
Three Analog Neurons Are Turing Universal

Jǐŕı Š́ıma

Institute of Computer Science
Czech Academy of Sciences

(Artificial) Neural Networks (NNs)

1. mathematical models of biological neural networks

• simulating and understanding the brain (The Human Brain Project)

• modeling cognitive functions

2. computing devices alternative to conventional computers

already first computer designers sought their inspiration in the human brain
(e.g., neurocomputer due to Minsky, 1951)

• common tools in machine learning or data mining (learning from training data)

• professional software implementations (e.g. Matlab, Statistica modules)

• successful commercial applications in AI (e.g. deep learning):

computer vision, pattern recognition, control, prediction, classification, robotics,
decision-making, signal processing, fault detection, diagnostics, etc.

The Neural Network Model – Architecture

s computational units (neurons), indexed as V = {1, . . . , s}, connected into
a directed graph (V,A) where A ⊆ V × V

The Neural Network Model – Weights

each edge (i, j) ∈ A from unit i to j is labeled with a real weight wji ∈ R

The Neural Network Model – Zero Weights

each edge (i, j) ∈ A from unit i to j is labeled with a real weight wji ∈ R
(wki = 0 iff (i, k) /∈ A)

The Neural Network Model – Biases

each neuron j ∈ V is associated with a real bias wj0 ∈ R
(i.e. a weight of (0, j) ∈ A from an additional formal neuron 0 ∈ V)

Discrete-Time Computational Dynamics – Network State

the evolution of global network state (output) y(t) = (y
(t)
1 , . . . , y

(t)
s) ∈ [0, 1]s

at discrete time instant t = 0, 1, 2, . . .

Discrete-Time Computational Dynamics – Initial State

t = 0 : initial network state y(0) ∈ {0, 1}s

Discrete-Time Computational Dynamics: t = 1

t = 1 : network state y(1) ∈ [0, 1]s

Discrete-Time Computational Dynamics: t = 2

t = 2 : network state y(2) ∈ [0, 1]s

Discrete-Time Computational Dynamics – Excitations

at discrete time instant t ≥ 0, an excitation is computed as

ξ
(t)
j = wj0+

s∑
i=1

wjiy
(t)
i =

s∑
i=0

wjiy
(t)
i

for j = 1, . . . , s

where unit 0 ∈ V has constant output y
(t)
0 ≡ 1 for every t ≥ 0

Discrete-Time Computational Dynamics – Outputs

at the next time instant t+ 1, every neuron j ∈ V updates its state:

(fully parallel mode)

y
(t+1)
j = σj

(
ξ

(t)
j

)
for j = 1, . . . , s

where σj : R −→ [0, 1]

is an activation function, e.g.

the saturated-linear function σ,

σ(ξ) =

 1 for ξ ≥ 1
ξ for 0 < ξ < 1
0 for ξ ≤ 0

The Computational Power of NNs – Motivations

• the potential and limits of general-purpose computation with NNs:

What is ultimately or efficiently computable by particular NN models?

• idealized mathematical models of practical NNs which abstract away from
implementation issues, e.g. analog numerical parameters are true real numbers

• methodology: the computational power and efficiency of NNs is investigated
by comparing formal NNs to traditional computational models such as finite
automata, Turing machines, Boolean circuits, etc.

• NNs may serve as reference models for analyzing alternative computational
resources (other than time or memory space) such as analog state, continuous
time, energy, temporal coding, etc.

• NNs capture basic characteristics of biological nervous systems (plenty of
densely interconnected simple unreliable computational units)

−→ computational principles of mental processes

Neural Networks As Formal Language Acceptors

language (problem) L ⊆ Σ∗ over a finite alphabet Σ

y
(T (n))
out =

{
1 if x ∈ L
0 if x /∈ L y

(t)
halt =

{
1 if t = T (n)
0 if t 6= T (n)

Y = {out, halt} output neurons

T (n) is the computational time
in terms of input length n ≥ 0

online I/O: T (n) = nd

d ≥ 1 is the time overhead for
processing a single input symbol

X = enum(Σ) ⊆ V
input neuronsx y(d(i−1))

j = 1 iff j = enum(xi)

x = x1x2 . . . xi−1 ←− xi ←− xi+1xi+2 . . . xn ∈ Σ∗ input word

The Computational Power of Neural Networks

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)

2. rational weights: Turing machine (Siegelmann, Sontag, 1995)

polynomial time ≡ complexity class P

3. arbitrary real weights: “super-Turing” computation (Siegelmann, Sontag, 1994)

polynomial time ≡ nonuniform complexity class P/poly

exponential time ≡ any I/O mapping

The Computational Power of Neural Networks

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)

2. rational weights: Turing machine (Siegelmann, Sontag, 1995)

polynomial time ≡ complexity class P

polynomial time & increasing Kolmogorov complexity of real weights ≡
a proper hierarchy of nonuniform complexity classes between P and P/poly

(Balcázar, Gavaldà, Siegelmann, 1997)

