A Turing Machine Distance Hierarchy

Stanislav Žák and Jiří Šíma

Institute of Computer Science Academy of Sciences Prague Czech Republic

Deterministic or nondeterministic Turing machines

Complexity measures

Complexity bounds

Complexity classes

given a complexity measure

a complexity class C given by a bound c

L within a complexity bound c_1

 $c_1 > c$

Problem: to find L such that c_1 is very near to c

The complexity of a computation

The amount of the source exhausted during its simulation on a fixed universal machine

b) p - a fixed polynomial $c_1 > p \cdot k$ – for each constant k it depends on the number of the worktape symbols for different machines

c) a fixed polynomial – say n - + a fixed worktape alphabet $c_1 > n + k$ for each constant k

d) a fixed universal machine $c_1(n) = n + k \Rightarrow \exists k_0 SPACE_U(n + k_0 + 1) \supseteq SPACE_U(n + k_0)$

 $c_0, c_1, c_2, \ldots, c_k$ a subsequence of configurations

 $k\equiv$ the distance complexity of the computation

Theorem

Let U be a fixed universal machine $c: N \rightarrow N$, a recursive function (complexity bound) $d: N \rightarrow N$, $d(n) \ge \log_2 n$ \Rightarrow $\exists L$ $L \in C_{U,d(n+1)+K,c(n+1)}$ $L \notin C_{U,d,c}$ $\star \overset{L}{\overbrace{}}$ $C_{U,d,c}$

 $C_{U,d,c} = \{L | \exists p \forall u \ u \in L \iff \text{using the distance } d(|u|) \text{ during the simulation on } U \text{ according to } p \ u \text{ needs only } c(|u|) \text{ nodes of } d\text{-subsequence to be accepted} \}$

S - a recursive set of programs $R =_{df} \{1^{k}0^{l}|k, l > 0, bin(k) \in S\}$ $F : R \to S \qquad F(1^{k}0^{l}) = bin(k)$ $\forall p \in S \ L_{p} \text{ be a uniformly recursive}$ part of $L(M_{p})$ $C =_{df} \{L_{p}|p \in S\}$ M: $\boxed{1^{k} 0^{l} 1^{j}}$ $\boxed{\log n \qquad (n = k + l + j)}$

1. action: to check $1^k 0^l 1^j$, to construct $\log n$, to construct bin(k) and verify $bin(k) \in S$.

2. action: to decide whether $1^k 0^l \in L_{bin(k)}$ or not

 $z(r) =_{df}$ the first j s.t. computing on $1^k 0^l 1^j N$ decides whether $1^k 0^l \in L_{bin(k)}$

a)
$$r \mathbf{1}^{z(r)} \in L(M) \longleftrightarrow r \notin L_{F(r)}$$

b) $\forall j < z(r)$
 $r \mathbf{1}^{j} \in L(M) \longleftrightarrow r \mathbf{1}^{j+1} \in L_{F(r)}$

 $L(M) \in C \Rightarrow \exists r(L = L(M) = L_{F(r)})$ according to a) $r1^{z(r)} \in L \longleftrightarrow r \notin L$ according to b) $r \in L \longleftrightarrow r1^{z(r)} \in L$

A contradiction !

The contradiction in Cantor's diagonalization:

$$r \in L \longleftrightarrow r \not\in L$$

Our contradiction:

$$r \in L \longleftrightarrow r \mathbf{1}^{z(r)} \in L \longleftrightarrow r \notin L$$

A similar measure – s.c. buffer measure

the buffer complexity of a computation

the number of crosses of frontiers between the blocks of length d(n) (during its simulation on U)

the computational action inside the blocks are not detected, they are gratis

Theorem

 $\begin{array}{l} C: N \rightarrow N - \text{a recursive complexity bound} \\ d: N \rightarrow N - \text{a recursive function, } d(n) \geq \log_2 n \\ U - \text{a fixed universal machine} \\ \Rightarrow \\ \exists K \text{ constant } \exists L - \text{language} \end{array}$

 $L \in BUFFER_{U,d_{(n+1)+K},c_{(n+1)}}$

 $L \notin BUFFER_{U,d,c}$.