Three Analog Neurons Are Turing Universal

Jiří Šíma

Institute of Computer Science Czech Academy of Sciences

(Artificial) Neural Networks (NNs)

- 1. mathematical models of biological neural networks
 - simulating and understanding the brain (The Human Brain Project)
 - modeling cognitive functions
- 2. computing devices alternative to conventional computers
 already first computer designers sought their inspiration in the human brain (e.g., neurocomputer due to Minsky, 1951)
 - common tools in machine learning or data mining (learning from training data)
 - professional software implementations (e.g. Matlab, Statistica modules)
 - successful commercial applications in AI (e.g. deep learning): computer vision, pattern recognition, control, prediction, classification, robotics, decision-making, signal processing, fault detection, diagnostics, etc.

The Neural Network Model – Architecture

s computational units (neurons), indexed as $V = \{1, \ldots, s\}$, connected into a directed graph (V, A) where $A \subseteq V imes V$

The Neural Network Model – Weights

each edge $(i,j)\in A$ from unit i to j is labeled with a real weight $w_{ji}\in\mathbb{R}$

The Neural Network Model – Zero Weights

each edge $(i,j)\in A$ from unit i to j is labeled with a real weight $w_{ji}\in \mathbb{R}$ $(w_{ki}=0 ext{ iff } (i,k)
otin A)$

The Neural Network Model – Biases

each neuron $j \in V$ is associated with a real bias $w_{j0} \in \mathbb{R}$ (i.e. a weight of $(0,j) \in A$ from an additional formal neuron $0 \in V$)

Discrete-Time Computational Dynamics – Network State

the evolution of global network state (output) $\mathbf{y}^{(t)}=(y_1^{(t)},\ldots,y_s^{(t)})\in[0,1]^s$ at discrete time instant $t=0,1,2,\ldots$

Discrete-Time Computational Dynamics – Initial State

t=0 : initial network state $\mathbf{y}^{(0)} \in \{0,1\}^s$

Discrete-Time Computational Dynamics: t = 1

t=1 : network state $\mathbf{y}^{(1)}\in[0,1]^s$

Discrete-Time Computational Dynamics: t = 2

t=2 : network state $\mathbf{y}^{(2)}\in[0,1]^s$

Discrete-Time Computational Dynamics – Excitations

at discrete time instant $t \geq 0$, an excitation is computed as

where unit $0 \in V$ has constant output $y_0^{(t)} \equiv 1$ for every $t \geq 0$

Discrete-Time Computational Dynamics – Outputs

at the next time instant t+1, every neuron $j \in V$ updates its state: (fully parallel mode)

The Computational Power of NNs – Motivations

- the potential and limits of general-purpose computation with NNs: What is ultimately or efficiently computable by particular NN models?
- idealized mathematical models of practical NNs which abstract away from implementation issues, e.g. analog numerical parameters are true real numbers
- methodology: the computational power and efficiency of NNs is investigated by comparing formal NNs to traditional computational models such as finite automata, Turing machines, Boolean circuits, etc.
- NNs may serve as reference models for analyzing alternative computational resources (other than time or memory space) such as analog state, continuous time, energy, temporal coding, etc.
- NNs capture basic characteristics of biological nervous systems (plenty of densely interconnected simple unreliable computational units)

 \longrightarrow computational principles of mental processes

Neural Networks As Formal Language Acceptors

language (problem) $L \subseteq \Sigma^*$ over a finite alphabet Σ

The Computational Power of Neural Networks

depends on the information contents of weight parameters:

- 1. integer weights: finite automaton (Minsky, 1967)
- 2. rational weights: Turing machine (Siegelmann, Sontag, 1995) polynomial time \equiv complexity class P
- 3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time \equiv nonuniform complexity class P/poly exponential time \equiv any I/O mapping

The Computational Power of Neural Networks

depends on the information contents of weight parameters:

- 1. integer weights: finite automaton (Minsky, 1967)
- 2. rational weights: Turing machine (Siegelmann, Sontag, 1995) polynomial time \equiv complexity class P
 - polynomial time & increasing Kolmogorov complexity of real weights ≡
 a proper hierarchy of nonuniform complexity classes between P and P/poly
 (Balcázar, Gavaldà, Siegelmann, 1997)
- 3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time \equiv nonuniform complexity class P/poly exponential time \equiv any I/O mapping

The Computational Power of Neural Networks

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)

a gap between integer a rational weights w.r.t. the Chomsky hierarchy regular (Type-3) \times recursively enumerable (Type-0) languages

2. rational weights: Turing machine (Siegelmann, Sontag, 1995) polynomial time \equiv complexity class P

polynomial time & increasing Kolmogorov complexity of real weights ≡
a proper hierarchy of nonuniform complexity classes between P and P/poly
(Balcázar, Gavaldà, Siegelmann, 1997)

3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time \equiv nonuniform complexity class P/poly exponential time \equiv any I/O mapping

Between Integer and Rational Weights

25 neurons with rational weights can implement any Turing machine (Indyk, 1995)

?? What is the computational power of a few extra analog neurons ??