3. arbitrary real weights: “super-Turing” computation (Siegelmann, Sontag, 1994)

polynomial time ≡ nonuniform complexity class P/poly

exponential time ≡ any I/O mapping

The Computational Power of Neural Networks

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)

a gap between integer a rational weights w.r.t. the Chomsky hierarchy

regular (Type-3) × recursively enumerable (Type-0) languages

2. rational weights: Turing machine (Siegelmann, Sontag, 1995)

polynomial time ≡ complexity class P

polynomial time & increasing Kolmogorov complexity of real weights ≡
a proper hierarchy of nonuniform complexity classes between P and P/poly

(Balcázar, Gavaldà, Siegelmann, 1997)

3. arbitrary real weights: “super-Turing” computation (Siegelmann, Sontag, 1994)

polynomial time ≡ nonuniform complexity class P/poly

exponential time ≡ any I/O mapping

Between Integer and Rational Weights

25 neurons with rational weights can implement any Turing machine (Indyk,1995)

?? What is the computational power of a few extra analog neurons ??

A Neural Network with c Extra Analog Neurons (cANN)

is composed of binary-state neurons with the Heaviside activation function except
for the first c analog-state units with the saturated-linear activation function:

σj(ξ) =


σ(ξ) =

 1 for ξ ≥ 1
ξ for 0 < ξ < 1
0 for ξ ≤ 0

j = 1, . . . , c
saturated-linear
function

H(ξ) =

{
1 for ξ ≥ 0
0 for ξ < 0

j = c+ 1, . . . , s
Heaviside
function

cANN with Rational Weights

w.l.o.g.: all the weights to neurons are integers except for the first c units with
rational weights:

wji ∈
{
Q j = 1, . . . , c
Z j = c+ 1, . . . , s

i ∈ {0, . . . , s}

1ANNs & the Chomsky Hierarchy

rational-weight NNs ≡ TMs ≡ recursively enumerable languages (Type-0)

online 1ANNs ⊂ LBA ≡ context-sensitive languages (Type-1)

1ANNs 6⊂ PDA ≡ context-free languages (Type-2)

integer-weight NNs ≡ “quasi-periodic” 1ANNs ≡ FA ≡ regular languages (Type-3)

Non-Standard Positional Numeral Systems

• a real base (radix) β such that |β| > 1

• a finite set A 6= ∅ of real digits

β-expansion of a real number x ∈ R using the digits from ak ∈ A, k ≥ 1:

x = (0 . a1 a2 a3 . . .)β =
∞∑
k=1

akβ
−k

Examples:

• decimal expansions: β = 10, A = {0, 1, 2, . . . , 9}
3
4

= (0 . 74 9)10 = 7 · 10−1 + 5 · 10−2 + 9 · 10−3 + 9 · 10−4 + · · ·
any number has at most 2 decimal expansions, e.g. (0 . 74 9)10 = (0 . 75 0)10

• non-integer base: β = 5
2

, A =
{
0, 1

2
, 7

4

}
3
4

=
(
0 . 7

4
1
2

0 7
4

0
)

5
2

= 7
4
·
(

5
2

)−1
+ 1

2
·
(

5
2

)−2
+0 ·

(
5
2

)−3
+ 7

4
·
(

5
2

)−4
+ · · ·

most of the representable numbers has a continuum of distinct β-expansions,

e.g. 3
4

=
(
0 . 7

4
1
2

1
2
. . . 1

2
0
)

5
2

Quasi-Periodic β-Expansion

eventually periodic β-expansions:(
0 . a1 . . . am1︸ ︷︷ ︸

preperiodic

am1+1 . . . am2︸ ︷︷ ︸
repetend

)
β

(
e.g. 19

55
= (0 . 3 45)10

)
part

eventually quasi-periodic β-expansions:(
0 . a1 . . . am1︸ ︷︷ ︸

preperiodic

am1+1 . . . am2︸ ︷︷ ︸
quasi-repetend

am2+1 . . . am3︸ ︷︷ ︸
quasi-repetend

am3+1 . . . am4︸ ︷︷ ︸
quasi-repetend

. . .
)
β

part
such that(

0 . am1+1 . . . am2

)
β

=
(
0 . am2+1 . . . am3

)
β

=
(
0 . am3+1 . . . am4

)
β

= · · ·

Example: the plastic β ≈ 1.324718 (β3 − β − 1 = 0), A = {0, 1}

1 = (0 . 0 100︸︷︷︸ 0 011 011 1︸ ︷︷ ︸ 0 011 1︸ ︷︷ ︸ 100︸︷︷︸ . . .)β
with quasi-repetends: (0 . 100)β = (0 . 0(011)i1)β = β for every i ≥ 1

Quasi-Periodic Numbers

r ∈ R is a β-quasi-periodic number within A if every β-expansions of r is
eventually quasi-periodic

Examples:

• r from the complement of the Cantor set is 3-quasi-periodic within A = {0, 2}
(r has no β-expansion at all)

