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(Artificial) Neural Networks (NNs)

1. mathematical models of biological neural networks

• simulating and understanding the brain (The Human Brain Project)

• modeling cognitive functions

2. computing devices alternative to conventional computers

already first computer designers sought their inspiration in the human brain
(e.g., neurocomputer due to Minsky, 1951)

• common tools in machine learning or data mining (learning from training data)

• professional software implementations (e.g. Matlab, Statistica modules)

• successful commercial applications in AI: pattern recognition, control, prediction,
decision-making, signal analysis, fault detection, diagnostics, etc.



Neural Networks as Formal Computational Models

• idealized mathematical models of practical NNs (e.g., analog numerical param-
eters are true real numbers, an unbounded number of computational units, etc.)

• the potential and limits of general-purpose computations with NNs:

What is ultimately or efficiently computable by particular NN models?

• methodology: the computational power and efficiency of NNs is investigated
by comparing formal NN models with more traditional computational models
such as finite automata, Turing machines, Boolean circuits, etc.

• NNs may serve as reference models for analyzing alternative computational
resources (other than time or memory space) such as analog state, continuous
time, energy, temporal coding, etc.

• NN models cover basic characteristics of biological nervous systems (plenty of
densely interconnected simple computational units)

−→ computational principles of mental processes



The Neural Network Model

• Architecture: s computational units (neurons), indexed as V = {1, . . . , s},
connected into a directed graph (V,A) where A ⊆ V × V

• each edge (i, j) ∈ A from neuron i to j is labeled with a real weight wji ∈ R
(wji = 0 iff (i, j) /∈ A)

• each neuron j ∈ V is associated with a real bias wj0 ∈ R
(i.e. a weight of (0, j) ∈ A from an additional neuron 0 ∈ V )

• Computational Dynamics: the evolution of network state (output)

y(t) = (y
(t)
1 , . . . , y

(t)
s ) ∈ [0, 1]s

at discrete time instant t = 0, 1, 2, . . .



Discrete-Time Computational Dynamics

1. initial state y(0) ∈ [0, 1]s

2. at discrete time instant t ≥ 0, an excitation is computed as

ξ
(t)
j = wj0 +

s∑
i=1

wjiy
(t)
i =

s∑
i=0

wjiy
(t)
i for j = 1, . . . , s

where neuron 0 ∈ V has constant output y
(t)
0 = 1 for every t ≥ 0

3. at the next time instant t + 1, only the neurons j ∈ αt+1 from a selected
subset αt+1 ⊆ V update their states:

y
(t+1)
j =

{
σj(ξj) for j ∈ αt+1

y
(t)
j for j ∈ V \ αt+1

where σj : R −→ [0, 1] is an activation function



Activation Functions

1. binary-state neurons with yj ∈ {0, 1} (in short, binary neurons)

σH(ξ) =

{
1 for ξ ≥ 0
0 for ξ < 0

Heaviside function

2. analog-state units with yj ∈ [0, 1] (briefly analog neurons)

σL(ξ) =

 1 for ξ ≥ 1
ξ for 0 < ξ < 1
0 for ξ ≤ 0

saturated-linear function

σS(ξ) =
1

1 + e−ξ
logistic (sigmoid) function



(Binary) Neural Networks as Language Acceptors

• language (problem) L ⊆ {0, 1}∗ over binary alphabet

• input string x = x1 . . . xn ∈ {0, 1}n of arbitrary length n ≥ 0 is sequentially
presented, bit after bit, via an input neuron 1 ∈ V ,

y
(d(τ−1))
1 = xτ for microscopic time τ = 1, . . . , n

where integer d ≥ 1 is the time overhead for processing a single input bit

• output neuron 2 ∈ V signals whether x
?
∈ L ,

y
(dn)
2 =

{
1 for x ∈ L
0 for x 6∈ L

(at time T (n) for analog networks)



Computational Power of Neural Networks
(with the saturated-linear activation function)

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)

2. rational weights: Turing machine (Siegelmann, Sontag, 1995)

polynomial time ≡ complexity class P

3. arbitrary real weights: “super-Turing” computation (Siegelmann, Sontag, 1994)

polynomial time ≡ nonuniform complexity class P/poly

exponential time ≡ any I/O mapping
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Computational Power of Neural Networks
(with the saturated-linear activation function)
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1. integer weights: finite automaton (Minsky, 1967)

a gap with respect to the Chomsky hierarchy ???

