The Power of Extra Analog Neuron

Jiří Šíma

Institute of Computer Science Academy of Sciences of the Czech Republic

(Artificial) Neural Networks (NNs)

- 1. mathematical models of biological neural networks
 - simulating and understanding the brain (The Human Brain Project)
 - modeling cognitive functions
- 2. computing devices alternative to conventional computers already first computer designers sought their inspiration in the human brain
 - (e.g., neurocomputer due to Minsky, 1951)
 - common tools in machine learning or data mining (learning from training data)
 - professional software implementations (e.g. Matlab, Statistica modules)
 - successful commercial applications in AI: pattern recognition, control, prediction, decision-making, signal analysis, fault detection, diagnostics, etc.

Neural Networks as Formal Computational Models

- idealized mathematical models of practical NNs (e.g., analog numerical parameters are true real numbers, an unbounded number of computational units, etc.)
- the potential and limits of general-purpose computations with NNs: What is ultimately or efficiently computable by particular NN models?
- methodology: the computational power and efficiency of NNs is investigated by comparing formal NN models with more traditional computational models such as finite automata, Turing machines, Boolean circuits, etc.
- NNs may serve as reference models for analyzing alternative computational resources (other than time or memory space) such as analog state, continuous time, energy, temporal coding, etc.
- NN models cover basic characteristics of biological nervous systems (plenty of densely interconnected simple computational units)

 \longrightarrow computational principles of mental processes

The Neural Network Model

- Architecture: s computational units (neurons), indexed as $V = \{1, \ldots, s\}$, connected into a directed graph (V, A) where $A \subseteq V \times V$
- each edge $(i, j) \in A$ from neuron i to j is labeled with a real weight $w_{ji} \in \mathbb{R}$ $(w_{ji} = 0 \text{ iff } (i, j) \notin A)$
- each neuron $j \in V$ is associated with a real bias $w_{j0} \in \mathbb{R}$ (i.e. a weight of $(0, j) \in A$ from an additional neuron $0 \in V$)
- Computational Dynamics: the evolution of network state (output)

$$\mathbf{y}^{(t)} = (y_1^{(t)}, \dots, y_s^{(t)}) \in [0, 1]^s$$

at discrete time instant $t = 0, 1, 2, \ldots$

Discrete-Time Computational Dynamics

- 1. initial state $\mathbf{y}^{(0)} \in [0, 1]^s$
- 2. at discrete time instant $t \ge 0$, an excitation is computed as

$$\xi_j^{(t)} = w_{j0} + \sum_{i=1}^s w_{ji} y_i^{(t)} = \sum_{i=0}^s w_{ji} y_i^{(t)} \quad \text{for } j = 1, \dots, s$$

where neuron $0 \in V$ has constant output $y_0^{(t)} = 1$ for every $t \ge 0$

3. at the next time instant t + 1, only the neurons $j \in \alpha_{t+1}$ from a selected subset $\alpha_{t+1} \subseteq V$ update their states:

$$y_j^{(t+1)} = \begin{cases} \sigma_j(\xi_j) & \text{for } j \in \alpha_{t+1} \\ y_j^{(t)} & \text{for } j \in V \setminus \alpha_{t+1} \end{cases}$$

where $\sigma_j : \mathbb{R} \longrightarrow [0, 1]$ is an activation function

Activation Functions

1. binary-state neurons with $y_j \in \{0, 1\}$ (in short, binary neurons)

$$\sigma_{H}(\xi) = \begin{cases} 1 & \text{for } \xi \geq 0 \\ 0 & \text{for } \xi < 0 \end{cases} \quad \text{Heaviside function}$$

2. analog-state units with $y_j \in [0, 1]$ (briefly analog neurons)

$$\sigma_L(\xi) = \begin{cases} 1 & \text{for } \xi \ge 1 \\ \xi & \text{for } 0 < \xi < 1 \\ 0 & \text{for } \xi \le 0 \end{cases}$$
 saturated-linear function