• r = 3
4

is 5
2

-quasi-periodic within A =
{
0 , 1

2
, 7

4

}
• r = 1 is β-quasi-periodic withinA = {0, 1} for the plastic β ≈ 1.324718

• r ∈ Q(β) is β-quasi-periodic within A ⊂ Q(β) for Pisot β

(a real algebraic integer β > 1 whose all Galois conjugates β′ ∈ C satisfy |β′| < 1)

• r = 40
57

= (0 . 0 011)3
2

is not 3
2

-quasi-periodic within A = {0, 1}

(greedy 3
2

-expansion of 40
57

= (0 . 100000001 . . .)3
2

is not eventually periodic)

Regular 1ANNs

Theorem (Šı́ma, IJCNN 2017). Let N be a 1ANN such that the feedback
weight of its analog neuron satisfies 0 < |w11| < 1. Denote

β = 1
w11
, A =

{∑
i∈V \{1}

w1i
w11
yi

∣∣∣ y2, . . . , ys ∈ {0, 1}
}
∪ {0, β} ,

R =
{
−
∑

i∈V \{1}
wji
wj1
yi

∣∣∣ j ∈ V \ (X ∪ {1}) s.t. wj1 6= 0 ,

y2, . . . , ys ∈ {0, 1}
}
∪ {0, 1} .

If every r ∈ R is β-quasi-periodic within A, then N accepts a regular
language.

Corollary. LetN be a 1ANN such that β = 1
w11

is a Pisot number whereas

all the remaining weights are from Q(β). Then N accepts a regular language.

Examples: 1ANNs with rational weights + the feedback weight of analog neuron:

• w11 = 1/n for any integer n ∈ N

• w11 = 1/β for the plastic constant β =
3
√

9−
√

69+
3
√

9+
√

69
3√18

≈ 1.324718

• w11 = 1/ϕ for the golden ratio ϕ = 1+
√

5
2
≈ 1.618034

An Upper Bound on the Number of Analog Neurons

What is the number c of analog neurons to make the cANNs with
rational weights Turing-complete (universal) ?? (Indyk,1995: c ≤ 25)

Our main technical result: 3ANNs can simulate any Turing machine

Theorem. Given a Turing machine M that accepts a language L =
L(M) in time T (n), there is a 3ANN N with rational weights, which
accepts the same language L = L(N) in time O(T (n)).

−→ refining the analysis of cANNs within the Chomsky Hierarchy:

rational-weight 3ANNs ≡ TMs ≡ recursively enumerable languages (Type-0)

online 1ANNs ⊂ LBA ≡ context-sensitive languages (Type-1)

1ANNs 6⊂ PDA ≡ context-free languages (Type-2)

integer-weight NNs ≡ “quasi-periodic” 1ANNs ≡ FA ≡ regular languages (Type-3)

Idea of Proof – Stack Encoding

Turing machine ≡ 2-stack pushdown automaton (2PDA)

−→ an analog neuron implements a stack

the stack contents x1 . . . xn ∈ {0, 1}∗ is encoded by an analog state of a neuron
using Cantor-like set (Siegelmann, Sontag, 1995):

code(x1 . . . xn) =
n∑
i=1

2xi + 1

4i
∈ [0, 1]

that is, code(0x2 . . . xn) ∈
[

1
4
, 1

2

)
vs. code(1x2 . . . xn) ∈

[
3
4
, 1
)

code(00x3 . . . xn) ∈
[

5
16
, 6

16

)
vs. code(01x2 . . . xn) ∈

[
7
16
, 1

2

)
code(10x3 . . . xn) ∈

[
13
16
, 14

16

)
vs. code(11x2 . . . xn) ∈

[
15
16
, 1
)

etc.

Idea of Proof – Stack Operations

implementing the stack operations on s = code(x1 . . . xn) ∈ [0, 1] :

• top(s) = H(2s− 1) =

{
1 if s ≥ 1

2
i.e. s = code(1x2 . . . xn)

0 if s < 1
2

i.e. s = code(0x2 . . . xn)

• pop(s) = σ(4s− 2 top(s)− 1) = code(x2 . . . xn)

• push(s, b) = σ
(
s
4

+ 2b−1
4

)
= code(b x1 . . . xn) for b ∈ {0, 1}

Idea of Proof – 2PDA implementation by 3ANN

2 stacks are implemented by 2 analog neurons computing push and pop, respectively

−→ the 3rd analog neuron of 3ANN performs the swap operation

2 types of instructions depending on whether the push and pop operations apply
to the matching neurons:

1. short instruction: push(b); pop

2. long instruction: push(top); pop; swap; push(b); pop

+ a complicated synchronization of the fully parallel 3ANN 2

Conclusion & Open Problems

• We have refined the analysis of NNs with rational weights by showing that
3ANNs are Turing-complete.

• Are 1ANNs or 2ANNs Turing-complete?

conjecture: 1ANNs do not recognize the non-regular context-free languages
(CFL\REG) vs. CFL⊂2ANNs

• a necessary condition for a 1ANN to accept a regular language

• a proper hierarchy of NNs e.g. with increasing quasi-period of weights