regular (Typ-3) × recursively enumerable (Type-0) languages
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a proper hierarchy of nonuniform complexity classes between P and P/poly

(Balcázar, Gavaldà, Siegelmann, 1997)

3. arbitrary real weights: “super-Turing” computation (Siegelmann, Sontag, 1994)

polynomial time ≡ nonuniform complexity class P/poly

exponential time ≡ any I/O mapping



A Binary Neural Network with an Analog Neuron (NN1A)

two analog neurons (together with a few binary ones) can implement a 2-stack
pushdown automaton ≡ Turing machine (Siegelmann, Sontag, 1995)

−→ What is the computational power of ONE extra analog neuron ?

• rational weights: wji ∈ Q for every j, i ∈ V

• binary-state neurons j ∈ V \ {s} employ the Heaviside activation function:

σj = σH −→ yj ∈ {0, 1} for every j = 0, . . . , s− 1

• an extra analog-state unit s ∈ V applies the saturated-linear activation function:

σs = σL −→ ys ∈ I = Q ∩ [0, 1]

Theorem 1 A binary-state neural network with an analog neuron is (by mutual
simulations) computationally equivalent to a finite automaton with a register.



A Finite Automaton with a Register (FAR)
(reminiscent of a FA with multiplication due to Ibarra, Sahni, Kim, 1976)

a nine-tuple (Q,Σ, {I1, . . . , Ip}, a, (∆1, . . . ,∆p), δ, q0, z0, F ) where

• Q is a finite set of states including start state q0 ∈ Q and subset of accept
(final) states F ⊆ Q ; Σ = {0, 1} is a binary input alphabet

• automaton is augmented with a register storing a rational number from domain
I = Q∩[0, 1] which is partitioned into intervals I = I1∪I2∪. . .∪Ip of different
types: open, closed, half-closed, or degenerate (containing a single point)

• each interval Ir (1 ≤ r ≤ p) is associated with a local state-transition function
δr : Q× Σ −→ Q which is employed if the current register value falls into Ir

• the register is initialized with start value z0 ∈ I and its value z ∈ Ir is updated
to σL (az + ∆r(q, x)) where a ∈ Q is a multiplier and ∆r : Q× Σ −→ Q
(1 ≤ r ≤ p) is a rational shift function depending on current state and input bit

• δ : Q × I × Σ −→ Q × I is a global state-transition function which, given
current state q ∈ Q, register value z ∈ I and input bit x ∈ Σ, produces the
new state and register value as

δ(q, z, x) = (δr(q, x), σL(az + ∆r(q, x))) if z ∈ Ir



What Is the Computational Power of NN1A ≡ FAR ?

upper bound: a finite automaton with a register can be simulated by a (deterministic)
linear bounded automaton (linear-space Turing machine) −→
neural networks with one analog unit accept at most context-sensitive languages

? lower bound: Is there a language accepted by a FAR which is not context-free ?

the computational power of NN1A is between Type-3 and Type-1 languages in
the Chomsky hierarchy

When the extra analog neuron does not increase the power of binary NNs ?



Quasi-Periodic Power Series

a power series
∑∞

k=0 bka
k is eventually quasi-periodic if there is a real number P

and an increasing infinite sequence of indices 0 ≤ k1 < k2 < k3 < · · · such that
mi = ki+1 − ki is bounded and for every i ≥ 1,∑mi−1

k=0 bki+ka
k

1− ami
= P

• example: eventually periodic sequence (bk)
∞
k=0 where k1 is the length of

preperiodic part and mi = m is the period

• for |a| < 1, the sum of eventually quasi-periodic power series is

∞∑
k=0

bka
k =

k1−1∑
k=0

bka
k + ak1P (equals P for k1 = 0)

• the sum does not change if any quasi-repeating block bki, bki+1, . . . , bki+1−1 is
removed or inserted in between two other blocks, or if the blocks are permuted

• Let k1 > 1, |a| < 1, and a = a1
a2

, c = c1
c2

be irreducible. If c =
∑∞

k=0 bka
k ∈ I

is eventually quasi-periodic, then a1 | (c2b0 − c1) and for every i, j ≥ 1,
a2 | c2(bki−1 − bkj−1) (e.g. a2 | c1 for k1 = 0).



