On the Derandomization
 of Space-Bounded Computations

Jiří Šíma, Stanislav Žák

Her
Institute of Computer Science
Academy of Sciences of the Czech Republic

Probabilistic (Monte Carlo) Algorithms

- the next step can be chosen randomly from a set of possibilities (behavior can vary even on a fixed input)
- an output may be incorrect with a certain (typically small) probability

Undirected Graph $S-T$ Connectivity: Given an undirected graph $G=(V, E)$ on $n=|V|$ vertices and $s, t \in V$, is there a path from s to t in G ?
linear-time deterministic algorithm using breadth-first or depth-first search requires linear space (queue or stack implementation, respectively)

Random-Walk Algorithm

1. Let $v=s$.
2. Repeat up to $100 n^{4}$ times:
(a) If $v=t$, halt and accept.
(b) Else v choose randomly from $\{w \in V \mid\{v, w\} \in E\}$.
3. Reject (if we haven't visited t yet).

- never accepts when there isn't path from s to t
- only requires space $O(\log n)$: current vertex v, a counter for the number of steps

Theorem 1 For every d-regular undirected graph $G=(V, E)$ on n vertices and for any vertices $s, t \in V$ from the same connected component of G, the expected number of steps for a random walk started at s to visit t is $O\left(d^{2} n^{3} \log n\right)$.

- 3-regular graph preserving $s-t$ connectivity:

- a random walk from s visits t in $100 n^{4}$ steps with probability at least $3 / 4$
undirected graph $s-t$ connectivity is solvable deterministically in space $O(\log n)$ (0. Reingold, 2005 --- Grace Murray Hopper ACM Award 2005, Gödel Prize 2009)

Can any $O(\log n)$-space probabilistic algorithm be derandomized while preserving its space complexity?

Probabilistic Turing Machine (PTM)

RL (Randomized Logarithmic-space)

class of problems $L=L(M)$ solvable by PTMs M with one-sided error $0<\delta<1$ in logarithmic space $S(n)=O(\log n)$ and polynomial time $T(n)=O\left(n^{c}\right)$:
if $x \in L$, then $\operatorname{Pr}_{y \sim U_{T(n)}}[M(x, y)=1] \geq 1-\delta$
if $x \notin L$, then $\operatorname{Pr}_{y \sim U_{T(n)}}[M(x, y)=1]=0$, i.e. $M(x, y)=0$ for every y
\longrightarrow if $M(x, y)=1$, then $x \in L \quad\left(U_{m}\right.$ is the uniform distribution on $\left.\{0,1\}^{m}\right)$

Probabilistic Turing Machine (PTM)

BPL (Bounded-error Probabilistic Logarithmic-space)
class of problems $L=L(M)$ solvable by PTMs M with two-sided error $0 \leq \delta<\frac{1}{2}$ in logarithmic space $S(n)=O(\log n)$ and polynomial time $T(n)=O\left(n^{c}\right)$:
if $x \in L$, then $\operatorname{Pr}_{y \sim U_{T(n)}}[M(x, y)=1] \geq 1-\delta$
if $x \notin L$, then $\operatorname{Pr}_{y \sim U_{T(n)}}[M(x, y)=1] \leq \delta$
(U_{m} is the uniform distribution on $\{0,1\}^{m}$)

Derandomization of Space-Bounded Computation

deterministic simulation of PTM performs $M(x, y)$ for every fixed setting of random input $y \in\{0,1\}^{m}$ (where $m=T(n)$) and computes the probability of accepting computations

$$
\operatorname{Pr}_{y \sim U_{m}}[M(x, y)=1]=\frac{\sum_{y \in\{0,1\}^{m}} M(x, y)}{2^{m}}=\left\{\begin{array}{lll}
\geq 1-\delta & \longrightarrow & \text { accepts } x \\
\leq \delta & \longrightarrow & \text { rejects } x
\end{array}\right.
$$

\longrightarrow the simulation time is exponential in $T(n)$

Is there an efficient simulation of PTM? Does randomness add power?

$$
\mathbf{B P L} \stackrel{?}{=} \mathbf{L}, \quad \mathrm{RL} \stackrel{?}{=} \mathbf{L}
$$

