−1 �= f , we define fn as the convex combination

fn := αnfn−1 + (1− αn)gjn , (7)

with gjn ∈ G′ and αn ∈ [0, 1] chosen in such a way that for some ρn > 0
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‖f − fn‖2X ≤ (1 − ρ2n)
n−1‖f − fn−1‖2X .

First, we choose a suitable gjn and then we find αn depending on our choice
of gjn . Denoting en := ‖f − fn‖X , by (7) we get

e2n = α2
ne

2
n−1+2αn(1−αn)(f − fn−1) · (f − gjn)+ (1−αn)

2‖f − gjn‖2X . (8)

For all j ∈ {1, . . . ,m}, set

ηj := − (f − fn−1) · (f − gj)

‖f − fn−1‖X ‖f − gj‖X
(both terms in the denominator are nonzero: the first one because we are
considering the case when f �= fn−1 and the second one because we assume
that for all j, aj > 0 and thus f �= gj). Note that for all j, ηj ∈ [−1, 1] as
it is the cosine of the angle between the vectors f − fn−1 and f − gj .

As f =
∑m

j=1 aj gj, we have

m∑
j=1

aj(f − fn−1) · (f − gj) = (f − fn−1) · (f −
m∑
j=1

ajgj) = 0.

Thus
(i) either there exists g ∈ G′, for which (f − fn−1) · (f − g) < 0
(ii) or for all g ∈ G′, (f − fn−1) · (f − g) = 0.

We show that case (ii) can’t happen since it would imply that f = fn−1.
Indeed, fn−1 ∈ convn−1G

′ and thus can be expressed as

fn−1 =
n−1∑
k=1

bkgjk

with all bk ∈ [0, 1] and
∑n−1
k=1 bk = 1. If for all g ∈ G′, (f −fn−1) · (f −g) = 0,

then ‖f − fn−1‖2X is equal to

(f − fn−1) · (f −
n−1∑
k=1

bkgjk) =

n−1∑
k=1

bk(f − fn−1) · (f − gjk) = 0 .

By assumption, f �= fn−1, so case (i) must hold. Therefore, the subset

G′′ := {g ∈ G′ | (f − fn−1) · (f − g) < 0}
is nonempty. Let gjn ∈ G′′ be chosen so that

ηjn = max
j=1,...,m

ηj
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and set ρn := ηjn . As G
′′ �= ∅, we have ρn > 0. Let rn := ‖f − gjn‖X . By (8)

we get

e2n = α2
ne

2
n−1 − 2αn(1 − αn)ρnen−1rn + (1 − αn)

2r2n. (9)

To define fn as a convex combination of fn−1 and gjn , it remains to find
αn ∈ [0, 1] for which e2n is minimal as a function of αn. By (9) we have

e2n = α2
n

(
e2n−1 + 2ρnen−1rn + r2n

)− 2αn
(
ρnen−1rn + r2n

)
+ r2n. (10)

Thus

∂e2n
∂αn

= 2αn
(
e2n−1 + 2ρnen−1rn + r2n

)− 2
(
ρnen−1rn + r2n

)
and

∂2e2n
∂2αn

= 2
(
e2n−1 + 2ρnen−1rn + r2n

)
.

As now we are considering the case when f �= fn−1, we have en−1 > 0 and

hence
∂e2n
∂2αn

> 0. So the minimum is achieved at

αn =
ρnen−1rn + r2n

e2n−1 + 2ρnen−1rn + r2n
. (11)

Plugging (11) into (10) we get

e2n =
(1− ρ2n)e

2
n−1r

2
n

e2n−1 + 2ρnen−1rn + r2n
<

(1− ρ2n)e
2
n−1r

2
n

r2n
= (1− ρ2n)e

2
n−1 . (12)

Let

k := max{n ∈ {1, . . . ,m} | fn �= fn−1} .
Setting

ρf := min{ρn |n = 1, . . . , k} ,
by induction we get the upper bound

‖f − convnG‖2X ≤ (1− ρ2f )
n−1

(
s2G − ‖f‖2X

)
holding for all n (for n > m it holds trivially with fn = f). We conclude by
setting τf := 1− ρ2f .

We illustrated Theorem 8 in [51] by estimating values of parameters of geo-
metric rates when G is an orthonormal basis. We derived also insights into
the structure of sets of functions with fixed values of parameters of such
rates. As for Theorem 4, the proof of Theorem 8 is based on a constructive
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incremental procedure, described in [51]. For every function f ∈ convG and
its any representation f =

∑m
j=1 ajgj as a convex combination of elements of

G, the proof constructs a linear ordering

{gj1 , . . . , gjm}
of the subset

G′ := {g1, . . . , gm} .
Then it shows that for every positive integer n ≤ m and for some τf ∈ [0, 1)
one has

‖ f − span{gj1 , . . . , gjm} ‖2X ≤ τn−1
f

(
s2G − ‖f‖2X

)
.

Table 1 describes this procedure.
The geometric bound would be more useful if one could calculate τf as a

functional of f . Nevertheless, this bound shows the possibility of substantial
improvement for suitably nice functions f .

The speed of decrease of the estimate depends on τf ∈ [0, 1) which is
obtained as the smallest cosine of the angles between functions used in the
construction of approximants. Inspection of the proof shows that the param-
eter τf is not defined uniquely. It depends on the choice of a representation of
f =

∑m
j=1 ajgj as a convex combination of elements of G and on the choice of

gjn for those positive integers n, for which there exist more than one gj with
the same cosine ρn. However, the minimal parameter, for which the geometric
upper bound from Theorem 8 holds, is unique.

