# Three Analog Neurons Are Turing Universal 

Jiří Šíma



Institute of Computer Science
Czech Academy of Sciences

## (Artificial) Neural Networks (NNs)

1. mathematical models of biological neural networks

- simulating and understanding the brain (The Human Brain Project)
- modeling cognitive functions


## 2. computing devices alternative to conventional computers

already first computer designers sought their inspiration in the human brain (e.g., neurocomputer due to Minsky, 1951)

- common tools in machine learning or data mining (learning from training data)
- professional software implementations (e.g. Matlab, Statistica modules)
- successful commercial applications in AI (e.g. deep learning): computer vision, pattern recognition, control, prediction, classification, robotics, decision-making, signal processing, fault detection, diagnostics, etc.


## The Neural Network Model - Architecture

$s$ computational units (neurons), indexed as $V=\{1, \ldots, s\}$, connected into a directed graph $(\boldsymbol{V}, \boldsymbol{A})$ where $\boldsymbol{A} \subseteq \boldsymbol{V} \times \boldsymbol{V}$


## The Neural Network Model - Weights

each edge $(\boldsymbol{i}, \boldsymbol{j}) \in \boldsymbol{A}$ from unit $\boldsymbol{i}$ to $\boldsymbol{j}$ is labeled with a real weight $\boldsymbol{w}_{\boldsymbol{j} i} \in \mathbb{R}$


The Neural Network Model - Zero Weights
each edge $(\boldsymbol{i}, \boldsymbol{j}) \in \boldsymbol{A}$ from unit $\boldsymbol{i}$ to $\boldsymbol{j}$ is labeled with a real weight $\boldsymbol{w}_{\boldsymbol{j} i} \in \mathbb{R}$ ( $w_{k i}=0$ iff $\left.(i, k) \notin A\right)$


## The Neural Network Model - Biases

each neuron $\boldsymbol{j} \in \boldsymbol{V}$ is associated with a real bias $\boldsymbol{w}_{j 0} \in \mathbb{R}$
(i.e. a weight of $(0, j) \in \boldsymbol{A}$ from an additional formal neuron $0 \in \boldsymbol{V}$ )


## Discrete-Time Computational Dynamics - Network State

the evolution of global network state (output) $\mathbf{y}^{(t)}=\left(\boldsymbol{y}_{1}^{(t)}, \ldots, \boldsymbol{y}_{s}^{(t)}\right) \in[0,1]^{s}$ at discrete time instant $\boldsymbol{t}=\mathbf{0}, \mathbf{1}, 2, \ldots$


## Discrete-Time Computational Dynamics - Initial State

$t=0$ : initial network state $\mathbf{y}^{(0)} \in\{0,1\}^{s}$


## Discrete-Time Computational Dynamics: $\quad t=1$

$t=1$ : network state $\mathbf{y}^{(1)} \in[0,1]^{s}$


Discrete-Time Computational Dynamics: $\quad t=2$
$t=2$ : network state $\mathbf{y}^{(2)} \in[0,1]^{s}$


## Discrete-Time Computational Dynamics - Excitations

at discrete time instant $t \geq 0$, an excitation is computed as

where unit $\mathbf{0} \in \boldsymbol{V}$ has constant output $\boldsymbol{y}_{0}^{(t)} \equiv \mathbf{1}$ for every $\boldsymbol{t} \geq \mathbf{0}$

## Discrete-Time Computational Dynamics - Outputs

at the next time instant $t+1$, every neuron $\boldsymbol{j} \in \boldsymbol{V}$ updates its state:
(fully parallel mode)

$$
y_{j}^{(t+1)}=\sigma_{j}\left(\xi_{j}^{(t)}\right) \text { for } j=1, \ldots, s
$$

where $\sigma_{j}: \mathbb{R} \longrightarrow[0,1]$
is an activation function, e.g.
the saturated-linear function $\sigma$,

$$
\sigma(\xi)= \begin{cases}\mathbf{1} & \text { for } \boldsymbol{\xi} \geq 1 \\ \boldsymbol{\xi} & \text { for } 0<\boldsymbol{\xi}<\mathbf{1} \\ \mathbf{0} & \text { for } \boldsymbol{\xi} \leq 0\end{cases}
$$



## The Computational Power of NNs - Motivations

- the potential and limits of general-purpose computation with NNs:

What is ultimately or efficiently computable by particular NN models?

