A Turing Machine Distance Hierarchy

Stanislav Žák and Jiří Šíma
Institute of Computer Science
Academy of Sciences
Prague
Czech Republic

Deterministic or nondeterministic Turing machines

Complexity measures

Complexity bounds

Complexity classes
given a complexity measure

L within a complexity bound c_{1}

$$
c_{1}>c
$$

Problem: to find L such that c_{1} is very near to c

The complexity of a computation

The amount of the source exhausted during its simulation on a fixed universal machine

An example:
$C=P S P A C E \quad L \notin C$
a) $c_{1}>$ each polynomial

b) $p-$ a fixed polynomial
$c_{1}>p \cdot k-$ for each constant k
it depends on the number of the worktape symbols for different machines
c) a fixed polynomial - say $n-+$ a fixed worktape alphabet $c_{1}>n+k$ for each constant k
d) a fixed universal machine

$$
c_{1}(n)=n+k \Rightarrow \exists k_{0} S P A C E_{U}\left(n+k_{0}+1\right) \supsetneqq S P A C E_{U}\left(n+k_{0}\right)
$$

$c_{0}, c_{1}, c_{2}, \ldots, c_{k}$ a subsequence of configurations
$k \equiv$ the distance complexity of the computation

Theorem

Let U be a fixed universal machine $c: N \rightarrow N$, a recursive function (complexity bound)
$d: N \rightarrow N, d(n) \geq \log _{2} n$
\Rightarrow
$\exists L \quad L \in C_{U, d(n+1)+K, c(n+1)}$
$L \notin C_{U, d, c}$

$C_{U, d, c}=\{L \mid \exists p \forall u u \in L \longleftrightarrow$ using the distance $d(|u|)$ during the simulation on U according to $p u$ needs only $c(|u|)$ nodes of d subsequence to be accepted\}
S - a recursive set of programs
$R={ }_{d f}\left\{1^{k} 0^{l} \mid k, l>0, \operatorname{bin}(k) \in S\right\}$
$F: R \rightarrow S \quad F\left(1^{k} 0^{l}\right)=\operatorname{bin}(k)$
$\forall p \in S L_{p}$ be a uniformly recursive part of $L\left(M_{p}\right)$
$C={ }_{d f}\left\{L_{p} \mid p \in S\right\}$
M:

1. action: to check $1^{k} 0^{l} 1^{j}$, to construct $\log n$, to construct $\operatorname{bin}(k)$ and verify $\operatorname{bin}(k) \in S$.
2. action: to decide whether $1^{k} 0^{l} \in L_{b i n(k)}$ or not
3. action: $\square \underset{\text { Simulate bin }(k) \text { on } 1^{k} 0^{\prime} 1^{j+1}}{\longrightarrow}$
$z(r)={ }_{d f}$ the first j s.t. computing on $1^{k} 0^{l} 1^{j} N$ decides whether $1^{k} 0^{l} \in$ $L_{b i n(k)}$
a) $r 1^{z(r)} \in L(M) \longleftrightarrow r \notin L_{F(r)}$
b) $\forall j<z(r)$
$r 1^{j} \in L(M) \longleftrightarrow r 1^{j+1} \in L_{F(r)}$
$L(M) \in C \Rightarrow \exists r\left(L=L(M)=L_{F(r)}\right)$
according to a) $r 1^{z(r)} \in L \longleftrightarrow r \notin L$
according to b) $r \in L \longleftrightarrow r 1^{z(r)} \in L$
A contradiction!

The contradiction in Cantor's diagonalization:

$$
r \in L \longleftrightarrow r \notin L
$$

Our contradiction:

$$
r \in L \longleftrightarrow r 1^{z(r)} \in L \longleftrightarrow r \notin L
$$

A similar measure - s.c. buffer measure

the buffer complexity of a computation

$$
=
$$

the number of crosses of frontiers between
the blocks of length $d(n)$ (during its simulation on U)
the computational action inside the blocks are not detected, they are gratis

Theorem

$C: N \rightarrow N$ - a recursive complexity bound
$d: N \rightarrow N$ - a recursive function, $d(n) \geq \log _{2} n$
U - a fixed universal machine
\Rightarrow
$\exists K$ constant $\exists L$ - language
$L \in B U F F E R_{U, d_{(n+1)+K}, c_{(n+1)}}$
$L \notin B U F F E R_{U, d, c}$.

