The Power of Extra Analog Neuron

Jiří Šíma

Institute of Computer Science
Academy of Sciences of the Czech Republic

(Artificial) Neural Networks (NNs)

1. mathematical models of biological neural networks

- simulating and understanding the brain (The Human Brain Project)
- modeling cognitive functions

2. computing devices alternative to conventional computers
already first computer designers sought their inspiration in the human brain (e.g., neurocomputer due to Minsky, 1951)

- common tools in machine learning or data mining (learning from training data)
- professional software implementations (e.g. Matlab, Statistica modules)
- successful commercial applications in AI : pattern recognition, control, prediction, decision-making, signal analysis, fault detection, diagnostics, etc.

Neural Networks as Formal Computational Models

- idealized mathematical models of practical NNs (e.g., analog numerical parameters are true real numbers, an unbounded number of computational units, etc.)
- the potential and limits of general-purpose computations with NNs:

What is ultimately or efficiently computable by particular NN models?

- methodology: the computational power and efficiency of NNs is investigated by comparing formal NN models with more traditional computational models such as finite automata, Turing machines, Boolean circuits, etc.
- NNs may serve as reference models for analyzing alternative computational resources (other than time or memory space) such as analog state, continuous time, energy, temporal coding, etc.
- NN models cover basic characteristics of biological nervous systems (plenty of densely interconnected simple computational units)
\longrightarrow computational principles of mental processes

The Neural Network Model

- Architecture: s computational units (neurons), indexed as $V=\{1, \ldots, s\}$, connected into a directed graph (V, A) where $A \subseteq V \times V$
- each edge $(i, j) \in A$ from neuron i to j is labeled with a real weight $w_{j i} \in \mathbb{R}$ ($\left.w_{j i}=0 \operatorname{iff}(i, j) \notin A\right)$
- each neuron $j \in V$ is associated with a real bias $w_{j 0} \in \mathbb{R}$
(i.e. a weight of $(0, j) \in A$ from an additional neuron $0 \in V$)
- Computational Dynamics: the evolution of network state (output)

$$
\mathbf{y}^{(t)}=\left(y_{1}^{(t)}, \ldots, y_{s}^{(t)}\right) \in[0,1]^{s}
$$

at discrete time instant $t=0,1,2, \ldots$

Discrete-Time Computational Dynamics

1. initial state $\mathbf{y}^{(0)} \in[0,1]^{s}$
2. at discrete time instant $t \geq 0$, an excitation is computed as

$$
\xi_{j}^{(t)}=w_{j 0}+\sum_{i=1}^{s} w_{j i} y_{i}^{(t)}=\sum_{i=0}^{s} w_{j i} y_{i}^{(t)} \quad \text { for } j=1, \ldots, s
$$

where neuron $0 \in V$ has constant output $y_{0}^{(t)}=1$ for every $t \geq 0$
3. at the next time instant $t+1$, only the neurons $j \in \alpha_{t+1}$ from a selected subset $\alpha_{t+1} \subseteq V$ update their states:

$$
y_{j}^{(t+1)}= \begin{cases}\sigma_{j}\left(\xi_{j}\right) & \text { for } j \in \alpha_{t+1} \\ y_{j}^{(t)} & \text { for } j \in V \backslash \alpha_{t+1}\end{cases}
$$

where $\sigma_{j}: \mathbb{R} \longrightarrow[0,1]$ is an activation function

Activation Functions

1. binary-state neurons with $y_{j} \in\{0,1\}$ (in short, binary neurons)

$$
\sigma_{H}(\xi)=\left\{\begin{array}{ll}
1 & \text { for } \xi \geq 0 \\
0 & \text { for } \xi<0
\end{array} \quad\right. \text { Heaviside function }
$$

2. analog-state units with $y_{j} \in[0,1]$ (briefly analog neurons)

$$
\begin{gathered}
\sigma_{L}(\xi)=\left\{\begin{array}{ll}
1 & \text { for } \xi \geq 1 \\
\xi & \text { for } 0<\xi<1 \\
0 & \text { for } \xi \leq 0
\end{array} \quad\right. \text { saturated-linear function } \\
\sigma_{S}(\xi)=\frac{1}{1+e^{-\xi}} \quad \text { logistic (sigmoid) function }
\end{gathered}
$$

