On the Derandomization of Space-Bounded Computations

Jiří Šíma, Stanislav Žák

Institute of Computer Science

Academy of Sciences of the Czech Republic

Probabilistic (Monte Carlo) Algorithms

- the next step can be chosen randomly from a set of possibilities (behavior can vary even on a fixed input)
- an output may be incorrect with a certain (typically small) probability

Undirected Graph S-T Connectivity: Given an undirected graph G=(V,E) on n=|V| vertices and $s,t\in V$, is there a path from s to t in G?

linear-time deterministic algorithm using breadth-first or depth-first search requires linear space (queue or stack implementation, respectively)

Random-Walk Algorithm

- 1. Let v = s.
- 2. Repeat up to $100n^4$ times:
 - (a) If v = t, halt and accept.
 - (b) Else v choose randomly from $\{w \in V \mid \{v, w\} \in E\}$.
- 3. Reject (if we haven't visited t yet).
- ullet never accepts when there isn't path from s to t
- \bullet only requires space $O(\log n)$: current vertex v, a counter for the number of steps

Theorem 1 For every d-regular undirected graph G = (V, E) on n vertices and for any vertices $s, t \in V$ from the same connected component of G, the expected number of steps for a random walk started at s to visit t is $O(d^2n^3\log n)$.

• 3-regular graph preserving s-t connectivity:

 \bullet a random walk from s visits t in $100n^4$ steps with probability at least 3/4

undirected graph s-t connectivity is solvable deterministically in space $O(\log n)$ (O. Reingold, 2005 --- Grace Murray Hopper ACM Award 2005, Gödel Prize 2009)

Can any $O(\log n)$ -space probabilistic algorithm be derandomized while preserving its space complexity?

Probabilistic Turing Machine (PTM)

RL (Randomized Logarithmic-space)

class of problems L=L(M) solvable by PTMs M with one-sided error $0<\delta<1$ in logarithmic space $S(n)=O(\log n)$ and polynomial time $T(n)=O(n^c)$:

if
$$x \in L$$
, then $Pr_{y \sim U_{T(n)}}[M(x,y) = 1] \ge 1 - \delta$

if
$$x \not\in L$$
, then $Pr_{y \sim U_{T(n)}}[M(x,y)=1]=0$, i.e. $M(x,y)=0$ for every y

$$\longrightarrow$$
 if $M(x,y)=1$, then $x\in L$ (U_m is the uniform distribution on $\{0,1\}^m$)

Probabilistic Turing Machine (PTM)

 \mathbf{BPL} (Bounded-error Probabilistic Logarithmic-space) class of problems L=L(M) solvable by PTMs M with two-sided error $0\leq \delta < \frac{1}{2}$ in logarithmic space $S(n)=O(\log n)$ and polynomial time $T(n)=O(n^c)$:

if $x \in L$, then $Pr_{y \sim U_{T(n)}}[M(x,y)=1] \geq 1-\delta$ if $x \not\in L$, then $Pr_{y \sim U_{T(n)}}[M(x,y)=1] \leq \delta$ (U_m is the uniform distribution on $\{0,1\}^m$)

Derandomization of Space-Bounded Computation

deterministic simulation of PTM performs M(x,y) for every fixed setting of random input $y \in \{0,1\}^m$ (where m=T(n)) and computes the probability of accepting computations

$$Pr_{y \sim U_m}\left[M(x,y) = 1\right] = \frac{\sum_{y \in \{0,1\}^m} M(x,y)}{2^m} = \begin{cases} \geq 1 - \delta & \longrightarrow \text{ accepts } x \\ \leq \delta & \longrightarrow \text{ rejects } x \end{cases}$$

 \longrightarrow the simulation time is exponential in T(n)

Is there an efficient simulation of PTM? Does randomness add power?

$$\mathbf{BPL} \stackrel{?}{=} \mathbf{L}, \quad \mathbf{RL} \stackrel{?}{=} \mathbf{L}$$

