Three Analog Neurons Are Turing Universal

Jiti Sima

__ Institute of Computer Science

. Czech Academy of Sciences

(Artificial) Neural Networks (NNs)

1. mathematical models of biological neural networks
e simulating and understanding the brain (The Human Brain Project)

e modeling cognitive functions

2. computing devices alternative to conventional computers

already first computer designers sought their inspiration in the human brain
(e.g., neurocomputer due to Minsky, 1951)

e common tools in machine learning or data mining (learning from training data)
e professional software implementations (e.g. Matlab, Statistica modules)

e successful commercial applications in Al (e.g. deep learning):

computer vision, pattern recognition, control, prediction, classification, robotics,
decision-making, signal processing, fault detection, diagnostics, etc.

The Neural Network Model — Architecture

s computational units (neurons), indexed as V' = {1,..., s}, connected into

a directed graph (V, A) where A CV XV

The Neural Network Model — Weights

each edge (¢,7) € A from unit ¢ to j is labeled with a real weight w;; € R

O O

The Neural Network Model — Zero Weights

each edge (¢,7) € A from unit ¢ to j is labeled with a real weight w;; € R

OO

The Neural Network Model — Biases

each neuron 7 € V is associated with a real bias wjp € R
(i.e. a weight of (0,7) € A from an additional formal neuron 0 € V)

w

[t

®
¢ o W..
00 O

0

Discrete-Time Computational Dynamics — Network State

the evolution of global network state (output) y®*) = (yit), .y e 0,18

at discrete time instant £ = 0,1, 2,...

()

y“€[0,1]

}g (t) f y, (t)
y (t)

clNellNe

Discrete-Time Computational Dynamics — Initial State

t = 0: initial network state y(®) € {0,1}*

NG

yj () | ys (v}
y ()

o & o

Discrete-Time Computational Dynamics: t =1

t = 1: network state y(!) € [0, 1]*

¢ o

yim © y)
® - 6
yo

o & o

Discrete-Time Computational Dynamics: t = 2

t = 2: network state y(3) € [0, 1]*

¢ ¢

PRI
B gw‘ i -
o O o

Discrete-Time Computational Dynamics — Excitations

at discrete time instant £ > 0, an excitation is computed as

53(-t) = wjo-l-z 'wjz'yz(t) = Z wjz'yz(t)
i=0

OO

for g =1,...,s

o O O

where unit 0 € V' has constant output y(()t) = 1foreveryt > 0

Discrete-Time Computational Dynamics — Outputs

at the next time instant £ + 1, every neuron 3 € V updates its state:
(fully parallel mode)

y§t+1) (5()> forg =1,...,s

O Q where o; : R — [0, 1]

ye is an activation function, e.g.

the saturated-linear function o,
O O 1 forg>1

6 c(6) =4 ¢ for0< ¢ <1
Q 0 forE <0

- y
O 0O O (I
- —

The Computational Power of NNs — Motivations

e the potential and limits of general-purpose computation with NNs:

What is ultimately or efficiently computable by particular NN models?

e idealized mathematical models of practical NNs which abstract away from
implementation issues, e.g. analog numerical parameters are true real numbers

e methodology: the computational power and efficiency of NNs is investigated
by comparing formal NNs to traditional computational models such as finite
automata, Turing machines, Boolean circuits, etc.

e NNs may serve as reference models for analyzing alternative computational
resources (other than time or memory space) such as analog state, continuous
time, energy, temporal coding, etc.

e NNs capture basic characteristics of biological nervous systems (plenty of
densely interconnected simple unreliable computational units)

— computational principles of mental processes

Neural Networks As Formal Language Acceptors

language (problem) L C X* over a finite alphabet X

T)) [1ifxelL @ [1ift=T(n)
out 0ifxg L Jhlt ™) 0ift #£T(n)

4 4
Y Y = {out, halt} output neurons

T (n) isthe computational time
Q in terms of input length n > 0

O Q online 1/0: T (n) = nd
O O d > 1 is the time overhead for

processing a single input symbol

C@ 6 éD X X=ewm(Z)CV

Input neurons

T y§d(i_1)) =1 iff 3 = enum(x;)

X = X1T2...Lj—1 $— &Tj — Tij11Tj12...LTyn € X* input word

The Computational Power of Neural Networks

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)

2. rational weights: Turing machine (Siegelmann, Sontag, 1995)

polynomial time = complexity class P

3. arbitrary real weights: “super-Turing” computation (Siegelmann, Sontag, 1994)
polynomial time = nonuniform complexity class P/poly

exponential time = any |/O mapping

The Computational Power of Neural Networks

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)