Let

τ(f) := min {τ > 0 | ‖f − convnG‖2X ≤ τn−1(s2G − ‖f‖2) }. (13)

By Theorem 8, for every f ∈ convG the set over which the minimum in (13)
is taken is nonempty and bounded. It follows from the definition of this set
that its infimum is achieved, i.e., it is a minimum. Therefore,

‖f − convnG‖X ≤
√
τ(f)n−1(s2G − ‖f‖2X ) .

6 Approximation of Balls in Variational Norms

The Maurey-Jones-Barron Theorem is a useful tool for estimation of rates
of variable-basis approximation. Since convnG ⊆ spannG, the upper bound
from Theorem 4 on approximation by convnG also applies to approximation
by spannG. When G is bounded, convG is a proper subset of spanG and so
cl convG is a proper subset of cl spanG; thus, Theorem 4 cannot be applied
to all elements of X . However, its corollary on approximation by spannG
applies to all functions in X . Indeed, replacing the set G by sets of the form
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Table 1 The incremental construction used in the proof of Theorem 8

1 Choose gj1 ∈ {gj | j = 1, . . . ,m} such that
‖f − gj1‖ = minj=1,...,m ‖f − gj‖;

2 f1 := gj1 ;

For n = 2, . . . ,m− 1 :

begin

for j = 1, . . . ,m,

3 compute ηj := − (f−fn−1)·(f−gj)

‖f−fn−1‖ ‖f−gj‖

if for j = 1, . . . ,m one has ηj = 0, then

end

else

begin

4 ρn := max{ηj > 0 | j = 1, . . . ,m};
5 choose gjn such that ρn = ηjn ;

6 compute en−1 := ‖f − fn−1‖;
7 compute rn := ‖f − gjn‖;

8 compute αn :=
ρnen−1rn+r2n

e2n−1+2ρnen−1rn+r2n
;

9 fn := αn fn−1 + (1− αn) gn;

n := n+ 1.

end

end

Let

k := max{n ∈ {1, . . . ,m} | fn �= fn−1}

and

ρf := min{ρn | n = 1, . . . , k}

τf := 1− ρ2f
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G(c) := {wg |w ∈ R, |w| ≤ c, g ∈ G}
with c > 0, we get convnG(c) ⊂ spannG(c) = spannG for any c ∈ R. This
approach can be mathematically formulated in terms of a norm tailored to
a set G (in particular to sets Gφ corresponding to various computational
units φ).

Let (X , ‖ · ‖X ) be a normed linear space and G be its bounded non empty
subset, then G-variation (variation with respect to G) is defined as the
Minkowski functional of the set cl conv(G∪−G), where −G := {f ∈ X | f =
−g, g ∈ G}, i.e.,

‖f‖G := inf{c > 0 | f/c ∈ cl conv(G ∪−G)}.
Note that G-variation can be infinite and that it is a norm on the subspace of
X formed by those f ∈ X , for which ‖f‖G is finite. The closure in its definition
depends on the topology induced on X by the norm ‖ · ‖X . However, when X
is finite dimensional, G-variation does not depend on the choice of a norm on
X , since all norms on a finite-dimensional space induce the same topology.

Intuitively, G-variation of f measures how much the set G needs to be
inflated to contain f in the closure of its symmetric convex hull. It is easy to
check that

‖ · ‖X ≤ sG‖ · ‖G , (14)

where sG := supg∈G ‖g‖X . Indeed, if for b > 0, f/b ∈ cl conv(G ∪ −G),
then f/b = limε→0 hε, where hε ∈ conv(G ∪ −G) and so ‖hε‖ ≤ sG. Thus,
‖f‖X ≤ sG b. Hence, by the definition of ‖f‖G we have ‖f‖X ≤ sG ‖f‖G.

Variation with respect toG was introduced by Kůrková [39] as an extension
of Barron’s [1] concept of variation with respect to half-spaces corresponding
to G formed by functions computable by Heaviside perceptrons, defined as

Hd := {x �→ ϑ(e · x+ b) | e ∈ Sd−1, b ∈ R},
where Sd−1 := {x ∈ R

d | ‖x‖ = 1} denotes the sphere of radius 1 in R
d

(recall that ϑ is the Heaviside function, defined as ϑ(t) := 0 for t < 0 and
ϑ(t) := 1 for t ≥ 0). In particular, if f is an input-output function of a one-
hidden-layer network with Heaviside perceptrons, then variation with respect
to half-spaces of f is equal to the sum of absolute values of output weights. For
d = 1, variation with respect to half-spaces is up to a constant equal to total
variation which plays an important role in integration theory. G-variation is
also an extension of the notion of �1-norm. When G is an orthonormal basis of
a separable Hilbert space, G-variation is equal to the �1-norm with respect to
G, which is defined for every f ∈ X as ‖f‖1,G :=

∑
g∈G |f · g| [18, 19, 45, 52].

Approximation capabilities of sets of functions can be studied in terms of
worst-case errors, formalized by the concept of deviation. For two subsets A
and M of X , the deviation of M from A is defined as
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δ(M,A) = δ(M,A;X ) = δ(M,A; (X , ‖ · ‖X ) ) := sup
f∈M

‖f −A‖X . (15)

We use the abbreviated notations when the ambient space and the norm are
clear from the context. When the supremum in (15) is achieved, deviation is
the worst-case error in approximation of functions fromM by functions from
A. In this section, we consider the case in which the set M of functions to
be approximated is a ball in G-variation. By the definition, the unit ball in
G-variation is the closure in the norm ‖.‖X of the symmetric convex hull of
G, i.e.,

B1(‖.‖G) := cl
(
conv (G ∪ −G) ). (16)

The estimates given in the next corollary follow by the Maurey-Jones-Barron
Theorem (here Theorem 4) and its extension by Darken et al. (Theorem 5).
These estimates give upper bounds on rates of approximation by spannG for
all functions in a Hilbert space and in Lp(X) spaces with p ∈ (1,∞).