Pseudorandom Generator (PRG)

$$g: \{0,1\}^s \longrightarrow \{0,1\}^m, \quad s \ll m$$

stretches a short uniformly random seed of s bits into m bits that cannot be distinguished from uniform ones by small space machines M:

$$\left| Pr_{y \sim U_m} \left[M(y) = 1 \right] - Pr_{z \sim U_s} \left[M(g(z)) = 1 \right] \right| \le \varepsilon$$

where $\varepsilon > 0$ is the error

deterministic simulation of PTM performs M(x,g(z)) for every fixed setting of seed $z\in\{0,1\}^s$ and approximates the probability of accepting computations

$$Pr_{y \sim U_m} [M(x, y) = 1] \doteq \frac{\sum_{z \in \{0,1\}^s} M(x, g(z))}{2^s}$$

efficient derandomization (BPL=L): an explicit PRG with seed length $s = O(\log n)$ and sufficiently small error ε , computable in logarithmic space that fools logarithmic space machines M

Branching Program P

- a leveled directed acyclic multi-graph G = (V, E):
 - ullet one source $s \in V$ of zero in-degree at level 0
 - sinks of zero out-degree at the last level d (=depth)
 - every inner (=non-sink) node has out-degree 2
 - ullet the inner nodes are labeled with input Boolean variables x_1,\ldots,x_n
 - \bullet the two edges outgoing from any inner node at level $\ell < d$ lead to nodes at the next level $\ell+1$ and are labeled 0 and 1
 - the sinks are labeled 0 and 1

width = the maximum number of nodes in one level

branching program P computes Boolean function $P: \{0,1\}^n \longrightarrow \{0,1\}$:

Branching Programs (BPs)

a non-uniform model of space-bounded computation:

infinite family of branching programs $\{P_n\}$, one P_n for each input length $n \geq 1$

Turing machine M that uses space s(n) and runs in time t(n)

is modeled by

branching program P_n of width $2^{s(n)}$ and depth t(n)

Restrictions

Read-Once BPs (1-BPs): every input variable is tested at most once along each computational path

Oblivious BPs: at each level only one variable is queried

—— provably less efficient model (Beame, Machmouchi, CCC 2011)

an efficient construction of PRG for 1-BPs of polynomial size suffices to derandomize BPL

Explicit Pseudorandom Generators for 1-BPs

polynomial width: PRG with seed length $O(\log^2 n)$ (Nisan, 1992)

width w=2: PRG with seed length $O(\frac{1}{\varepsilon}\log n)$ (Saks, Zuckerman, 1999)

width w=3: known techniques fail to improve the seed length $O(\log^2 n)$ from Nisan's result (RANDOM 2009, STOC 2010, 2011, FOCS 2010, CCC 2011)

More Restrictions

regular 1-BP: every non-source node has in-degree 2

permutation 1-BP: regular 1-BP where the two edges leading to any non-source node are labeled 0 and 1 (i.e. edges between levels labeled with 0 respectively 1 create a permutation)

Recent Results on PRGs for regular 1-BPs

oblivious permutation 1-BPs of constant width: PRG with seed length $O\left(\log \frac{1}{\varepsilon} \log n\right)$ (Koucký, Nimbhorkar, Pudlák, STOC 2011)

oblivious regular 1-BPs of constant width:

- two constructions of PRG with seed length $O\left(\log n \left(\log \log n + \log \frac{1}{\varepsilon}\right)\right)$ (Braverman, Rao, Raz, Yehudoff, FOCS 2010; Brody, Verbin, FOCS 2010)
- ullet PRG with seed length $O\left(\log \frac{1}{arepsilon} \log n
 ight)$ (De, CCC 2011)

imes regular 1-BPs of constant width cannot even evaluate read-once conjunctions of non-constant number of literals (e.g. read-once DNF or CNF)

Hitting Set Generator

the one-sided error version of pseudo-random generator

Hitting Set:

Let $\varepsilon > 0$ and \mathcal{P}_n be a class of BPs with n inputs. A set $H_n \subseteq \{0,1\}^n$ is an ε -hitting set for \mathcal{P}_n if for every $P \in \mathcal{P}_n$,

$$Pr_{x \sim U_n}[P(x) = 1] = \frac{\left|P^{-1}(1)\right|}{2^n} \ge \varepsilon \quad \text{implies} \quad (\exists a \in H_n) \ P(a) = 1.$$