 $\sigma_S(\xi) = \frac{1}{1 + e^{-\xi}}$ logistic (sigmoid) function

(Binary) Neural Networks as Language Acceptors

• language (problem) $L \subseteq \{0, 1\}^*$ over binary alphabet

• input string $\mathbf{x} = x_1 \dots x_n \in \{0, 1\}^n$ of arbitrary length $n \ge 0$ is sequentially presented, bit after bit, via an input neuron $1 \in V$,

$$y_1^{(d(\tau-1))} = x_{ au}$$
 for microscopic time $au = 1, \dots, n$

where integer $d \ge 1$ is the time overhead for processing a single input bit

• output neuron $2 \in V$ signals whether $x \stackrel{?}{\in} L$,

$$y_2^{(dn)} = \begin{cases} 1 & \text{for } x \in L \\ 0 & \text{for } x \notin L \end{cases}$$

(at time T(n) for analog networks)

Computational Power of Neural Networks

(with the saturated-linear activation function) depends on the information contents of weight parameters:

- 1. integer weights: finite automaton (Minsky, 1967)
- 2. rational weights: Turing machine (Siegelmann, Sontag, 1995) polynomial time \equiv complexity class P
- 3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time \equiv nonuniform complexity class P/poly exponential time \equiv any I/O mapping

Computational Power of Neural Networks

(with the saturated-linear activation function) depends on the information contents of weight parameters:

- 1. integer weights: finite automaton (Minsky, 1967)
- 2. rational weights: Turing machine (Siegelmann, Sontag, 1995) polynomial time \equiv complexity class P
 - polynomial time & increasing Kolmogorov complexity of real weights ≡
 a proper hierarchy of nonuniform complexity classes between P and P/poly
 (Balcázar, Gavaldà, Siegelmann, 1997)
- 3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time \equiv nonuniform complexity class P/poly exponential time \equiv any I/O mapping

Computational Power of Neural Networks

(with the saturated-linear activation function) depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)

a gap with respect to the Chomsky hierarchy ??? regular (Typ-3) \times recursively enumerable (Type-0) languages

2. rational weights: Turing machine (Siegelmann, Sontag, 1995) polynomial time \equiv complexity class P

polynomial time & increasing Kolmogorov complexity of real weights \equiv a proper hierarchy of nonuniform complexity classes between P and P/poly (Balcázar, Gavaldà, Siegelmann, 1997)

3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time \equiv nonuniform complexity class P/poly exponential time \equiv any I/O mapping

A Binary Neural Network with an Analog Neuron (NN1A)

two analog neurons (together with a few binary ones) can implement a 2-stack pushdown automaton \equiv Turing machine (Siegelmann, Sontag, 1995)

\rightarrow What is the computational power of ONE extra analog neuron ?

- rational weights: $w_{ji} \in \mathbb{Q}$ for every $j, i \in V$
- binary-state neurons $j \in V \setminus \{s\}$ employ the Heaviside activation function: $\sigma_j = \sigma_H \longrightarrow y_j \in \{0, 1\}$ for every $j = 0, \dots, s - 1$
- an extra analog-state unit $s \in V$ applies the saturated-linear activation function: $\sigma_s = \sigma_L \longrightarrow y_s \in \mathbb{I} = \mathbb{Q} \cap [0, 1]$

Theorem 1 A binary-state neural network with an analog neuron is (by mutual simulations) computationally equivalent to a finite automaton with a register.

A Finite Automaton with a Register (FAR)

(reminiscent of a FA with multiplication due to Ibarra, Sahni, Kim, 1976)

a nine-tuple $(Q, \Sigma, \{I_1, \ldots, I_p\}, a, (\Delta_1, \ldots, \Delta_p), \delta, q_0, z_0, F)$ where