The Main Result

Theorem 2 LetR = (Q,Σ, {I1, . . . , Ip}, a, (∆1, . . . ,∆p), δ, q0, z0, F ) be a finite
automaton with a register satisfying |a| ≤ 1. Denote by C ⊆ I the set of all
endpoints of intervals I1, . . . , Ip and B =

⋃p
r=1 ∆r(Q × Σ) ∪ {0, 1, z0} ⊆ Q

includes all possible shifts. If every series
∑∞

k=0 bka
k ∈ C with all bk ∈ B is

eventually quasi-periodic, then L(R) accepted by R is a regular language.

Open Problems:

• complete the analysis for |a| > 1

• a necessary condition for L(R) to be regular



Expansions of Numbers in Non-Integer Bases (Rényi, 1957)

• a power series c =
∑∞

k=1 bka
k can be interpreted as a so-called β-expansion

of c ∈ [0, 1] in base β = 1
a > 1 using the digits bk from a finite set B

• any c ∈
[
minB
β−1 ,

maxB
β−1

]
has a β-expansion iff

max
b,b′∈B ; b6=b′

|b− b′| ≤ maxB −minB

β − 1

i.e. any c ∈
[
0, dβe−1β−1

]
has a β-expansion for usual B = {0, 1, . . . , dβe − 1}

× for B = {0, 1} and β > 2, i.e. 0 < a < 1
2, there are c ∈ [0, 1] with no

β-expansions (β-expansions create a Cantor-like set)

−→ a FAR accepts a regular language if the endpoints of intervals I1, . . . , Ip
do not have β-expansions at all

• for integer bases β ∈ Z and B = {0, . . . , β − 1}, a β-expansion of c is
eventually periodic (or finite) iff c is a rational number

−→ a FAR with multiplier a = 1/β, where β ∈ Z, accepts a regular language



Unique β-Expansions (Sidorov, 2009)

for simplicity, assume B = {0, 1} and 1 < β < 2, that is, 1
2 < a < 1

• β ∈ (1, ϕ) where ϕ = (1 +
√

5)/2 is the golden ratio, 0.618 . . . ≤ a < 1:
any c ∈ (0, 1] has a continuum of distinct β-expansions including non-quasi-
periodic ones

• β ∈ [ϕ, qc) where qc is the Komornik-Loreti constant, 0.559 . . . < a ≤ 0.618 . . .:
countably many c ∈ [0, 1] have unique eventually periodic β-expansions

(qc is the unique solution of equation
∑∞

k=1 tkq
−k
c = 1 where (tk)

∞
k=1 is the Thue-Morse se-

quence in which tk ∈ {0, 1} is the parity of the number of 1’s in the binary representation of k)

• β ∈ [qc, 2), i.e. 1
2 < a ≤ 0.559 . . .: a continuum of numbers c ∈ [0, 1] have

unique β-expansions which create a Cantor-like set



Quasi-Periodic Greedy β-Expansions (Schmidt, 1980; Hare, 2007)

the lexicographically maximal (resp. minimal) β-expansion of a number is called
greedy (resp. lazy)

Per(β) ⊆ [0, 1] is a set of numbers having quasi-periodic greedy β-expansions

Theorem: If I = Q∩ [0, 1] ⊆ Per(β), then β is either a Pisot or a Salem number.

Pisot (resp. Salem) number is a real algebraic integer (a root of some monic polynomial with

integer coefficients) > 1 such that all its Galois conjugates (other roots of such a polynomial with

minimal degree) are in absolute value < 1 (resp. ≤ 1 and at least one = 1)

Theorem: If β is a Pisot number, then I ⊆ Per(β). (for Salem numbers still open)

Corollary: For any non-integer rational β ∈ Q \ Z there exists c ∈ I whose
(greedy) β-expansion is not quasi-periodic.



Conclusions

• the analysis of computational power of neural nets between integer a rational
weights has partially been refined

• our preliminary study reveals open problems and new research directions

• an interesting link to an active research field on β-expansions of numbers in
non-integer bases:

Adamczewski et al., 2010; Allouche et al., 2008; Chunarom & Laohakosol,

2010; Dajani et al., 2012; De Vries & Komornik, 2009; Glendinning & Sidorov,

2001; Hare, 2007; Komornik & Loreti, 2002; Parry, 1960; Rényi, 1957; Schmidt,

1980; Sidorov, 2009; & references there