(Binary) Neural Networks as Language Acceptors

- language (problem) $L \subseteq\{0,1\}^{*}$ over binary alphabet
- input string $\mathbf{x}=x_{1} \ldots x_{n} \in\{0,1\}^{n}$ of arbitrary length $n \geq 0$ is sequentially presented, bit after bit, via an input neuron $1 \in V$,

$$
y_{1}^{(d(\tau-1))}=x_{\tau} \quad \text { for microscopic time } \tau=1, \ldots, n
$$

where integer $d \geq 1$ is the time overhead for processing a single input bit

- output neuron $2 \in V$ signals whether $x \stackrel{?}{\in} L$,

$$
y_{2}^{(d n)}= \begin{cases}1 & \text { for } x \in L \\ 0 & \text { for } x \notin L\end{cases}
$$

(at time $T(n)$ for analog networks)

Computational Power of Neural Networks

(with the saturated-linear activation function)
depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)
2. rational weights: Turing machine (Siegelmann, Sontag, 1995) polynomial time \equiv complexity class P
3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time \equiv nonuniform complexity class $P /$ poly exponential time \equiv any I/O mapping

Computational Power of Neural Networks

(with the saturated-linear activation function)
depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)
2. rational weights: Turing machine (Siegelmann, Sontag, 1995) polynomial time \equiv complexity class P
polynomial time \& increasing Kolmogorov complexity of real weights \equiv a proper hierarchy of nonuniform complexity classes between P and $P /$ poly (Balcázar, Gavaldà, Siegelmann, 1997)
3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time \equiv nonuniform complexity class $\mathrm{P} /$ poly exponential time \equiv any I/O mapping

Computational Power of Neural Networks

(with the saturated-linear activation function)
depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)
a gap with respect to the Chomsky hierarchy ???
regular (Typ-3) \times recursively enumerable (Type-0) languages
2. rational weights: Turing machine (Siegelmann, Sontag, 1995)
polynomial time \equiv complexity class P
polynomial time \& increasing Kolmogorov complexity of real weights \equiv a proper hierarchy of nonuniform complexity classes between P and $P /$ poly
(Balcázar, Gavaldà, Siegelmann, 1997)
3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994)
polynomial time \equiv nonuniform complexity class $\mathrm{P} /$ poly
exponential time \equiv any I/O mapping

A Binary Neural Network with an Analog Neuron (NN1A)

two analog neurons (together with a few binary ones) can implement a 2-stack pushdown automaton \equiv Turing machine (Siegelmann, Sontag, 1995)
\longrightarrow What is the computational power of ONE extra analog neuron?

- rational weights: $w_{j i} \in \mathbb{Q}$ for every $j, i \in V$
- binary-state neurons $j \in V \backslash\{s\}$ employ the Heaviside activation function:

$$
\sigma_{j}=\sigma_{H} \quad \longrightarrow \quad y_{j} \in\{0,1\} \quad \text { for every } \quad j=0, \ldots, s-1
$$

- an extra analog-state unit $s \in V$ applies the saturated-linear activation function:

$$
\sigma_{s}=\sigma_{L} \quad \longrightarrow \quad y_{s} \in \mathbb{I}=\mathbb{Q} \cap[0,1]
$$

Theorem 1 A binary-state neural network with an analog neuron is (by mutual simulations) computationally equivalent to a finite automaton with a register.