- Q is a finite set of states including start state $q_0 \in Q$ and subset of accept (final) states $F \subseteq Q$; $\Sigma = \{0, 1\}$ is a binary input alphabet
- automaton is augmented with a register storing a rational number from domain $\mathbb{I} = \mathbb{Q} \cap [0, 1]$ which is partitioned into intervals $\mathbb{I} = I_1 \cup I_2 \cup \ldots \cup I_p$ of different types: open, closed, half-closed, or degenerate (containing a single point)
- each interval I_r $(1 \le r \le p)$ is associated with a local state-transition function $\delta_r : Q \times \Sigma \longrightarrow Q$ which is employed if the current register value falls into I_r
- the register is initialized with start value $z_0 \in \mathbb{I}$ and its value $z \in I_r$ is updated to $\sigma_L(az + \Delta_r(q, x))$ where $a \in \mathbb{Q}$ is a multiplier and $\Delta_r : Q \times \Sigma \longrightarrow \mathbb{Q}$ $(1 \leq r \leq p)$ is a rational shift function depending on current state and input bit
- $\delta: Q \times \mathbb{I} \times \Sigma \longrightarrow Q \times \mathbb{I}$ is a global state-transition function which, given current state $q \in Q$, register value $z \in \mathbb{I}$ and input bit $x \in \Sigma$, produces the new state and register value as

$$\delta(q, z, x) = (\delta_r(q, x), \sigma_L(az + \Delta_r(q, x))) \quad \text{ if } \quad z \in I_r$$

What Is the Computational Power of NN1A \equiv FAR ?

upper bound: a finite automaton with a register can be simulated by a (deterministic) linear bounded automaton (linear-space Turing machine) \longrightarrow neural networks with one analog unit accept at most context-sensitive languages

? lower bound: Is there a language accepted by a FAR which is not context-free ?

the computational power of NN1A is between Type-3 and Type-1 languages in the Chomsky hierarchy

When the extra analog neuron does not increase the power of binary NNs ?

Quasi-Periodic Power Series

a power series $\sum_{k=0}^{\infty} b_k a^k$ is eventually quasi-periodic if there is a real number Pand an increasing infinite sequence of indices $0 \le k_1 < k_2 < k_3 < \cdots$ such that $m_i = k_{i+1} - k_i$ is bounded and for every $i \ge 1$,

$$\frac{\sum_{k=0}^{m_i-1} b_{k_i+k} a^k}{1-a^{m_i}} = P$$

- example: eventually periodic sequence $(b_k)_{k=0}^{\infty}$ where k_1 is the length of preperiodic part and $m_i = m$ is the period
- for |a| < 1, the sum of eventually quasi-periodic power series is

$$\sum_{k=0}^{\infty} b_k a^k = \sum_{k=0}^{k_1 - 1} b_k a^k + a^{k_1} P \qquad \text{(equals } P \text{ for } k_1 = 0\text{)}$$

- the sum does not change if any quasi-repeating block $b_{k_i}, b_{k_i+1}, \ldots, b_{k_{i+1}-1}$ is removed or inserted in between two other blocks, or if the blocks are permuted
- Let $k_1 > 1$, |a| < 1, and $a = \frac{a_1}{a_2}$, $c = \frac{c_1}{c_2}$ be irreducible. If $c = \sum_{k=0}^{\infty} b_k a^k \in \mathbb{I}$ is eventually quasi-periodic, then $a_1 | (c_2 b_0 c_1)$ and for every $i, j \ge 1$, $a_2 | c_2(b_{k_i-1} b_{k_j-1})$ (e.g. $a_2 | c_1$ for $k_1 = 0$).

The Main Result

Theorem 2 Let $R = (Q, \Sigma, \{I_1, \ldots, I_p\}, a, (\Delta_1, \ldots, \Delta_p), \delta, q_0, z_0, F)$ be a finite automaton with a register satisfying $|a| \leq 1$. Denote by $C \subseteq \mathbb{I}$ the set of all endpoints of intervals I_1, \ldots, I_p and $B = \bigcup_{r=1}^p \Delta_r(Q \times \Sigma) \cup \{0, 1, z_0\} \subseteq \mathbb{Q}$ includes all possible shifts. If every series $\sum_{k=0}^{\infty} b_k a^k \in C$ with all $b_k \in B$ is eventually quasi-periodic, then L(R) accepted by R is a regular language.