For every n (given in unary), the hitting set generator (HSG) for a class of families of BPs produces hitting set H_n .

deterministic simulation of a randomized algorithm with one-sided error performs the computation for every fixed setting of random input from the hitting set and accepts if there is at least one accepting computation

Hitting Set Generator for 1-BPs of Width 3

a normalized form of BP: the probability distribution of inputs on the three nodes at each level is ordered as

$$p_1 \ge p_2 \ge p_3 > 0$$
 $(p_1 + p_2 + p_3 = 1)$

a simple 1-BP of width 3 excludes one special level-to-level transition pattern in its normalized form (about 40 possible patterns in normalized width-3 1-BPs):

→ any regular width-3 1-BP is simple

a polynomial-time construction of $(\frac{191}{192})$ -hitting set for simple 1-BPs of width 3 which need not be oblivious (\S íma, \S ák, SOFSEM 2007)

The Weak Richness Condition

A set $A \subseteq \{0,1\}^n$ is weakly ε -rich if for any index set $I \subseteq \{1,\ldots,n\}$ and for any partition $\{Q_1,\ldots,Q_q,R_1,\ldots,R_r\}$ of I $(q \ge 0,\ r \ge 0)$ satisfying

$$\left(1 - \prod_{j=1}^{q} \left(1 - \frac{1}{2^{|Q_j|}}\right)\right) \times \prod_{j=1}^{r} \left(1 - \frac{1}{2^{|R_j|}}\right) \ge \varepsilon, \tag{1}$$

for any $c \in \{0,1\}^n$ there exists $a \in A$ that meets

$$(\exists j \in \{1, \dots, q\}) (\forall i \in Q_j) a_i = c_i \quad \text{and}$$
$$(\forall j \in \{1, \dots, r\}) (\exists i \in R_j) a_i \neq c_i. \tag{2}$$

Equivalent to ε -Hitting Sets for Read-Once DNF & CNF:

The product on the left-hand side of inequality in (1) expresses the probability that a random $a \in \{0,1\}^n$ (not necessarily in A) satisfies condition (2) which can be interpreted as a read-once conjunction of DNF and CNF

$$\bigvee_{j=1}^q \bigwedge_{i \in Q_j} \ell(x_i) \, \wedge \, \bigwedge_{j=1}^r \bigvee_{i \in R_j} \neg \ell(x_i) \quad \text{where} \quad \ell(x_i) = \left\{ \begin{array}{ll} x_i & \text{for } c_i = 1 \\ \neg x_i & \text{for } c_i = 0 \, . \end{array} \right.$$

The Weak Richness Condition Is Necessary

Theorem 2 Any ε -hitting set for the class of 1-BPs of width 3 is weakly ε -rich.

Idea of Proof:

- 1-BPs of width 3 can implement read-once conjunctions of DNF and CNF
- a hitting set for a class of functions hits any of its subclass

The Weak Richness Condition

A set $A \subseteq \{0,1\}^n$ is weakly ε -rich if for any index set $I \subseteq \{1,\ldots,n\}$ and for any partition $\{Q_1,\ldots,Q_q,R_1,\ldots,R_r\}$ of I $(q \ge 0, r \ge 0)$ satisfying

$$\left(1 - \prod_{j=1}^{q} \left(1 - \frac{1}{2^{|Q_j|}}\right)\right) \times \prod_{j=1}^{r} \left(1 - \frac{1}{2^{|R_j|}}\right) \ge \varepsilon, \tag{1}$$

for any $c \in \{0,1\}^n$ there exists $a \in A$ that meets

$$(\exists j \in \{1, \dots, q\}) (\forall i \in Q_j) a_i = c_i \quad \text{and}$$
$$(\forall j \in \{1, \dots, r\}) (\exists i \in R_j) a_i \neq c_i. \tag{2}$$

Observation:

Condition (1) implies that there is $j \in \{1, ..., q\}$ such that $|Q_j| \leq \log n$.

 \longrightarrow The (Full) Richness Condition:

Replace Q_1, \ldots, Q_q by Q such that $|Q| \leq \log n$ and remove the blue text from the definition above.