Pseudorandom Generator (PRG)

$$
g:\{0,1\}^{s} \longrightarrow\{0,1\}^{m}, \quad s \ll m
$$

stretches a short uniformly random seed of s bits into m bits that cannot be distinguished from uniform ones by small space machines M :

$$
\left|\operatorname{Pr}_{y \sim U_{m}}[M(y)=1]-\operatorname{Pr}_{z \sim U_{s}}[M(g(z))=1]\right| \leq \varepsilon
$$

where $\varepsilon>0$ is the error
deterministic simulation of PTM performs $M(x, g(z))$ for every fixed setting of seed $z \in\{0,1\}^{s}$ and approximates the probability of accepting computations

$$
\operatorname{Pr}_{y \sim U_{m}}[M(x, y)=1] \doteq \frac{\sum_{z \in\{0,1\}^{s}} M(x, g(z))}{2^{s}}
$$

efficient derandomization $(\mathrm{BPL}=\mathrm{L})$: an explicit PRG with seed length $s=O(\log n)$ and sufficiently small error ε, computable in logarithmic space that fools logarithmic space machines M

Branching Program P

a leveled directed acyclic multi-graph $G=(V, E)$:

- one source $s \in V$ of zero in-degree at level 0
- sinks of zero out-degree at the last level d (=depth)
- every inner (=non-sink) node has out-degree 2
- the inner nodes are labeled with input Boolean variables x_{1}, \ldots, x_{n}
- the two edges outgoing from any inner node at level $\ell<d$ lead to nodes at the next level $\ell+1$ and are labeled 0 and 1
- the sinks are labeled 0 and 1
width $=$ the maximum number of nodes in one level
branching program P computes Boolean function $P:\{0,1\}^{n} \longrightarrow\{0,1\}$:

Branching Programs (BPs)

a non-uniform model of space-bounded computation:
infinite family of branching programs $\left\{P_{n}\right\}$, one P_{n} for each input length $n \geq 1$
Turing machine M that uses space $s(n)$ and runs in time $t(n)$ is modeled by branching program P_{n} of width $2^{s(n)}$ and depth $t(n)$

Restrictions

Read-Once BPs (1-BPs): every input variable is tested at most once along each computational path

Oblivious BPs: at each level only one variable is queried \longrightarrow provably less efficient model (Beame, Machmouchi, CCC 2011)
an efficient construction of PRG for $1-B P s$ of polynomial size suffices to derandomize BPL

Explicit Pseudorandom Generators for 1-BPs

polynomial width: PRG with seed length $O\left(\log ^{2} n\right)$ (Nisan, 1992)
width $w=2$: PRG with seed length $O\left(\frac{1}{\varepsilon} \log n\right)$ (Saks, Zuckerman, 1999)
width $w=3$: known techniques fail to improve the seed length $O\left(\log ^{2} n\right)$ from Nisan's result (RANDOM 2009, STOC 2010, 2011, FOCS 2010, CCC 2011)

More Restrictions

regular 1-BP: every non-source node has in-degree 2
permutation 1-BP: regular 1-BP where the two edges leading to any non-source node are labeled 0 and 1 (i.e. edges between levels labeled with 0 respectively 1 create a permutation)

Recent Results on PRGs for regular 1-BPs

oblivious permutation 1-BPs of constant width: PRG with seed length $O\left(\log \frac{1}{\varepsilon} \log n\right)$ (Koucký, Nimbhorkar, Pudlák, STOC 2011)
oblivious regular 1-BPs of constant width:

- two constructions of PRG with seed length $O\left(\log n\left(\log \log n+\log \frac{1}{\varepsilon}\right)\right)$ (Braverman, Rao, Raz, Yehudoff, FOCS 2010; Brody, Verbin, FOCS 2010)
- PRG with seed length $O\left(\log \frac{1}{\varepsilon} \log n\right)$ (De, CCC 2011)
\times regular 1-BPs of constant width cannot even evaluate read-once conjunctions of non-constant number of literals (e.g. read-once DNF or CNF)

Hitting Set Generator

the one-sided error version of pseudo-random generator

Hitting Set:
Let $\varepsilon>0$ and \mathcal{P}_{n} be a class of BPs with n inputs. A set $H_{n} \subseteq\{0,1\}^{n}$ is an ε-hitting set for \mathcal{P}_{n} if for every $P \in \mathcal{P}_{n}$,

$$
\operatorname{Pr}_{x \sim U_{n}}[P(x)=1]=\frac{\left|P^{-1}(1)\right|}{2^{n}} \geq \varepsilon \quad \text { implies } \quad\left(\exists a \in H_{n}\right) \quad P(a)=1
$$