A Neural Network with c Extra Analog Neurons (cANN)

is composed of binary-state neurons with the Heaviside activation function except for the first c analog-state units with the saturated-linear activation function:

$$\sigma_{j}(\xi) = \begin{cases} \sigma(\xi) = \begin{cases} 1 & \text{for } \xi \geq 1 \\ \xi & \text{for } 0 < \xi < 1 \\ 0 & \text{for } \xi \leq 0 \end{cases} & j = 1, \dots, c & \text{function} \end{cases}$$

$$H(\xi) = \begin{cases} 1 & \text{for } \xi \geq 0 \\ 0 & \text{for } \xi < 0 \end{cases} & j = c + 1, \dots, s & \text{Heaviside function} \end{cases}$$

$$\int_{1}^{y} \int_{1}^{\sigma(\xi)} \int_{\xi}^{\sigma(\xi)} \int_{\xi}^{y} \int_{0}^{1} \int_{\xi}^{\eta(\xi)} \int_{\xi}^{y} \int_{0}^{\eta(\xi)} \int_{\xi}^{y} \int_{\xi}^{\eta(\xi)} \int_{\xi}^{\eta(\xi)} \int_{\xi}^{y} \int_{\xi}^{\eta(\xi)} \int_{\xi}^{\eta(\xi$$

cANN with Rational Weights

w.l.o.g.: all the weights to neurons are integers except for the first c units with rational weights:

1ANNs & the Chomsky Hierarchy

rational-weight NNs \equiv TMs \equiv recursively enumerable languages (Type-0)

online 1ANNs \subset LBA \equiv context-sensitive languages (Type-1)

1ANNs $\not\subset$ PDA \equiv context-free languages (Type-2)

integer-weight NNs \equiv "quasi-periodic" 1ANNs \equiv FA \equiv regular languages (Type-3)

Non-Standard Positional Numeral Systems

- ullet a real base (radix) eta such that |eta|>1
- a finite set $A \neq \emptyset$ of real digits

eta-expansion of a real number $x\in\mathbb{R}$ using the digits from $a_k\in A$, $k\geq 1$:

$$x=(0\,.\,a_1\,a_2\,a_3\,\ldots)_eta=\sum_{k=1}^\infty a_keta^{-k}$$

Examples:

- decimal expansions: $\beta = 10$, $A = \{0, 1, 2, \dots, 9\}$ $\frac{3}{4} = (0.74 \overline{9})_{10} = 7 \cdot 10^{-1} + 5 \cdot 10^{-2} + 9 \cdot 10^{-3} + 9 \cdot 10^{-4} + \cdots$ any number has at most 2 decimal expansions, e.g. $(0.74 \overline{9})_{10} = (0.75 \overline{0})_{10}$
- non-integer base: $\beta = \frac{5}{2}$, $A = \left\{0, \frac{1}{2}, \frac{7}{4}\right\}$ $\frac{3}{4} = \left(0 \cdot \frac{7}{4} \frac{1}{2} \cdot 0 \cdot \frac{7}{4} \cdot 0\right)_{\frac{5}{2}} = \frac{7}{4} \cdot \left(\frac{5}{2}\right)^{-1} + \frac{1}{2} \cdot \left(\frac{5}{2}\right)^{-2} + 0 \cdot \left(\frac{5}{2}\right)^{-3} + \frac{7}{4} \cdot \left(\frac{5}{2}\right)^{-4} + \cdots$ most of the representable numbers has a continuum of distinct β -expansions, e.g. $\frac{3}{4} = \left(0 \cdot \frac{7}{4} \cdot \frac{1}{2} \cdot$