- idealized mathematical models of practical NNs which abstract away from implementation issues, e.g. analog numerical parameters are true real numbers
- methodology: the computational power and efficiency of NNs is investigated by comparing formal NNs to traditional computational models such as finite automata, Turing machines, Boolean circuits, etc.
- NNs may serve as reference models for analyzing alternative computational resources (other than time or memory space) such as analog state, continuous time, energy, temporal coding, etc.
- NNs capture basic characteristics of biological nervous systems (plenty of densely interconnected simple unreliable computational units)
$\longrightarrow$ computational principles of mental processes


## Neural Networks As Formal Language Acceptors

language (problem) $L \subseteq \boldsymbol{\Sigma}^{*}$ over a finite alphabet $\boldsymbol{\Sigma}$


## The Computational Power of Neural Networks

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)
2. rational weights: Turing machine (Siegelmann, Sontag, 1995)
polynomial time $\equiv$ complexity class $P$
3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time $\equiv$ nonuniform complexity class $P /$ poly exponential time $\equiv$ any I/O mapping

## The Computational Power of Neural Networks

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)
2. rational weights: Turing machine (Siegelmann, Sontag, 1995)
polynomial time $\equiv$ complexity class $P$
polynomial time \& increasing Kolmogorov complexity of real weights $\equiv$ a proper hierarchy of nonuniform complexity classes between $P$ and $P /$ poly (Balcázar, Gavaldà, Siegelmann, 1997)
3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time $\equiv$ nonuniform complexity class $\mathrm{P} /$ poly exponential time $\equiv$ any I/O mapping

## The Computational Power of Neural Networks

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)
a gap between integer a rational weights w.r.t. the Chomsky hierarchy regular (Type-3) $\times$ recursively enumerable (Type-0) languages
2. rational weights: Turing machine (Siegelmann, Sontag, 1995)
polynomial time $\equiv$ complexity class $P$
polynomial time \& increasing Kolmogorov complexity of real weights $\equiv$ a proper hierarchy of nonuniform complexity classes between $P$ and $P /$ poly (Balcázar, Gavaldà, Siegelmann, 1997)
3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time $\equiv$ nonuniform complexity class $\mathrm{P} /$ poly exponential time $\equiv$ any $\mathrm{I} / \mathrm{O}$ mapping

## Between Integer and Rational Weights

25 neurons with rational weights can implement any Turing machine (Indyk, 1995)
?? What is the computational power of a few extra analog neurons ??

## A Neural Network with $c$ Extra Analog Neurons (cANN)

is composed of binary-state neurons with the Heaviside activation function except for the first $\boldsymbol{c}$ analog-state units with the saturated-linear activation function:
$\sigma_{j}(\xi)=\left\{\begin{array}{lll}\sigma(\xi)=\left\{\begin{array}{lll}\mathbf{1} & \text { for } \xi \geq 1 \\ \boldsymbol{\xi} & \text { for } 0<\xi<1 \\ \mathbf{0} & \text { for } \xi \leq 0\end{array}\right. & j=1, \ldots, c & \text { saturated-linear } \\ \text { function }\end{array}\right] \begin{array}{lll}\boldsymbol{H}(\xi)=\left\{\begin{array}{lll}1 & \text { for } \xi \geq 0 \\ 0 & \text { for } \xi<0 & j=c+1, \ldots, s\end{array} \begin{array}{l}\text { Heaviside } \\ \text { function }\end{array}\right.\end{array}$



## cANN with Rational Weights

w.l.o.g.: all the weights to neurons are integers except for the first $\boldsymbol{c}$ units with rational weights:


## 1ANNs \& the Chomsky Hierarchy

rational-weight NNs $\equiv$ TMs $\equiv$ recursively enumerable languages (Type-0)
online 1 ANN s $\subset \mathrm{LBA} \equiv$ context-sensitive languages (Type-1)

1 ANNs $\not \subset \mathrm{PDA} \equiv$ context-free languages (Type-2)
integer-weight NNs $\equiv$ "quasi-periodic" $1 A N N s \equiv F A \equiv$ regular languages (Type-3)