Corollary 1. Let (X , ‖.‖X ) be a Banach space, G its bounded nonempty sub-
set, sG := supg∈G ‖g‖X . Then for every f ∈ X and every positive integer n,

(i) for (X , ‖.‖X ) a Hilbert space,

‖f − spannG‖X ≤
√
s2G‖f‖2G − ‖f‖2X

n
,

so

δ(Br(‖.‖G), spannG) ≤
r s(G)

n1/2
;

(ii) for (X , ‖.‖X ) = (Lp(X), ‖.‖Lp(X)) with p ∈ (1,∞),

‖f − spannG‖X ≤ 21+1/a sG‖f‖G
n1/b

,

where a := min(p, p
p−1 ) and b := max(p, p

p−1 ), so

δ(Br(‖.‖G,Lp(X)), spannGd)Lp(X) ≤ 21+1/a r s(G)

n1/b
.

By the upper bounds from Corollary 1, all functions from the unit ball in G-
variation can be approximated within sG/

√
n or 21+1/asG/n

1/b by networks
with n hidden units from the dictionary G, independently on the number d
of variables. For this reason, such estimates are sometimes called “dimension-
independent”, which is misleading since with increasing number of variables,
the condition of being in the unit ball in G-variation becomes more and more
constraining.

Note that since 0 ∈ spannG, we have for all f ∈ X , ‖f − spannG‖X ≤
‖f‖, thus the bound from Corollary 1 is nontrivial only when ‖f‖2X ≥
(sG‖f‖G)2−‖f‖2

X
n or equivalently ‖f‖X

sG‖f‖G
≥ 1√

n+1
. For example, for sG = 1

and ‖f‖G = 1, this implies that ‖f‖X ≥ 1√
n+1

.
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Properties of balls in variation corresponding to standard hidden units are
not yet well understood. Such balls can be described as subsets of images of
balls in L1-norm under certain integral transformations (see, e.g., [2, 15, 43]).

In [52], examples of functions with variation with respect to half-spaces
(i.e., with respect to Heaviside perceptrons) growing exponentially with the
number of variables d were given. However, such exponentially-growing lower
bounds on variation with respect to half-spaces are merely lower bounds
on an upper bound on rates of approximation. They do not prove that such
functions cannot be approximated by networks with n perceptrons with faster

rates than sG ‖f‖G√
n

.

Combining Theorem 6 with estimates of entropy numbers, Makovoz [55]
disproved the possibility of a substantial improvement of the upper bound
from Corollary 1 (i) for the set G corresponding to perceptrons with certain
activations. We say that a sigmoidal is polynomially quickly approximating the
Heaviside if there exist η, C > 0 such that for all t ∈ R one has |σ(t)−ϑ(t)| ≤
C |t|η. The following theorem states Makovoz’ result in terms of variation
norm.

Theorem 9 (Makovoz). Let d be a positive integer, σ either the Heaviside
function or a Lipschitz continuous sigmoidal polynomially quickly approxi-
mating the Heaviside, and X ⊂ R

d compact. If τ > 0 is such that for some
c > 0 and all positive integers n one has

δ
(
B1(‖.‖Pd

σ (X))), convn P
d
σ (X)

) ≤ c

nτ
,

then τ ≤ 1
2 + 1

d .

Hence, for a wide family of sigmoidal perceptron networks the term n−1/2

cannot be improved beyond n−1/2−1/d, so in high dimension, n−1/2 is essen-
tially best possible.

In [49], Kůrková and Sanguineti extended this tightness result to more
general approximating sets. Recall that the ε-covering number of a subset G
of (X , ‖ · ‖X ) is the cardinality of a minimal ε-net in G, i.e.,

N (G, ε) := min
{
m ∈ N+ | ∃f1, . . . , fm ∈ G such that G ⊆

m⋃
i=1

Bε(fi, ‖ · ‖X )
}
.

If the set over which the minimum is taken is empty, then N (G, ε) = +∞.

When there exists β > 0 such that N (G, ε) ≤ (
1
ε

)β
for ε ↓ 0, G is said to

have power-type covering numbers.
For a subset A of a normed linear space (X , ‖.‖X ) and a positive integer

r, we denote

Ar :=

{
f ∈ A

∣∣∣ ‖f‖X ≥ 1

r

}
.
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The larger the sets Ar, the slower the decrease of the norms of the elements
of A. When Ar is finite for all positive integers r, we call the function αA :
N+ → N+ defined as

αA(r) := cardAr

the decay function of A, where cardAr denotes the number of elements of Ar.
A set A such that Ar is finite for all positive integers r is slowly decaying with
respect to γ if there exists γ > 0 such that αA(r) = rγ . Note that if A is a
precompact subset of a Hilbert space and Ar is orthogonal, then Ar must be
finite. Thus decay functions are defined for all precompact orthogonal subsets
of Hilbert spaces and also for subsets A =

⋃∞
r=1Ar with all Ar orthogonal

but A not necessarily orthogonal. Finally, we call slowly decaying a set A
formed by d-variable functions with the decay function αA(r) = rd.

Theorem 10 (Kůrková-Sanguineti). Let (X , ‖.‖X ) be a Hilbert space, G
its bounded precompact subset with sG = supg∈G ‖g‖ and power-type covering
numbers; let t > 0 and γ > 0, and B1(‖.‖G) ⊇ t A, where A is slowly decaying
with respect to γ. If τ > 0 is such that for some c > 0 and all positive integers
n one has

δ
(
B1(‖.‖G), convn(G ∪−G)) ≤ c

nτ
,

then τ ≤ 1
2 + 1

γ .