For every n (given in unary), the hitting set generator (HSG) for a class of families of BPs produces hitting set H_{n}.
deterministic simulation of a randomized algorithm with one-sided error performs the computation for every fixed setting of random input from the hitting set and accepts if there is at least one accepting computation

Hitting Set Generator for 1-BPs of Width 3

a normalized form of BP: the probability distribution of inputs on the three nodes at each level is ordered as

$$
p_{1} \geq p_{2} \geq p_{3}>0 \quad\left(p_{1}+p_{2}+p_{3}=1\right)
$$

a simple 1-BP of width 3 excludes one special level-to-level transition pattern in its normalized form (about 40 possible patterns in normalized width-3 1-BPs):

\longrightarrow any regular width-3 1-BP is simple
a polynomial-time construction of $\left(\frac{191}{192}\right)$-hitting set for simple 1 -BPs of width 3 which need not be oblivious (Šíma, Žák, SOFSEM 2007)

The Weak Richness Condition

A set $A \subseteq\{0,1\}^{n}$ is weakly ε-rich if for any index set $I \subseteq\{1, \ldots, n\}$ and for any partition $\left\{Q_{1}, \ldots, Q_{q}, R_{1}, \ldots, R_{r}\right\}$ of $I(q \geq 0, r \geq 0)$ satisfying

$$
\begin{equation*}
\left(1-\prod_{j=1}^{q}\left(1-\frac{1}{2^{\left|Q_{j}\right|}}\right)\right) \times \prod_{j=1}^{r}\left(1-\frac{1}{2^{\left|R_{j}\right|}}\right) \geq \varepsilon \tag{1}
\end{equation*}
$$

for any $c \in\{0,1\}^{n}$ there exists $a \in A$ that meets

$$
\begin{align*}
& (\exists j \in\{1, \ldots, q\})\left(\forall i \in Q_{j}\right) a_{i}=c_{i} \quad \text { and } \\
& \quad(\forall j \in\{1, \ldots, r\})\left(\exists i \in R_{j}\right) a_{i} \neq c_{i} . \tag{2}
\end{align*}
$$

Equivalent to ε-Hitting Sets for Read-Once DNF \& CNF:

The product on the left-hand side of inequality in (1) expresses the probability that a random $a \in\{0,1\}^{n}$ (not necessarily in A) satisfies condition (2) which can be interpreted as a read-once conjunction of DNF and CNF

$$
\bigvee_{j=1}^{q} \bigwedge_{i \in Q_{j}} \ell\left(x_{i}\right) \wedge \bigwedge_{j=1}^{r} \bigvee_{i \in R_{j}} \neg \ell\left(x_{i}\right) \quad \text { where } \quad \ell\left(x_{i}\right)= \begin{cases}x_{i} & \text { for } c_{i}=1 \\ \neg x_{i} & \text { for } c_{i}=0 .\end{cases}
$$

The Weak Richness Condition Is Necessary

Theorem 2 Any ε-hitting set for the class of 1-BPs of width 3 is weakly ε-rich.

Idea of Proof:

- 1-BPs of width 3 can implement read-once conjunctions of DNF and CNF
- a hitting set for a class of functions hits any of its subclass

The Weak Richness Condition

A set $A \subseteq\{0,1\}^{n}$ is weakly ε-rich if for any index set $I \subseteq\{1, \ldots, n\}$ and for any partition $\left\{Q_{1}, \ldots, Q_{q}, R_{1}, \ldots, R_{r}\right\}$ of $I(q \geq 0, r \geq 0)$ satisfying

$$
\begin{equation*}
\left(1-\prod_{j=1}^{q}\left(1-\frac{1}{2^{\left|Q_{j}\right|}}\right)\right) \times \prod_{j=1}^{r}\left(1-\frac{1}{2^{\left|R_{j}\right|}}\right) \geq \varepsilon \tag{1}
\end{equation*}
$$

for any $c \in\{0,1\}^{n}$ there exists $a \in A$ that meets

$$
\begin{align*}
& (\exists j \in\{1, \ldots, q\})\left(\forall i \in Q_{j}\right) a_{i}=c_{i} \quad \text { and } \\
& \quad(\forall j \in\{1, \ldots, r\})\left(\exists i \in R_{j}\right) a_{i} \neq c_{i} . \tag{2}
\end{align*}
$$

Observation:
Condition (1) implies that there is $j \in\{1, \ldots, q\}$ such that $\left|Q_{j}\right| \leq \log n$.
\longrightarrow The (Full) Richness Condition:
Replace Q_{1}, \ldots, Q_{q} by Q such that $|Q| \leq \log n$ and remove the blue text from the definition above.