## Non-Standard Positional Numeral Systems

- a real base (radix) $\beta$ such that $|\beta|>1$
- a finite set $\boldsymbol{A} \neq \emptyset$ of real digits
$\boldsymbol{\beta}$-expansion of a real number $\boldsymbol{x} \in \mathbb{R}$ using the digits from $\boldsymbol{a}_{k} \in \boldsymbol{A}, \boldsymbol{k} \geq \mathbf{1}$ :

$$
x=\left(0 . a_{1} a_{2} a_{3} \ldots\right)_{\beta}=\sum_{k=1}^{\infty} a_{k} \beta^{-k}
$$

## Examples:

- decimal expansions: $\beta=10, A=\{0,1,2, \ldots, 9\}$

$$
\frac{3}{4}=(0.74 \overline{9})_{10}=7 \cdot 10^{-1}+5 \cdot 10^{-2}+9 \cdot 10^{-3}+9 \cdot 10^{-4}+\cdots
$$

$$
\text { any number has at most } 2 \text { decimal expansions, e.g. }(0.74 \overline{9})_{10}=(0.75 \overline{0})_{10}
$$

- non-integer base: $\boldsymbol{\beta}=\frac{5}{2}, \boldsymbol{A}=\left\{0, \frac{1}{2}, \frac{7}{4}\right\}$

$$
\frac{3}{4}=\left(0 \cdot \frac{7}{4} \frac{1}{2} 0 \overline{\frac{7}{4} 0}\right)_{\frac{5}{2}}=\frac{7}{4} \cdot\left(\frac{5}{2}\right)^{-1}+\frac{1}{2} \cdot\left(\frac{5}{2}\right)^{-2}+0 \cdot\left(\frac{5}{2}\right)^{-3}+\frac{7}{4} \cdot\left(\frac{5}{2}\right)^{-4}+\cdots
$$

most of the representable numbers has a continuum of distinct $\boldsymbol{\beta}$-expansions, e.g. $\frac{3}{4}=\left(0 \cdot \overline{\frac{7}{4} \frac{1}{2} \frac{1}{2} \cdots \frac{1}{2} 0}\right)_{\frac{5}{2}}$

## Quasi-Periodic $\boldsymbol{\beta}$-Expansion

eventually periodic $\boldsymbol{\beta}$-expansions:

$$
(0 \cdot \underbrace{a_{1} \ldots a_{m_{1}}}_{\begin{array}{c}
\text { preperiodic } \\
\text { part }
\end{array}} \underbrace{\overline{a_{m_{1}+1} \cdots a_{m_{2}}}}_{\text {repetend }})_{\beta} \quad\left(\text { e.g. } \frac{19}{55}=(0.3 \overline{45})_{10}\right)
$$

eventually quasi-periodic $\boldsymbol{\beta}$-expansions:

$$
\begin{gathered}
(0 \cdot \underbrace{a_{1} \ldots a_{m_{1}}}_{\begin{array}{c}
\text { preperiodic } \\
\text { part }
\end{array}} \underbrace{a_{m_{1}+1} \ldots a_{m_{2}}}_{\text {quasi-repetend }} \underbrace{a_{m_{2}+1} \ldots a_{m_{3}}}_{\text {quasi-repetend }} \underbrace{\left.a_{m_{3}+1} \ldots a_{m_{1}} \ldots\right)_{\beta}}_{\text {quasi-repetend }} \\
\text { such that }
\end{gathered}
$$

$\left(0 . \overline{a_{m_{1}+1} \ldots a_{m_{2}}}\right)_{\beta}=\left(0 . \overline{a_{m_{2}+1} \ldots a_{m_{3}}}\right)_{\beta}=\left(0 . \overline{a_{m_{3}+1} \ldots a_{m_{4}}}\right)_{\beta}=\cdots$
Example: the plastic $\beta \approx 1.324718\left(\beta^{3}-\beta-1=0\right), \quad A=\{0,1\}$

$$
1=(0.0 \underbrace{100} \underbrace{00110111} \underbrace{00111} \underbrace{100} \ldots)_{\beta}
$$

with quasi-repetends: $(\mathbf{0 .} \overline{\mathbf{1 0 0}})_{\beta}=\left(0 . \overline{0(011)^{i} 1}\right)_{\beta}=\beta$ for every $\boldsymbol{i} \geq \mathbf{1}$

## Quasi-Periodic Numbers

$\boldsymbol{r} \in \mathbb{R}$ is a $\boldsymbol{\beta}$-quasi-periodic number within $\boldsymbol{A}$ if every $\boldsymbol{\beta}$-expansions of $\boldsymbol{r}$ is eventually quasi-periodic