A Finite Automaton with a Register (FAR)

(reminiscent of a FA with multiplication due to Ibarra, Sahni, Kim, 1976)
a nine-tuple $\left(Q, \Sigma,\left\{I_{1}, \ldots, I_{p}\right\}, a,\left(\Delta_{1}, \ldots, \Delta_{p}\right), \delta, q_{0}, z_{0}, F\right)$ where

- Q is a finite set of states including start state $q_{0} \in Q$ and subset of accept (final) states $F \subseteq Q ; \Sigma=\{0,1\}$ is a binary input alphabet
- automaton is augmented with a register storing a rational number from domain $\mathbb{I}=\mathbb{Q} \cap[0,1]$ which is partitioned into intervals $\mathbb{I}=I_{1} \cup I_{2} \cup \ldots \cup I_{p}$ of different types: open, closed, half-closed, or degenerate (containing a single point)
- each interval $I_{r}(1 \leq r \leq p)$ is associated with a local state-transition function $\delta_{r}: Q \times \Sigma \longrightarrow Q$ which is employed if the current register value falls into I_{r}
- the register is initialized with start value $z_{0} \in \mathbb{I}$ and its value $z \in I_{r}$ is updated to $\sigma_{L}\left(a z+\Delta_{r}(q, x)\right)$ where $a \in \mathbb{Q}$ is a multiplier and $\Delta_{r}: Q \times \Sigma \longrightarrow \mathbb{Q}$ $(1 \leq r \leq p)$ is a rational shift function depending on current state and input bit
- $\delta: Q \times \mathbb{I} \times \Sigma \longrightarrow Q \times \mathbb{I}$ is a global state-transition function which, given current state $q \in Q$, register value $z \in \mathbb{I}$ and input bit $x \in \Sigma$, produces the new state and register value as

$$
\delta(q, z, x)=\left(\delta_{r}(q, x), \sigma_{L}\left(a z+\Delta_{r}(q, x)\right)\right) \quad \text { if } \quad z \in I_{r}
$$

What Is the Computational Power of NN1A \equiv FAR ?

upper bound: a finite automaton with a register can be simulated by a (deterministic) linear bounded automaton (linear-space Turing machine) neural networks with one analog unit accept at most context-sensitive languages
? lower bound: Is there a language accepted by a FAR which is not context-free ?
the computational power of NN1A is between Type-3 and Type-1 languages in the Chomsky hierarchy

When the extra analog neuron does not increase the power of binary NNs ?

Quasi-Periodic Power Series

a power series $\sum_{k=0}^{\infty} b_{k} a^{k}$ is eventually quasi-periodic if there is a real number P and an increasing infinite sequence of indices $0 \leq k_{1}<k_{2}<k_{3}<\cdots$ such that $m_{i}=k_{i+1}-k_{i}$ is bounded and for every $i \geq 1$,

$$
\frac{\sum_{k=0}^{m_{i}-1} b_{k_{i}+k} a^{k}}{1-a^{m_{i}}}=P
$$

- example: eventually periodic sequence $\left(b_{k}\right)_{k=0}^{\infty}$ where k_{1} is the length of preperiodic part and $m_{i}=m$ is the period
- for $|a|<1$, the sum of eventually quasi-periodic power series is

$$
\sum_{k=0}^{\infty} b_{k} a^{k}=\sum_{k=0}^{k_{1}-1} b_{k} a^{k}+a^{k_{1}} P \quad\left(\text { equals } P \text { for } k_{1}=0\right)
$$

- the sum does not change if any quasi-repeating block $b_{k_{i}}, b_{k_{i}+1}, \ldots, b_{k_{i+1}-1}$ is removed or inserted in between two other blocks, or if the blocks are permuted
- Let $k_{1}>1,|a|<1$, and $a=\frac{a_{1}}{a_{2}}, c=\frac{c_{1}}{c_{2}}$ be irreducible. If $c=\sum_{k=0}^{\infty} b_{k} a^{k} \in \mathbb{I}$ is eventually quasi-periodic, then $a_{1} \mid\left(c_{2} b_{0}-c_{1}\right)$ and for every $i, j \geq 1$, $a_{2} \mid c_{2}\left(b_{k_{i}-1}-b_{k_{j}-1}\right) \quad$ (e.g. $a_{2} \mid c_{1}$ for $\left.k_{1}=0\right)$.