The proof of Theorem 10 exploits characteristics of generalized Hadamard
matrices. A Hadamard matrix is a d × d matrix of ±1 entries such that the
rows are pairwise-orthogonal; i.e., they have dot product of zero. An r × d
matrix of ±1s is called quasi-orthogonal if the dot product of any two distinct
rows is small compared to d. When the dot product is bounded in absolute
value by some constant t, then Kainen and Kůrková [29] showed that as d
goes to infinity, the maximum number of rows in a quasi-orthogonal matrix
grows exponentially.

It was proven in [49] that Theorem 6 follows by Theorem 10 applied to
the set P σd (X) of functions computable by perceptrons, where σ is either the
Heaviside function or a Lipschitz continuous sigmoidal polynomially quickly
approximating the Heaviside.

7 Best Approximation and Non-continuity
of Approximation

To estimate rates of variable-basis approximation, it is helpful to study prop-
erties like existence, uniqueness, and continuity of corresponding approxima-
tion operators.

Existence of a best approximation has been formalized in approximation
theory by the concept of proximinal set (sometimes also called “existence”
set). A subset M of a normed linear space (X , ‖.‖X ) is called proximinal if
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for every f ∈ X the distance ‖f −M‖X = infg∈M ‖f − g‖X is achieved for
some element ofM , i.e., ‖f−M‖X = ming∈M ‖f−g‖X (Singer [67]). Clearly
a proximinal subset must be closed. On the other hand, for every f in X , the
distance-from-f function is continuous on X [67, p. 391] and hence on any
subset M . When M is compact, therefore, it is necessarily proximinal.

Two generalizations of compactness also imply proximinality. A set M is
called boundedly compact if the closure of its intersection with any bounded
set is compact. A set M is called approximatively compact if for each f ∈ X
and any sequence {gi} in M such that limi→∞ ‖f − gi‖X = ‖f − M‖X ,
there exists g ∈ M such that {gi} converges subsequentially to g [67, p.
368]. Any closed, boundedly compact set is approximatively compact, and
any approximatively compact set is proximinal [67, p. 374].

We investigate the existence property for one-hidden-layer Heaviside per-
ceptron networks. Gurvits and Koiran [21] have shown that for all positive
integers d the set Hd of characteristic functions of closed half-spaces in R

d

intersected with the unit cube [0, 1]d is compact in (Lp([0, 1]d), ‖.‖p) with
p ∈ [1,∞). This can be easily verified once the set Hd is reparametrized
by elements of the unit sphere Sd in R

d+1. Indeed, a function ϑ(v · x + b),

with the vector (v1, . . . , vd, b) ∈ R
d+1 nonzero, is equal to ϑ(v̂ · x+ b̂), where

(v̂1, . . . , v̂d, b̂) ∈ Sd is obtained from (v1, . . . , vd, b) ∈ R
d+1 by normalization.

Since Sd is compact, so is Hd. However, spannHd is neither compact nor
boundedly compact for any positive integers n, d.

The following theorem from [34] shows that spannHd is approximatively
compact in Lp-spaces. It extends a result of Kůrková [38], who showed that
spannHd is closed in Lp-spaces with p ∈ (1,∞).

Theorem 11 (Kainen-Kůrková-Vogt). Let d be any positive integer. Then
spannHd is an approximatively compact subset of (Lp([0, 1]d, ‖.‖p) for n ≥ 1
and p ∈ [1,∞).

Theorem 11 shows that for all positive integers n, d a function in Lp([0, 1]d)
with p ∈ [1,∞) has a best approximation among functions computable by
one-hidden-layer networks with a single linear output unit and n Heaviside
perceptrons in the hidden layer. Thus for any p-integrable function on [0, 1]d

there exists a linear combination of n characteristic functions of closed half-
spaces that is nearest in the Lp-norm. In other words, in the space of pa-
rameters of networks of this type, there exists a global minimum of the error
functional defined as Lp-distance from the function to be approximated. A
related proposition is proved by Chui, Li, and Mhaskar in [9], where certain
sequences are shown to have subsequences that converge almost everywhere
(a. e.). These authors work in R

d rather than [0, 1]d and show a. e. conver-
gence rather than Lp-convergence.

Theorem 11 cannot be extended to perceptron networks with differentiable
activation functions, e.g., the logistic sigmoid or hyperbolic tangent. For such
functions, the sets

spannPd(ψ),
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where

Pd(ψ) := {f : [0, 1]d → R | f(x) = ψ(v · x+ b), v ∈ R
d, b ∈ R},

are not closed and hence cannot be proximinal. This was first observed by
Girosi and Poggio [16] and later exploited by Leshno et al. [54] for a proof of
the universal approximation property.

Cheang and Barron [8] showed that linear combinations of characteristic
functions of closed half-spaces with relatively few terms can yield good ap-
proximations of such functions as the characteristic function χB of a ball.
However, χB is not approximated by the linear combination itself but rather
by the characteristic function of the set where the linear combination ex-
ceeds a certain threshold. This amounts to replacing a linear output in the
corresponding neural network by a threshold unit.

Note that Theorem 11 does not offer any information on the error of the
best approximation. Estimates on such errors available in the literature (e.g.,
DeVore, Howard, and Micchelli [13], Pinkus [62]) are based on the assumption
that the best approximation operators are continuous. However, it turns out
that continuity of such operators may not hold [33], [32] as we now explain.

Recall [67] that for a subset M of a normed linear space (X , ‖ · ‖X ) and
f ∈ X , the (metric) projection PrM (f) of f to M is the set of elements in M
at minimum distance from f ; i.e.,

PrM (f) := {g ∈M | ‖f − g‖X = ‖f −M‖X = inf
h∈M

‖f − h‖X} .