## Examples:

- $r$ from the complement of the Cantor set is 3 -quasi-periodic within $A=\{0,2\}$ ( $\boldsymbol{r}$ has no $\boldsymbol{\beta}$-expansion at all)
- $r=\frac{3}{4}$ is $\frac{5}{2}$-quasi-periodic within $A=\left\{0, \frac{1}{2}, \frac{7}{4}\right\}$
- $r=1$ is $\beta$-quasi-periodic within $A=\{0,1\}$ for the plastic $\beta \approx 1.324718$
- $r \in \mathbb{Q}(\boldsymbol{\beta})$ is $\boldsymbol{\beta}$-quasi-periodic within $\boldsymbol{A} \subset \mathbb{Q}(\boldsymbol{\beta})$ for Pisot $\boldsymbol{\beta}$
(a real algebraic integer $\beta>1$ whose all Galois conjugates $\beta^{\prime} \in \mathbb{C}$ satisfy $\left|\beta^{\prime}\right|<1$ )
- $r=\frac{40}{57}=(0.0 \overline{011})_{\frac{3}{2}}$ is not $\frac{3}{2}$-quasi-periodic within $A=\{0,1\}$
(greedy $\frac{3}{2}$-expansion of $\frac{40}{57}=(0.100000001 \ldots)_{\frac{3}{2}}$ is not eventually periodic)


## Regular 1ANNs

Theorem (Šíma, IJCNN 2017). Let $\boldsymbol{\mathcal { N }}$ be a 1ANN such that the feedback weight of its analog neuron satisfies $0<\left|\boldsymbol{w}_{11}\right|<1$. Denote

$$
\begin{array}{r}
\beta=\frac{1}{w_{11}}, \quad A=\left\{\left.\sum_{i \in V \backslash\{1\}} \frac{w_{1 i}}{w_{11}} y_{i} \right\rvert\, y_{2}, \ldots, y_{s} \in\{0,1\}\right\} \cup\{0, \beta\}, \\
R=\left\{\left.-\sum_{i \in V \backslash\{1\}} \frac{w_{j i}}{w_{j 1}} y_{i} \right\rvert\, j \in V \backslash(X \cup\{1\}) \text { s.t. } w_{j 1} \neq 0,\right. \\
\left.y_{2}, \ldots, y_{s} \in\{0,1\}\right\} \cup\{0,1\} .
\end{array}
$$

If every $\boldsymbol{r} \in \boldsymbol{R}$ is $\boldsymbol{\beta}$-quasi-periodic within $\boldsymbol{A}$, then $\boldsymbol{\mathcal { N }}$ accepts a regular language.

Corollary. Let $\boldsymbol{\mathcal { N }}$ be a 1 ANN such that $\boldsymbol{\beta}=\frac{1}{w_{11}}$ is a Pisot number whereas all the remaining weights are from $\mathbb{Q}(\boldsymbol{\beta})$. Then $\mathcal{N}$ accepts a regular language.

Examples: 1ANNs with rational weights + the feedback weight of analog neuron:

- $w_{11}=1 / n$ for any integer $n \in \mathbb{N}$
- $w_{11}=1 / \beta$ for the plastic constant $\beta=\frac{\sqrt[3]{9-\sqrt{6}}+\sqrt[3]{9+\sqrt{69}}}{\sqrt[3]{18}} \approx 1.324718$
- $w_{11}=1 / \varphi$ for the golden ratio $\varphi=\frac{1+\sqrt{5}}{2} \approx 1.618034$


## An Upper Bound on the Number of Analog Neurons

What is the number $c$ of analog neurons to make the cANNs with rational weights Turing-complete (universal) ?? (Indyk, 1995: $c \leq 25$ )

Our main technical result: 3ANNs can simulate any Turing machine
Theorem. Given a Turing machine $\mathcal{M}$ that accepts a language $\boldsymbol{L}=$ $\mathcal{L}(\boldsymbol{\mathcal { M }})$ in time $\boldsymbol{T}(\boldsymbol{n})$, there is a $3 A N N \mathcal{N}$ with rational weights, which accepts the same language $\boldsymbol{L}=\mathcal{L}(\mathcal{N})$ in time $\boldsymbol{O}(\boldsymbol{T}(\boldsymbol{n}))$.
$\longrightarrow$ refining the analysis of $c A N N s$ within the Chomsky Hierarchy:
rational-weight 3ANNs $\equiv$ TMs $\equiv$ recursively enumerable languages (Type-0) online 1 ANNs $\subset$ LBA $\equiv$ context-sensitive languages (Type-1)

$$
\text { 1ANNs } \not \subset \text { PDA } \equiv \text { context-free languages (Type-2) }
$$

integer-weight NNs $\equiv$ "quasi-periodic" 1 ANNs $\equiv$ FA $\equiv$ regular languages (Type-3)