The Richness Condition

A set $A \subseteq\{0,1\}^{n}$ is ε-rich if for any index set $I \subseteq\{1, \ldots, n\}$, for any subset $Q \subseteq I$ and partition $\left\{R_{1}, \ldots, R_{r}\right\}$ of $I \backslash Q(r \geq 0)$ satisfying $|Q| \leq \log n$ and

$$
\begin{equation*}
\prod_{j=1}^{r}\left(1-\frac{1}{2^{\left|R_{j}\right|}}\right) \geq \varepsilon \tag{3}
\end{equation*}
$$

for any $c \in\{0,1\}^{n}$ there exists $a \in A$ that meets

$$
\begin{equation*}
(\forall i \in Q) a_{i}=c_{i} \quad \text { and } \quad(\forall j \in\{1, \ldots, r\})\left(\exists i \in R_{j}\right) a_{i} \neq c_{i} . \tag{4}
\end{equation*}
$$

Comments:

- Any ε-rich set is weakly ε-rich.
- Condition (4) can be interpreted as a read-once CNF with $O(\log n)$ single literals and clauses whose sizes satisfy (3):

$$
\bigwedge_{i \in Q} \ell\left(x_{i}\right) \wedge \bigwedge_{j=1}^{r} \bigvee_{i \in R_{j}} \neg \ell\left(x_{i}\right) \quad \text { where } \quad \ell\left(x_{i}\right)= \begin{cases}x_{i} & \text { for } c_{i}=1 \\ \neg x_{i} & \text { for } c_{i}=0\end{cases}
$$

The Richness Condition Is 'Sufficient'

Theorem 3 (Šíma, žák, SOFSEM 2012) Let $\varepsilon>\frac{5}{6}$. If A is $\varepsilon^{\prime 11}$-rich for some $\varepsilon^{\prime}<\varepsilon$, then $H=\Omega_{3}(A)$ which contains all the vectors within the Hamming distance of 3 from any $a \in A$, is an ε-hitting set for the class of 1 -BPs of width 3.

The richness condition expresses an essential property of hitting sets for 1-BPs of width 3 while being independent of a rather technical formalism of BPs.
\times

Does a rich set exist?

Can it be constructed efficiently?

Almost $O(\log n)$-Wise Independent Sets Are ε-Rich

$A \subseteq\{0,1\}^{n}$ is (k, β)-wise independent set if for any index set $S \subseteq\{1, \ldots, n\}$ of size $|S| \leq k$, the probability distribution on the bit locations from S is almost uniform, i.e. for any $c \in\{0,1\}^{n}$

$$
\left|\frac{\left|A^{S}(c)\right|}{|A|}-\frac{1}{2^{|S|}}\right| \leq \beta
$$

where $A^{S}(c)=\left\{a \in A \mid(\forall i \in S) a_{i}=c_{i}\right\}$.
Alon, Goldreich, Håstad, Peralta, 1992: for any $\beta>0$ and $k=O(\log n)$, (k, β)-wise independent set A can be constructed in time polynomial in $\frac{n}{\beta}$

Theorem 4 (Šíma, Žák, CSR 2011) Let $\varepsilon>0, C$ be the least odd integer greater than $\left(\frac{2}{\varepsilon} \ln \frac{1}{\varepsilon}\right)^{2}$, and $0<\beta<\frac{1}{n^{C+3}}$. Then any $\left.(\Gamma(C+2) \log n\rceil, \beta\right)$-wise independent set is ε-rich.

Corollary 1 Almost $O(\log n)$-wise independent sets are hitting sets for the read-once conjunctions of DNF and CNF.
previously known for read-once DNFs resp. read-once CNFs (De et al., RANDOM 2010)

The Hitting Set for 1 -BPs of width 3

Corollary: Any almost $O(\log n)$-wise independent set extended with all the vectors within the Hamming distance of 3 is a polynomial-time constructible ε-hitting set for 1 -BPs of width 3 with acceptance probability $\varepsilon>5 / 6$.

Conclusion \& Open Problems

- a breakthrough in the effort to construct HSGs for 1-BPs of bounded width (De, CCC 2011)

$$
\times
$$

Such constructions were known only for width 2 or for oblivious regular/permutation 1-BPs of bounded width.

- Can the result be achieved for any acceptance probability $\varepsilon>0$? (\times our result holds for $\varepsilon>5 / 6$)
- Can the technique be extended to width 4 or to bounded width ?