When f is in M , it is its own metric projection. An element of PrM (f) is
called a best approximation to f from M . A mapping Ψ : X →M is called a
best approximation mapping (to elements of X fromM) with respect to ‖ ·‖X
if it maps every element of X into its projection in M , i.e., for every f ∈ X
one has Ψ(f) ∈ PrM (f), that is, ‖f − Ψ(f)‖X = ‖f −M‖X .

A classical result from approximation theory [67] states that when X is a
uniformly convex Banach space (for example an L2-space), the best approx-
imation mapping to a closed convex subset is unique and continuous. This
has a basic consequence in linear approximation: it means that for every el-
ement f of such a space, there exists a unique linear combination of fixed
basis functions (i.e., a unique element of a linear approximating subspace)
that minimizes the distance from f and that such a best approximation varies
continuously as f is varied.

The situation is different when one considers approximation by neural
networks. This is mainly due to the fact that, instead of a finite-dimensional
subspace, the approximating functions belong to the union spannG of finite-
dimensional subspaces spanned by all n-tuples of elements ofG. The following
result from [33, Theorem 2.2] (see also [32]) states the non-existence of con-
tinuous best approximation by spannG in Lp-spaces, p ∈ (1,∞). By cardG
we denote the number of elements of G.
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Theorem 12 (Kainen-Kůrková-Vogt). Let X be a measurable subset of
R
d, n a positive integer, and G a linearly independent subset of Lp(X), p ∈

(1,∞), with cardG > n. Then there exists no continuous best approximation
of Lp(X) by spannG.

According to Theorem 12, in Lp-spaces with p ∈ (1,∞), for every positive
integer n and every linearly independent subset G with cardG > n there
is no continuous best approximation mapping to spannG. As regards the
requirement of linear independence of sets of functions representing neural
networks, it was proved for the hyperbolic tangent as hidden unit, for certain
Heaviside networks, and for Gaussian radial-basis functions. A characteriza-
tion of linearly independent families for different types of activation functions
was given in [44].

Combining Theorem 11 with Theorem 12, we conclude that while best
approximation operators exist from Lp([0, 1]d) to spannHd, they cannot be
continuous for p ∈ (1,∞). This loss of continuity has important consequences
on estimates of approximation rates by neural networks. In particular, the
lack of continuous dependence in approximation by neural networks does not
allow one to apply a priori the lower bounds available for linear approxima-
tors. In contrast to deviation from a single subspace, deviation from spannG
which is a union of many such subspaces is much more difficult to estimate
since, as we have seen, with the exception of some marginal cases, best ap-
proximation mappings to such unions do not posess the good properties of
best approximation mapping to a single linear subspace.

8 Tractability of Approximation

8.1 A Shift in Point-of-View: Complexity and
Dimension

Only recently has the influence of input dimension on approximation accu-
racy and rate been studied. Input dimension d is the number of distinct one-
dimensional input channels to the computational units. So if a chip-bearing
structure like an airplane’s wing is providing 400, 000 distinct channels of
information, then d = 400, 000. Some experimental results have shown that
optimization over connectionistic models built from relatively few compu-
tational units with a simple structure can obtain surprisingly good perfor-
mances in selected optimization tasks (seemingly high-dimensional); see, e.g.,
[17, 28, 48, 50, 51, 59, 68, 74, 75] and the references therein. Due to the
fragility and lack of theoretical understanding even for these examples, to-
gether with the ever-growing amount of data provided by new technology,
we believe it is important to explicitly consider the role of d in the theory.
Algorithms might require an exponential growth in time and resources as d
increases [3] and so even powerful computers would be unable to handle them
- hence, they would not be feasible.
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On the other hand, in applications, functions of hundreds of variables have
been approximated quite well by networks with only a moderate number of
hidden units (see, e.g., NETtalk in [66]). Estimates of rates of approxima-
tion by neural networks derived from constructive proofs of the universal
approximation property have not been able to explain such successes since
the arguments in these papers lead to networks with complexity growing ex-
ponentially with the number of input units, e.g., O(1/ d

√
n). Current theory

only predicts that to achieve an accuracy within ε, approximating functions
of complexity of order (1/ε)d are required.

Some insights into properties of sets of multivariable functions that can be
approximated by neural networks with good rates can be derived from the
results of the previous sections. The approximation rates that we presented
typically include several factors, one of which involves the number n of terms
in the linear combinations, while another involves the number d of inputs
to computational units. Dependence on dimension d can be implicit; i.e.,
estimates involve parameters that are constant with respect to n but do
depend on d and the manner of dependence is not specified; see, e.g., [1, 2, 6,
12, 14, 15, 21, 27, 55]. Terms depending on d are referred to as “constants”
since these papers focus on the number n of computational units and assume
a fixed value for the dimension d of the input space. Such estimates are often
formulated as O(κ(n)), where dependence on d is hidden in the “big O”
notation [36]. However, in some cases, such “constants” actually grow at an
exponential rate in d [52, 42]. Moreover, the families of functions for which
the estimates are valid may become negligibly small for large d [46].

In general dependence of approximation errors on d may be harder to
estimate than dependence on n [71] and few such estimates are available.
Deriving them can help to determine when machine-learning tasks are fea-
sible. The role of d is considered explicitly in information-based complexity
(see [70, 71, 72]) and more recently this situation has been studied in the
context of functional approximation and neural networks [30, 57].