2. rational weights: Turing machine (Siegelmann, Sontag, 1995)

polynomial time = complexity class P

polynomial time & increasing Kolmogorov complexity of real weights =
a proper hierarchy of nonuniform complexity classes between P and P/poly

(Balcazar, Gavalda, Siegelmann, 1997)

3. arbitrary real weights: “super-Turing” computation (Siegelmann, Sontag, 1994)

polynomial time = nonuniform complexity class P/poly

exponential time = any |/O mapping

The Computational Power of Neural Networks

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)

a gap between integer a rational weights w.r.t. the Chomsky hierarchy

regular (Type-3) X recursively enumerable (Type-0) languages

2. rational weights: Turing machine (Siegelmann, Sontag, 1995)

polynomial time = complexity class P

polynomial time & increasing Kolmogorov complexity of real weights =

a proper hierarchy of nonuniform complexity classes between P and P/poly

(Balcdzar, Gavalda, Siegelmann, 1997)

3. arbitrary real weights: “super-Turing” computation (Siegelmann, Sontag, 1994)

polynomial time = nonuniform complexity class P/poly

exponential time = any |/O mapping

Between Integer and Rational Weights
25 neurons with rational weights can implement any Turing machine (Indyk, 1995)
?7? What is the computational power of a few extra analog neurons ?7?

A Neural Network with ¢ Extra Analog Neurons (cANN)

is composed of binary-state neurons with the Heaviside activation function except
for the first ¢ analog-state units with the saturated-linear activation function:

(1 for§ >1 saturated-linear
o(f)=4¢ & for0<E<1 1=1,...,c function
0 foreE<O0
a;(§) = 1 €<
1 for€ >0 : Heaviside
H = — = 1,...
X (&) { 0 for§ <O J=et 1 8 function

y A\

a(§) 1

cANN with Rational Weights

w.l.o.g.: all the weights to neurons are integers except for the first ¢ units with
rational weights:

3 Q g=1,...,c
O wﬂE{Z j=c+1,...,8
O\w i€ {0,...,s}

a/s

1ANNs & the Chomsky Hierarchy

rational-weight NNs = TMs = recursively enumerable languages (Type-0)
online 1ANNs C LBA = context-sensitive languages (Type-1)
1ANNs ¢ PDA = context-free languages (Type-2)

integer-weight NNs = *“quasi-periodic” 1ANNs = FA = regular languages (Type-3)

Non-Standard Positional Numeral Systems

e a real base (radix) B such that |3| > 1
e a finite set A #£ 0 of real digits

(3-expansion of a real number & € R using the digits fromar € A, k > 1:

x=(0.a1a2a3...)g = Zakﬁ_k
k=1

Examples:
e decimal expansions: 3 = 10, A = {0,1,2,...,9}
%: (0.749)1p=7-10714+5.107%24+9-1024+9-10"* + - ..
any number has at most 2 decimal expansions, e.g. (0.749)19 = (0.750)1¢

e non-integer base: 3 = g A= {Oa %9 %}

3 __ T71a7a) — 7 (5\" 1,1 (5\—2 5\"3 ;| 7 (5\ 4

1= (0-1501(05 =1 +32-G) H0-G) T+ +e
2

most of the representable numbers has a continuum of distinct 3-expansions,

3 711 1
€.g. 1 (O.Z§§ e oo 50)g

Quasi-Periodic 3-Expansion

eventually periodic (3-expansions:

(O e Q1 o Qmy Gyt - - - am%)ﬁ (e.g. % = (0. SE)N)
preperiodic repetend
part

eventually quasi-periodic 3-expansions:

(0. \a/]_oooamL\a/ml_i_loooaxm%g/mz_i_]_oooami\a/m3_|_1oooa/m$ooo)IB

preperiodic quasi-repetend quasi-repetend quasi-repetend
part
such that

(O.am1+1...am2)ﬁ: (O.am2_|_1...a,m3)ﬁz (O.am3_|_1...a,m4)5:---

Example: the plastic 3 =~ 1.324718 (3° —3—1=0), A= {0,1}

1=(0.0 100 QOlwll 1, QOil 1, 100,....)s

with quasi-repetends: (0.100)g = (0.0(011)'1)3 = 3 forevery i > 1

Quasi-Periodic Numbers

r € R is a 3-quasi-periodic number within A if every (3-expansions of 7 is
eventually quasi-periodic