Quasi-Periodic β -Expansion

eventually periodic β -expansions:

$$\begin{pmatrix} 0 \cdot \underbrace{a_1 \cdots a_{m_1}}_{\text{preperiodic}} \underbrace{\frac{a_{m_1+1} \cdots a_{m_2}}_{\text{repetend}}}_{\text{part}} \end{pmatrix}_{\beta} \qquad (\text{e.g.} \ \frac{19}{55} = (0 \cdot 3 \overline{45})_{10})$$

eventually quasi-periodic β -expansions:

$$\begin{pmatrix} 0 & \underbrace{a_1 \dots a_{m_1}}_{\text{preperiodic}} \underbrace{a_{m_1+1} \dots a_{m_2}}_{\text{quasi-repetend}} \underbrace{a_{m_2+1} \dots a_{m_3}}_{\text{quasi-repetend}} \underbrace{a_{m_3+1} \dots a_{m_4}}_{\text{quasi-repetend}} \dots \end{pmatrix}_{\beta}$$

$$\text{such that}$$

$$\begin{pmatrix} 0 & \overline{a_{m_1+1} \dots a_{m_2}} \end{pmatrix}_{\beta} = \begin{pmatrix} 0 & \overline{a_{m_2+1} \dots a_{m_3}} \end{pmatrix}_{\beta} = \begin{pmatrix} 0 & \overline{a_{m_3+1} \dots a_{m_4}} \end{pmatrix}_{\beta} = \cdots$$

$$\text{Example: the plastic } \beta \approx 1.324718 \quad (\beta^3 - \beta - 1 = 0), \quad A = \{0, 1\}$$

 $1 = (0.0 \ 100 \ 00110111 \ 00111 \ 100 \dots)_{\beta}$

with quasi-repetends: $(0.\overline{100})_{eta} = (0.\overline{0(011)^{i}1})_{eta} = eta$ for every $i \ge 1$

Quasi-Periodic Numbers

 $r \in \mathbb{R}$ is a eta-quasi-periodic number within A if every eta-expansions of r is eventually quasi-periodic

Examples:

• r from the complement of the Cantor set is 3-quasi-periodic within $A=\{0,2\}$ (r has no eta-expansion at all)

•
$$r=rac{3}{4}$$
 is $rac{5}{2}$ -quasi-periodic within $A=\left\{0\,,\,rac{1}{2}\,,\,rac{7}{4}
ight\}$

- r=1 is eta-quasi-periodic within $A=\{0,1\}$ for the plastic etapprox 1.324718
- $r \in \mathbb{Q}(\beta)$ is β -quasi-periodic within $A \subset \mathbb{Q}(\beta)$ for Pisot β (a real algebraic integer $\beta > 1$ whose all Galois conjugates $\beta' \in \mathbb{C}$ satisfy $|\beta'| < 1$)

•
$$r = \frac{40}{57} = (0.0\overline{011})_{\frac{3}{2}}$$
 is not $\frac{3}{2}$ -quasi-periodic within $A = \{0, 1\}$
(greedy $\frac{3}{2}$ -expansion of $\frac{40}{57} = (0.10000001...)_{\frac{3}{2}}$ is not eventually periodic)

Regular 1ANNs

Theorem (Šíma, IJCNN 2017). Let \mathcal{N} be a 1ANN such that the feedback weight of its analog neuron satisfies $0 < |w_{11}| < 1$. Denote

$$egin{aligned} eta &= rac{1}{w_{11}}\,, \quad m{A} = \left\{ \sum_{i \in V \setminus \{1\}} rac{w_{1i}}{w_{11}} y_i \,\Big| \,\, y_2, \dots, y_s \in \{0,1\}
ight\} \,\cup \, \{0,eta\}\,, \ m{R} &= \left\{ -\sum_{i \in V \setminus \{1\}} rac{w_{ji}}{w_{j1}} y_i \,\Big| \,\, j \in V \setminus (X \cup \{1\}) \,\, s.t. \,\, w_{j1}
eq 0\,, \ y_2, \dots, y_s \in \{0,1\}
ight\} \,\cup \, \{0,1\}\,. \end{aligned}$$

If every $r \in \mathbb{R}$ is β -quasi-periodic within A, then \mathcal{N} accepts a regular language.

Corollary. Let \mathcal{N} be a 1ANN such that $\boldsymbol{\beta} = \frac{1}{w_{11}}$ is a Pisot number whereas all the remaining weights are from $\mathbb{Q}(\boldsymbol{\beta})$. Then \mathcal{N} accepts a regular language.