8.2 Measuring Worst-Case Error in Approximation

We focus on upper bounds on worst-case errors in approximation from dic-
tionaries, formalized by the concept of deviation defined in equation (15). An
important case is when the deviation of a set Ad of functions of d-variables
from the set spannGd takes on the factorized form

δ(Ad, spannGd)Xd
≤ ξ(d)κ(n) . (17)

In the bound (17), dependence on the number d of variables and on model
complexity n are separated and expressed by the functions ξ : N′ → R+ and
κ : N+ → R, respectively, with N

′ an infinite subset of the set N+ of positive
integers and κ nonincreasing nonnegative. Such estimates have been derived,
e.g., in [1, 2, 6, 12, 27, 35].
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Definition 1. The problem of approximating Ad by elements of spannGd is
called tractable with respect to d in the worst case or simply tractable if in
the upper bound (17) for every d ∈ N

′ one has ξ(d) ≤ d ν for some ν > 0 and
κ is a nonincreasing function. We call the problem hyper-tractable if the
upper bound (17) holds with limd→∞ ξ(d) = 0 and κ is nonincreasing.

Thus, if approximation of Ad by spannGd is hyper-tractable, then the scaled
problem of approximating rdAd by spannGd is tractable, unless rd grows
faster than ξ(d)−1. If ξ(d) goes to zero at an exponential rate, then the
scaled problem is hyper-tractable if rd grows polynomially.

When κ(n) = n−1/s, the input-output functions of networks with

n ≥
(
ξ(d)

ε

)s
computational units can approximate given class of functions within ε. If ξ(d)
is polynomial, model complexity is a polynomial in d.

In [31], we derived conditions on sets of functions which can be tractably
approximated by various dictionaries, including cases where such sets are
large enough to include many smooth functions on R

d (for example, d-variable
Gaussian functions on R

d in approximation by perceptron networks). Even
if ξ(d) is a polynomial in d, this may not provide sufficient control of model
complexity unless the degree is quite small. For large dimension d of the in-
put space, even quadratic approximation may not be sufficient. But there
are situations where dependence on d is linear or better [31], and cases
are highlighted in which the function ξ(d) decreases exponentially fast with
dimension.

As the arguments and proof techniques exploited to derive the results in
[31] are quite technical, here we report only some results on tractability of
approximation by Gaussian RBF networks and certain perceptron networks,
presented in two tables. In the following, for a norm ‖ · ‖ in a space of d-
variable functions and rd > 0, we denote by Brd(‖ · ‖) the ball of radius rd
in such a norm.

8.3 Gaussian RBF Network Tractability

We first consider tractability of approximation by Gaussian RBF networks.
The results are summarized in Table 2. To explain and frame the results,
we need to discuss two functions - the Gaussian and the Bessel Potential.
The former is involved since we choose it as activation function for the RBF
network, the latter because it leads to a norm which is equivalent to the
Sobolev norm (that is, both Sobolev and Bessel Potential norms are bounded
by a multiple of the other as non-negative functionals).

Let γd,b : Rd → R denote the d-dimensional Gaussian function of width
b > 0 and center 0 = (0, . . . , 0) in R

d:
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γd,b(x) := e−b‖x‖
2

.

We write γd for γd,1. Width is parameterized inversely: larger values of b
correspond to sharper peaks. For b > 0, let

Gγd(b) :=
{
τy(γd,b) | y ∈ R

d
}
,

denote the set of d-variable Gaussian RBFs with width b > 0 and all possible
centers, where, for each vector y in R

d, τy is the translation operator defined
for any real-valued function g : Rd → R by

τy(g)(x) := g(x− y) .∀x ∈ R
d

The set of Gaussians with varying widths is denoted

Gγd :=
⋃
b>0

Gγd(b) .

For m > 0, the Bessel potential of order m on R
d is the function βd,m with

the Fourier transform

β̂d,m(ω) = (1 + ‖ω‖2)−m/2 ,

where we consider the Fourier transform F(f) := f̂ as

f̂(ω) := (2π)−d/2
∫
Rd

f(x)eix·ωdx.

For m > 0 and q ∈ [1,∞), let

Lq,m(Rd) := {f | f = w ∗ βd,m, w ∈ Lq(Rd)}
be the Bessel potential space which is formed by convolutions of functions
from Lq(Rd) with βd,m. The Bessel norm is defined as

‖f‖Lq,m(Rd) := ‖wf‖Lq(Rd) for f = wf ∗ βd,m.
In row 1 of Table 2, ξ(d) = (π/2b)d/4 rd. Thus for b = π/2, the estimate
implies tractability for rd growing with d polynomially, while for b > π/2,
it implies tractability even when rd increases exponentially fast. Hence, the
width b of Gaussians has a strong impact on the size of radii rd of balls
in Gγd(b)-variation for which ξ(d) is a polynomial. The narrower the Gaus-
sians, the larger the balls for which the estimate in row 1 of Table 2 implies
tractability.

For every m > d/2, the upper bound from row 2 of Table 2 on the worst-
case error in approximation by Gaussian-basis-function networks is of the
factorized form ξ(d)κ(n), where κ(n) = n−1/2 and
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Table 2 Factorized approximation rates for Gaussian RBF networks. In row 1,
b > 0; in row 2, m > d/2.

ambient space dictionary approximated ξ(d) κ(n)
functions

(L2(Rd), ‖.‖L2(Rd)) Gγ
d(b) Brd(‖.‖Gγ

d
(b)) rd

(
π
2b

)d/4
n−1/2

(L2(Rd), ‖.‖L2(Rd)) Gγ
d Brd(‖.‖L1,m ) ∩ L2,m

(
π
2

)d/4 Γ (m/2−d/4)
Γ (m/2)

rd n−1/2

ξ(d) = rd

(π
2

)d/4 Γ (m/2− d/4)

Γ (m/2)
.