## Idea of Proof - Stack Encoding

Turing machine $\equiv$ 2-stack pushdown automaton (2PDA)
$\longrightarrow$ an analog neuron implements a stack
the stack contents $\boldsymbol{x}_{\mathbf{1}} \ldots \boldsymbol{x}_{\boldsymbol{n}} \in\{0,1\}^{*}$ is encoded by an analog state of a neuron using Cantor-like set (Siegelmann, Sontag, 1995):

$$
\operatorname{code}\left(x_{1} \ldots x_{n}\right)=\sum_{i=1}^{n} \frac{2 x_{i}+1}{4^{i}} \in[0,1]
$$

that is, $\operatorname{code}\left(0 \boldsymbol{x}_{2} \ldots \boldsymbol{x}_{\boldsymbol{n}}\right) \in\left[\frac{1}{4}, \frac{1}{2}\right)$ vs. $\operatorname{code}\left(1 \boldsymbol{x}_{\boldsymbol{2}} \ldots \boldsymbol{x}_{\boldsymbol{n}}\right) \in\left[\frac{3}{4}, \mathbf{1}\right)$

$$
\begin{aligned}
& \operatorname{code}\left(00 x_{3} \ldots x_{n}\right) \in\left[\frac{5}{16}, \frac{6}{16}\right) \text { vs. code }\left(01 x_{2} \ldots x_{n}\right) \in\left[\frac{7}{16}, \frac{1}{2}\right) \\
& \operatorname{code}\left(10 x_{3} \ldots x_{n}\right) \in\left[\frac{13}{16}, \frac{14}{16}\right) \text { vs. } \operatorname{code}\left(11 x_{2} \ldots x_{n}\right) \in\left[\frac{15}{16}, 1\right) \quad \text { etc. }
\end{aligned}
$$



## Idea of Proof - Stack Operations

implementing the stack operations on $s=\operatorname{code}\left(\boldsymbol{x}_{\mathbf{1}} \ldots \boldsymbol{x}_{\boldsymbol{n}}\right) \in[\mathbf{0}, \mathbf{1}]$ :

- $\operatorname{top}(s)=\boldsymbol{H}(2 s-1)= \begin{cases}1 & \text { if } s \geq \frac{1}{2} \text { i.e. } s=\operatorname{code}\left(1 x_{2} \ldots x_{n}\right) \\ 0 & \text { if } s<\frac{1}{2} \text { i.e. } s=\operatorname{code}\left(0 x_{2} \ldots x_{n}\right)\end{cases}$

- $\operatorname{pop}(s)=\sigma(4 s-2 \operatorname{top}(s)-1)=\operatorname{code}\left(x_{2} \ldots x_{n}\right)$

- $\operatorname{push}(s, b)=\sigma\left(\frac{s}{4}+\frac{2 b-1}{4}\right)=\operatorname{code}\left(b x_{1} \ldots x_{n}\right) \quad$ for $b \in\{0,1\}$



## Idea of Proof - 2PDA implementation by 3ANN

2 stacks are implemented by 2 analog neurons computing push and pop, respectively
$\longrightarrow$ the 3rd analog neuron of 3ANN performs the swap operation


2 types of instructions depending on whether the push and pop operations apply to the matching neurons:

1. short instruction:
push(b); pop
2. long instruction: push(top); pop; swap; push(b); pop

+ a complicated synchronization of the fully parallel 3ANN


## Conclusion \& Open Problems

- We have refined the analysis of NNs with rational weights by showing that 3ANNs are Turing-complete.
- Are 1ANNs or 2ANNs Turing-complete? conjecture: 1ANNs do not recognize the non-regular context-free languages (CFL\REG) vs. CFLC2ANNs
- a necessary condition for a 1ANN to accept a regular language
- a proper hierarchy of NNs e.g. with increasing quasi-period of weights