Examples:

e 1 from the complement of the Cantor set is 3-quasi-periodic within A = {0, 2}

(7 has no B3-expansion at all)

o r — % is g-quasi—periodic within A = {0 ’ %7 Z}

e r = 1 is (-quasi-periodic within A = {0, 1} for the plastic 8 ~ 1.324718

e r € Q(B) is PB-quasi-periodic within A C Q(3) for Pisot 3
(a real algebraic integer 3 > 1 whose all Galois conjugates 3’ € C satisfy |3'| < 1)

o = % = (0. 0011)% is not g—quasi—periodic within A = {0, 1}

(greedy 3-expansion of % = (0.100000001 ..)% is not eventually periodic)

Regular 1ANNSs

Theorem (Sima, IJCNN 2017). Let N be a IANN such that the feedback
weight of its analog neuron satisfies 0 < |wy1| < 1. Denote

.y €{0,1}} U {0, 8},
S.T. W1 #O

Y2y.--,Ys € {091}} u {0,1}.

If every » € R is (3-quasi-periodic within A, then N accepts a reqular
language.

_ 1 _ w1
=an A= {ZzEV\{l} wyy Vi

R = {_ ZzEV\{l} w; y

Corollary. Let N be a 1ANN such that 3 = —— is a Pisot number whereas
all the remaining weights are from Q(3). Then N accepts a reqular language.

Examples: 1ANNs with rational weights + the feedback weight of analog neuron:

e wy; = 1/n for any integer n € N

3 3
e wy; = 1/3 for the plastic constant 3 = Vs 6?),+ V9469 ~ 1.324718
V18

e wy; = 1/¢p for the golden ratio ¢ = % ~ 1.618034

An Upper Bound on the Number of Analog Neurons

What is the number c of analog neurons to make the cANNs with
rational weights Turing-complete (universal) ?? (Indyk,1995: ¢ < 25)

Our main technical result: 3ANNSs can simulate any Turing machine

Theorem. Given a Turing machine M that accepts a language L =
L(M) in time T(n), there is a SANN N with rational weights, which

accepts the same language L = L(N') in time O(T (n)).

—— refining the analysis of cANNs within the Chomsky Hierarchy:

rational-weight 3ANNs = TMs = recursively enumerable languages (Type-0)
online 1ANNs C LBA = context-sensitive languages (Type-1)

1ANNs ¢ PDA = context-free languages (Type-2)

integer-weight NNs = “quasi-periodic” 1ANNs = FA = regular languages (Type-3)

Idea of Proof — Stack Encoding

Turing machine = 2-stack pushdown automaton (2PDA)

— an analog neuron implements a stack

the stack contents @y ...x, € {0,1}* isencoded by an analog state of a neuron
using Cantor-like set (Siegelmann, Sontag, 1995):

code(Ty ... Tn) = € [0, 1]

=1

that is, code(0x2...x,) € [5,5) vs. code(l@a...xy) € [F,1)

code(00x3...x,) € [1—56 , %) vs. code(01xz...x,) € [1—76 , %)

code(10@s...xy,) € [{5,75) vs. code(ll@y...xy,) € [{2,1) etc.

00... O1... 10... 11...
1 5 6 7 1 3 13 14 15
0 4 16 16 16 2 4 16 16 16 1

Idea of Proof — Stack Operations

implementing the stack operations on s = code(®y...x,) € [0,1]:

1 ifs>= ie.s=code(lxy...x,)

N= DN

e top(s) = H(2s—1) = {

0 ifs<sz ie.s=code(0xz...2x,)

i
o

e pop(s) = o(4s — 2top(s) — 1) = code(xs...xy,)
R

top
e push(s,b) = a(i + 2”4—_1) = code(bxy...x,) forb e {0,1}

1/4
-1/4 1/2

»

Q)

Idea of Proof — 2PDA implementation by 3ANN

2 stacks are implemented by 2 analog neurons computing push and pop, respectively

— the 3rd analog neuron of 3ANN performs the swap operation

1/a({pyshK Aswapk A pop [H 4

J
0..0..0

control unit

2 types of instructions depending on whether the push and pop operations apply
to the matching neurons:

1. short instruction: push(b); pop

2. long instruction: push(top); pop; swap; push(b); pop

+ a complicated synchronization of the fully parallel 3ANN O

Conclusion & Open Problems

e We have refined the analysis of NNs with rational weights by showing that
3ANNSs are Turing-complete.

e Are 1ANNs or 2ANNs Turing-complete?

conjecture: 1ANNs do not recognize the non-regular context-free languages

(CFL\REG) vs. CFLC2ANNs

e a necessary condition for a 1ANN to accept a regular language

e a proper hierarchy of NNs e.g. with increasing quasi-period of weights