Let h > 0 and put md = d/2 + h. Then ξ(d)/rd =
(
π
2

)d/4 Γ (h/2)
Γ (h/2+d/4) , which

goes to zero exponentially fast with increasing d. So for h > 0 and md ≥
d/2 + h, the approximation of functions in Brd(‖.‖L1,md(Rd)) ∩ L2,md(Rd) by

spannG
γ
d is hyper-tractable in L2(Rd).

8.4 Perceptron Network Tractability

Let us now consider tractability of approximation by perceptron networks.
The results are summarized in Table 3. This subsection also requires some
technical machinery. We describe a class of real-valued functions on R

d, the
functions of weakly-controlled decay, defined by Kainen, Kůrková, and Vogt
in [35], which have exactly the weakest possible constraints on their behavior
at infinity to guarantee finiteness of a certain semi-norm and we show that
functions in this class have a nice integral formula, leading to our results. This
subsection provides an instance in which N

′, the domain of the dimensional
complexity function ξ, is the odd positive integers.

The dictionary of functions onX ⊆ R
d computable by perceptron networks

with the activation function ψ is denoted by

Pψd (X) := {f : X → R | f(x) = ψ(v · x+ b), v ∈ R
d, b ∈ R},

so Pψd (R
d) = Pψd as defined in (1). For ϑ the Heaviside function, as in (2),

Pϑd (X) = Hd(X) := {f : X → R | f(x) = ϑ(e · x+ b), e ∈ Sd−1 , b ∈ R} ,

where Sd−1 is the sphere constituted by the unit-euclidean-norm vectors in
R
d and Hd(X) is the set of characteristic functions of closed half-spaces of

R
d restricted to X . Of course, all these functions, and their finite linear
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combinations, have finite sup-norms. The integral formula we develop be-
low shows that the nice functions (of weakly controlled decay) are tractably
approximated by the linear span of Hd(X).

For F any family of functions on R
d and Ω ⊆ R

d, let

F|Ω := {f |Ω | f ∈ F},
where f |Ω is the restriction of f to Ω. We also use the phrase “variation
with respect to half-spaces” for the restrictions of Hd. For simplicity, we
may write Hd instead of Hd|Ω. When Ωd ⊂ R

d has finite Lebesgue mea-
sure, for each continuous nondecreasing sigmoid σ, variation with respect
to half-spaces is equal to P σd |Ωd

-variation in L2(Ωd) [43]. Hence, investigat-
ing tractability of balls in variation with respect to half-spaces has implica-
tions for approximation by perceptron networks with arbitrary continuous
nondecreasing sigmoids.

A real-valued function f on R
d, d odd, is of weakly-controlled decay [35] if

f is d-times continuously differentiable and for all multi-indices α ∈ N
d with

|α| = ∑d
i=1 αi and D

α = ∂α1 · . . . · ∂αd , such that

lim
‖x‖→∞

Dαf(x) = 0, ∀α, |α| < d (i)

∃ε > 0 \ lim
‖x‖→∞

Dαf(x)‖x‖d+1+ε = 0, ∀α, |α| = d. (ii)

Let V(Rd) denote the set of functions of weakly controlled decay on R
d.

This set includes the Schwartz class of smooth functions rapidly decreasing
at infinity as well as the class of d-times continuously differentiable functions
with compact supports. In particular, it includes the Gaussian function. Also,
if f ∈ V(Rd), then ‖Dαf‖L1(Rd) < ∞ if |α| = d. The maximum over all α
with |α| = d is called the Sobolev seminorm of f and is denoted ‖f‖d,1,∞.
We denote by Ard the intersection of V(Rd) with the ball Brd(‖ · ‖d,1,∞) of
radius rd in the Sobolev seminorm ‖.‖d,1,∞. Then

Ard := V(Rd) ∩Brd(‖ · ‖d,1,∞) = rd A1.

The estimates in rows 1 and 2 of Table 3 imply that approximation of
functions from balls of radii rd in variation with respect to half-spaces
is tractable in the space M(Rd) of bounded measurable functions on R

d

with respect to supremum norm, when the radius rd grows polynomially.
In (L2(Ωd), ‖.‖L2(Ωd)), this approximation is tractable when rd times λ(Ωd)

grows polynomially with d. If for all d ∈ N
′, Ωd is the unit ball in R

d, then
this approximation is hyper-tractable unless rd is exponentially growing.

In row 5, we denote byGγ,1d :=
{
τy(γd) | y ∈ R

d
}
the set of d-variable Gaus-

sians with widths equal to 1 and varying centers. Using a result of Kainen,
Kůrková, and Vogt [35], we have ξ(d) = (2πd3/4)λ(Ωd)

1/2. This implies
that approximation of d-variable Gaussians on a domain Ωd by perceptron
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Table 3 Factorized approximation rates for perceptron networks. In rows 1 and
2, Brd(‖.‖Hd,M(Rd)) and Brd(‖.‖Hd|Ωd

,L2(Ωd)
) denote the balls of radius rd in Hd-

variations with respect to the ambient ‖.‖M(Rd)- and ‖.‖L2(Ωd)
-norms, respectively.

In rows 3 and 4, kd = 21−dπ1−d/2dd/2/Γ (d/2) ∼ (πd)1/2(e/2π)d/2. We assume
that λ(Ωd) < ∞ and Ωd �= ∅, where λ denotes the Lebesgue measure.

ambient space dictionary Gd target set F ξ(d) κ(n)
to be approx.