Open Problems:

- complete the analysis for |a| > 1
- a necessary condition for L(R) to be regular

Expansions of Numbers in Non-Integer Bases (Rényi, 1957)

• a power series $c = \sum_{k=1}^{\infty} b_k a^k$ can be interpreted as a so-called β -expansion of $c \in [0, 1]$ in base $\beta = \frac{1}{a} > 1$ using the digits b_k from a finite set B

• any
$$c \in \left[\frac{\min B}{\beta-1}, \frac{\max B}{\beta-1}\right]$$
 has a β -expansion iff

$$\max_{b,b'\in B\,;\,b\neq b'}|b-b'| \leq \frac{\max B - \min B}{\beta - 1}$$

i.e. any $c \in \left[0, \frac{\lceil \beta \rceil - 1}{\beta - 1}\right]$ has a β -expansion for usual $B = \{0, 1, \dots, \lceil \beta \rceil - 1\}$ \times for $B = \{0, 1\}$ and $\beta > 2$, i.e. $0 < a < \frac{1}{2}$, there are $c \in [0, 1]$ with no β -expansions (β -expansions create a Cantor-like set)

 \longrightarrow a FAR accepts a regular language if the endpoints of intervals I_1,\ldots,I_p do not have $\beta\text{-expansions}$ at all

• for integer bases $\beta \in \mathbb{Z}$ and $B = \{0, \dots, \beta - 1\}$, a β -expansion of c is eventually periodic (or finite) iff c is a rational number

 \longrightarrow a FAR with multiplier $a = 1/\beta$, where $\beta \in \mathbb{Z}$, accepts a regular language

Unique β -**Expansions** (Sidorov, 2009)

for simplicity, assume $B = \{0, 1\}$ and $1 < \beta < 2$, that is, $\frac{1}{2} < a < 1$

- $\beta \in (1, \varphi)$ where $\varphi = (1 + \sqrt{5})/2$ is the golden ratio, $0.618 \dots \le a < 1$: any $c \in (0, 1]$ has a continuum of distinct β -expansions including non-quasiperiodic ones
- $\beta \in [\varphi, q_c)$ where q_c is the *Komornik-Loreti constant*, $0.559 \dots < a \le 0.618 \dots$: countably many $c \in [0, 1]$ have unique eventually periodic β -expansions

(q_c is the unique solution of equation $\sum_{k=1}^{\infty} t_k q_c^{-k} = 1$ where $(t_k)_{k=1}^{\infty}$ is the *Thue-Morse se*quence in which $t_k \in \{0, 1\}$ is the parity of the number of 1's in the binary representation of k)

• $\beta \in [q_c, 2)$, i.e. $\frac{1}{2} < a \le 0.559 \dots$: a continuum of numbers $c \in [0, 1]$ have unique β -expansions which create a Cantor-like set

Quasi-Periodic Greedy β -Expansions (Schmidt, 1980; Hare, 2007)

the lexicographically maximal (resp. minimal) β -expansion of a number is called greedy (resp. lazy)

 $Per(\beta) \subseteq [0,1]$ is a set of numbers having quasi-periodic greedy β -expansions

Theorem: If $\mathbb{I} = \mathbb{Q} \cap [0, 1] \subseteq \text{Per}(\beta)$, then β is either a Pisot or a Salem number.

Pisot (resp. *Salem*) number is a real algebraic integer (a root of some monic polynomial with integer coefficients) > 1 such that all its Galois conjugates (other roots of such a polynomial with minimal degree) are in absolute value < 1 (resp. ≤ 1 and at least one = 1)

Theorem: If β is a Pisot number, then $\mathbb{I} \subseteq \text{Per}(\beta)$. (for Salem numbers still open)

Corollary: For any non-integer rational $\beta \in \mathbb{Q} \setminus \mathbb{Z}$ there exists $c \in \mathbb{I}$ whose (greedy) β -expansion is not quasi-periodic.

Conclusions

- the analysis of computational power of neural nets between integer a rational weights has partially been refined
- our preliminary study reveals open problems and new research directions
- an interesting link to an active research field on β -expansions of numbers in non-integer bases:

Adamczewski et al., 2010; Allouche et al., 2008; Chunarom & Laohakosol, 2010; Dajani et al., 2012; De Vries & Komornik, 2009; Glendinning & Sidorov, 2001; Hare, 2007; Komornik & Loreti, 2002; Parry, 1960; Rényi, 1957; Schmidt, 1980; Sidorov, 2009; & references there