Examples: 1ANNs with rational weights + the feedback weight of analog neuron:

•
$$w_{11}=1/n$$
 for any integer $n\in\mathbb{N}$

• $w_{11}=1/eta$ for the plastic constant $eta=rac{\sqrt[3]{9-\sqrt{69}}+\sqrt[3]{9+\sqrt{69}}}{\sqrt[3]{18}}pprox 1.324718$

•
$$w_{11} = 1/arphi$$
 for the golden ratio $arphi = rac{1+\sqrt{5}}{2} pprox 1.618034$

An Upper Bound on the Number of Analog Neurons

What is the number c of analog neurons to make the cANNs with rational weights Turing-complete (universal) ?? (Indyk, 1995: $c \leq 25$)

Our main technical result: 3ANNs can simulate any Turing machine

Theorem. Given a Turing machine \mathcal{M} that accepts a language $L = \mathcal{L}(\mathcal{M})$ in time T(n), there is a 3ANN \mathcal{N} with rational weights, which accepts the same language $L = \mathcal{L}(\mathcal{N})$ in time O(T(n)).

 \rightarrow refining the analysis of *c*ANNs within the Chomsky Hierarchy:

rational-weight $3ANNs \equiv TMs \equiv recursively$ enumerable languages (Type-0)

online 1ANNs \subset LBA \equiv context-sensitive languages (Type-1)

1ANNs $\not\subset$ PDA \equiv context-free languages (Type-2)

integer-weight NNs \equiv "quasi-periodic" 1ANNs \equiv FA \equiv regular languages (Type-3)

Idea of Proof – Stack Encoding

Turing machine \equiv 2-stack pushdown automaton (2PDA)

 \longrightarrow an analog neuron implements a stack

the stack contents $x_1 \dots x_n \in \{0, 1\}^*$ is encoded by an analog state of a neuron using Cantor-like set (Siegelmann, Sontag, 1995):

$$ext{code}(x_1\ldots x_n)=\sum_{i=1}^nrac{2x_i+1}{4^i}\in[0,1]$$

that is, $\operatorname{code}(0 \ x_2 \dots x_n) \in \left[\frac{1}{4}, \frac{1}{2}\right)$ vs. $\operatorname{code}(1 \ x_2 \dots x_n) \in \left[\frac{3}{4}, 1\right)$ $\operatorname{code}(00 \ x_3 \dots x_n) \in \left[\frac{5}{16}, \frac{6}{16}\right)$ vs. $\operatorname{code}(01 \ x_2 \dots x_n) \in \left[\frac{7}{16}, \frac{1}{2}\right)$ $\operatorname{code}(10 \ x_3 \dots x_n) \in \left[\frac{13}{16}, \frac{14}{16}\right)$ vs. $\operatorname{code}(11 \ x_2 \dots x_n) \in \left[\frac{15}{16}, 1\right)$ etc.

Idea of Proof – Stack Operations

implementing the stack operations on $\ s = ext{code}(x_1 \dots x_n) \in [0,1]$:

•
$$\operatorname{top}(s) = H(2s-1) = \left\{ egin{array}{ccc} 1 & ext{if } s \geq rac{1}{2} & ext{i.e. } s = \operatorname{code}(1\,x_2\ldots x_n) \\ 0 & ext{if } s < rac{1}{2} & ext{i.e. } s = \operatorname{code}(0\,x_2\ldots x_n) \end{array}
ight.$$

•
$$\operatorname{pop}(s) = \sigma(4s - 2\operatorname{top}(s) - 1) = \operatorname{code}(x_2 \dots x_n)$$

•
$$ext{push}(s, m{b}) = \sigma \Big(rac{s}{4} + rac{2m{b}-1}{4} \Big) = ext{code}(m{b} \, x_1 \dots x_n) \quad ext{for} \ m{b} \in \{0, 1\}$$

Idea of Proof – 2PDA implementation by 3ANN

2 stacks are implemented by 2 analog neurons computing push and pop, respectively

 \longrightarrow the 3rd analog neuron of 3ANN performs the swap operation

 ${\bf 2}$ types of instructions depending on whether the push and pop operations apply to the matching neurons:

- 1. short instruction: push(b); pop
- 2. long instruction: push(top); pop; swap; push(b); pop

+ a complicated synchronization of the fully parallel 3ANN

Conclusion & Open Problems

- We have refined the analysis of NNs with rational weights by showing that 3ANNs are Turing-complete.
- Are 1ANNs or 2ANNs Turing-complete?

conjecture: 1ANNs do not recognize the non-regular context-free languages (CFL\REG) vs. CFL \subset 2ANNs

- a necessary condition for a 1ANN to accept a regular language
- a proper hierarchy of NNs e.g. with increasing quasi-period of weights