(M(Rd), ‖.‖M(Rd)) Hd(R
d) Brd(‖.‖Hd(R

d),M(Rd)) 6
√
3 rd d

1/2 (log n)1/2n−1/2

(L2(Ωd), ‖.‖L2(Ωd)
) Hd|Ωd Brd(‖.‖Hd|Ωd

,L2(Ωd)
) λ(Ωd) rd n−1/2

(L2(Ωd), ‖.‖L2(Ωd)
) Hd|Ωd Ard rd kdλ(Ωd)

1/2 n−1/2

Ωd ⊂ R
d, d odd

(L2(Ωd), ‖.‖L2(Ωd)
) P σ

d (Ωd) Ard rd kdλ(Ωd)
1/2 n−1/2

Ωd ⊂ R
d, d odd σ continuous

nondecr. sigmoid

(L2(Ωd), ‖.‖L2(Ωd)
) Hd|Ωd Gγ,1

d |Ωd (2π d)3/4 λ(Ωd)
1/2 n−1/2

Ωd ⊂ R
d, d odd

networks is tractable when the Lebesgue measure λ(Ωd) grows polynomially
with d, while if the domains Ωd are unit balls in R

d, then the approximation
is hyper-tractable.

9 Discussion

A number of years ago, Lotfi Zadeh remarked to two of the current authors
that the developed countries must control their “under-coordinated technol-
ogy” and this 21st century need is a driving force behind neural nets and
other new computational approaches. It is hoped that modern methods will
permit greater control and coordination of technology, and the techniques
described in this article represent a key part of current understanding.

As we have shown, neural network theory unifies and embodies a substan-
tial portion of the real and functional analysis which has been developed dur-
ing the 19th and 20th centuries. This analysis is based on deep and hard-won
knowledge and so presents the possibility of intellectual leverage in tackling
the problems which arise in the large-scale practical application of computa-
tion. Thus, the abundance of powerful mathematical tools which are utilized
gives modern approaches a possibility of overcoming previous obstacles.
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Another good reason to consider the methodologies discussed in this arti-
cle is their promise to enable much larger dimensionality to be considered in
applications through a more sophisticated model capable of being put into
special-purpose hardware. One of the obstructions to rapid and accurate neu-
ral computations may be that most work has dealt with static, rather than
dynamic, problem instances. It is clear that human pattern recognition is
strongly facilitated by dynamics. Through functional analysis, which has be-
gun to be more strongly utilized in neural network theory, one can properly
analyze high-dimensional phenomena in time as well as space. There will al-
ways be limitations due to hardware itself, but neural network approaches
via integral formulae of the sort encountered in mathematical physics hold
out the possibility of direct instantiation of neural networks by analog com-
putations, optical or implemented in silicon.

Finally, the notion of hyper-tractable computations appears to show that
for some problems, increase of dimension can improve computational perfor-
mance. As lower bounds to neural network accuracy are not currently known,
it may be that the heuristic successes discovered in a few well-chosen exam-
ples can be extended to a much broader domain of problem types.

10 Summary of Main Notations

R Set of real numbers.

d Input dimension.

Sd−1 Sphere of radius 1 in R
d.

N+ Set of positive integers.

(X , ‖ · ‖X ) Normed linear space.

Br(‖ · ‖X ) Ball of radius r in the norm ‖ · ‖X .

G Subset of (X , ‖ · ‖X ), representing a generic dictionary.

G(c) {wg | g ∈ G, w ∈ R, |w| ≤ c}.

card(G) Cardinality of the set G.

en(G) n-th entropy number of the set G.

diam(G) Diameter of the set G.

spanG Linear span of G.
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spannG Set of all linear combinations of at most n elements of G.

convG Convex hull of G.

convnG Set of all convex combinations of at most n elements of G.

clG Closure of G in the norm ‖ · ‖X .

sG supg∈G ‖g‖X .
Gφ Dictionary of functions computable by a unit of type φ.

ψ(v · x+ b)
Perceptron with an activation ψ, bias b, and weight
vector v.

σ Sigmoidal function.

ϑ Heaviside function.

Hd
Set of characteristic functions of closed half-spaces of Rd

(Heaviside perceptrons).

Pψd (X)
Dictionary of functions on X ⊆ R

d computable by
perceptron networks with activation ψ.

ψ(b‖x− v‖) Radial-basis function with activation ψ, width b, and
center v.

Fψd (X)
Dictionary of functions on X ⊆ R

d computable by RBF
networks with activation ψ.

γd,b d-dimensional Gaussian of width b and center 0.

Gγd(b)
Set of d-variable Gaussian RBFs with width b and all
possible centers.

Gγd Set of Gaussians with varying widths.

‖f −A‖X Distance from f to the set A in the norm ‖ · ‖X .

Πf Peak functional for f .

δ(M,A) Deviation of M from A in the norm ‖ · ‖X .

N (G, ε) ε-covering number of G in the norm ‖ · ‖X .
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αA(r) Decay function of the set A.

PrM (f) Projection of f to the set M .

f |Ω Restriction of f to the set Ω.

f̂ Fourier transform of f .

βd,m Bessel potential of order m on R
d.

Lq,m(Rd) Bessel potential space of order m in Lq(Rd).

‖ · ‖1,A �1-norm with respect to A.

‖ · ‖G G-variation with respect to ‖ · ‖X .

‖ · ‖Hd

Variation with respect to half-spaces
(Heaviside perceptrons).

(C(X), ‖ · ‖sup) Space of all continuous functions on a subset X ⊆ R
d, with

the supremum norm.

λ Lebesgue measure.

(Lp(X), ‖ · ‖p),
p ∈ [1,∞]

Space of all Lebesgue-measurable and p-integrable
functions f on X , with the Lp(X)-norm.

V(Rd) Set of functions of weakly controlled decay on R
d.

‖ · ‖d,1,∞ Sobolev seminorm.
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