The Richness Condition

A set $A \subseteq \{0,1\}^n$ is ε -rich if for any index set $I \subseteq \{1,\ldots,n\}$, for any subset $Q \subseteq I$ and partition $\{R_1,\ldots,R_r\}$ of $I \setminus Q$ $(r \ge 0)$ satisfying $|Q| \le \log n$ and

$$\prod_{j=1}^{r} \left(1 - \frac{1}{2^{|R_j|}} \right) \ge \varepsilon \,, \tag{3}$$

for any $c \in \{0,1\}^n$ there exists $a \in A$ that meets

$$(\forall i \in Q) \, a_i = c_i \quad \text{and} \quad (\forall j \in \{1, \dots, r\}) \, (\exists i \in R_j) \, a_i \neq c_i \,. \tag{4}$$

Comments:

- Any ε -rich set is weakly ε -rich.
- Condition (4) can be interpreted as a read-once CNF with $O(\log n)$ single literals and clauses whose sizes satisfy (3):

$$\bigwedge_{i \in Q} \ell(x_i) \, \wedge \, \bigwedge_{j=1}^r \bigvee_{i \in R_j} \neg \ell(x_i) \quad \text{where} \quad \ell(x_i) = \left\{ \begin{array}{ll} x_i & \text{for } c_i = 1 \\ \neg x_i & \text{for } c_i = 0 \, . \end{array} \right.$$

The Richness Condition Is 'Sufficient'

Theorem 3 (Šíma, Žák, SOFSEM 2012) Let $\varepsilon > \frac{5}{6}$. If A is ε'^{11} -rich for some $\varepsilon' < \varepsilon$, then $H = \Omega_3(A)$ which contains all the vectors within the Hamming distance of 3 from any $a \in A$, is an ε -hitting set for the class of 1-BPs of width 3.

The richness condition expresses an essential property of hitting sets for 1-BPs of width 3 while being independent of a rather technical formalism of BPs.

X

Does a rich set exist?

Can it be constructed efficiently?

Almost $O(\log n)$ -Wise Independent Sets Are ε -Rich

 $A\subseteq\{0,1\}^n$ is (k,β) -wise independent set if for any index set $S\subseteq\{1,\ldots,n\}$ of size $|S|\le k$, the probability distribution on the bit locations from S is almost uniform, i.e. for any $c\in\{0,1\}^n$

$$\left| \frac{\left| A^S(c) \right|}{|A|} - \frac{1}{2^{|S|}} \right| \le \beta$$

where $A^S(c) = \{a \in A \mid (\forall i \in S) \ a_i = c_i\}.$

Alon, Goldreich, Håstad, Peralta, 1992: for any $\beta>0$ and $k=O(\log n)$, (k,β) -wise independent set A can be constructed in time polynomial in $\frac{n}{\beta}$

Theorem 4 (Šíma, Žák, CSR 2011) Let $\varepsilon > 0$, C be the least odd integer greater than $(\frac{2}{\varepsilon}\ln\frac{1}{\varepsilon})^2$, and $0 < \beta < \frac{1}{n^{C+3}}$. Then any $(\lceil (C+2)\log n \rceil, \beta)$ -wise independent set is ε -rich.

Corollary 1 Almost $O(\log n)$ -wise independent sets are hitting sets for the read-once conjunctions of DNF and CNF.

previously known for read-once DNFs resp. read-once CNFs (De et al., RANDOM 2010)

The Hitting Set for 1-BPs of width 3

Corollary: Any almost $O(\log n)$ -wise independent set extended with all the vectors within the Hamming distance of 3 is a polynomial-time constructible ε -hitting set for 1-BPs of width 3 with acceptance probability $\varepsilon > 5/6$.

Conclusion & Open Problems

• a breakthrough in the effort to construct HSGs for 1-BPs of bounded width (De, CCC 2011)

X

Such constructions were known only for width 2 or for oblivious regular/permutation 1-BPs of bounded width.

- Can the result be achieved for any acceptance probability $\varepsilon > 0$? (× our result holds for $\varepsilon > 5/6$)
- Can the technique be extended to width 4 or to bounded width?