The Main Result

Theorem 2 Let $R=\left(Q, \Sigma,\left\{I_{1}, \ldots, I_{p}\right\}, a,\left(\Delta_{1}, \ldots, \Delta_{p}\right), \delta, q_{0}, z_{0}, F\right)$ be a finite automaton with a register satisfying $|a| \leq 1$. Denote by $C \subseteq \mathbb{I}$ the set of all endpoints of intervals I_{1}, \ldots, I_{p} and $B=\bigcup_{r=1}^{p} \Delta_{r}(Q \times \Sigma) \cup\left\{0,1, z_{0}\right\} \subseteq \mathbb{Q}$ includes all possible shifts. If every series $\sum_{k=0}^{\infty} b_{k} a^{k} \in C$ with all $b_{k} \in B$ is eventually quasi-periodic, then $L(R)$ accepted by R is a regular language.

Open Problems:

- complete the analysis for $|a|>1$
- a necessary condition for $L(R)$ to be regular

Expansions of Numbers in Non-Integer Bases (Rényi, 1957)

- a power series $c=\sum_{k=1}^{\infty} b_{k} a^{k}$ can be interpreted as a so-called β-expansion of $c \in[0,1]$ in base $\beta=\frac{1}{a}>1$ using the digits b_{k} from a finite set B
- any $c \in\left[\frac{\min B}{\beta-1}, \frac{\max B}{\beta-1}\right]$ has a β-expansion iff

$$
\max _{b, b^{\prime} \in B ; b \neq b^{\prime}}\left|b-b^{\prime}\right| \leq \frac{\max B-\min B}{\beta-1}
$$

i.e. any $c \in\left[0, \frac{\lceil\beta\rceil-1}{\beta-1}\right]$ has a β-expansion for usual $B=\{0,1, \ldots,\lceil\beta\rceil-1\}$ \times for $B=\{0,1\}$ and $\beta>2$, i.e. $0<a<\frac{1}{2}$, there are $c \in[0,1]$ with no β-expansions (β-expansions create a Cantor-like set)
\longrightarrow a FAR accepts a regular language if the endpoints of intervals I_{1}, \ldots, I_{p} do not have β-expansions at all

- for integer bases $\beta \in \mathbb{Z}$ and $B=\{0, \ldots, \beta-1\}$, a β-expansion of c is eventually periodic (or finite) iff c is a rational number
\longrightarrow a FAR with multiplier $a=1 / \beta$, where $\beta \in \mathbb{Z}$, accepts a regular language

Unique β-Expansions (Sidorov, 2009)

for simplicity, assume $B=\{0,1\}$ and $1<\beta<2$, that is, $\frac{1}{2}<a<1$

- $\beta \in(1, \varphi)$ where $\varphi=(1+\sqrt{5}) / 2$ is the golden ratio, $0.618 \ldots \leq a<1$: any $c \in(0,1]$ has a continuum of distinct β-expansions including non-quasiperiodic ones
- $\beta \in\left[\varphi, q_{c}\right)$ where q_{c} is the Komornik-Loreti constant, $0.559 \ldots<a \leq 0.618 \ldots$: countably many $c \in[0,1]$ have unique eventually periodic β-expansions
(q_{c} is the unique solution of equation $\sum_{k=1}^{\infty} t_{k} q_{c}^{-k}=1$ where $\left(t_{k}\right)_{k=1}^{\infty}$ is the Thue-Morse sequence in which $t_{k} \in\{0,1\}$ is the parity of the number of 1 's in the binary representation of k)
- $\beta \in\left[q_{c}, 2\right)$, i.e. $\frac{1}{2}<a \leq 0.559 \ldots$: a continuum of numbers $c \in[0,1]$ have unique β-expansions which create a Cantor-like set

Quasi-Periodic Greedy β-Expansions (Schmidt, 1980; Hare, 2007)

the lexicographically maximal (resp. minimal) β-expansion of a number is called greedy (resp. lazy)
$\operatorname{Per}(\beta) \subseteq[0,1]$ is a set of numbers having quasi-periodic greedy β-expansions
Theorem: If $\mathbb{I}=\mathbb{Q} \cap[0,1] \subseteq \operatorname{Per}(\beta)$, then β is either a Pisot or a Salem number. Pisot (resp. Salem) number is a real algebraic integer (a root of some monic polynomial with integer coefficients) >1 such that all its Galois conjugates (other roots of such a polynomial with minimal degree) are in absolute value <1 (resp. ≤ 1 and at least one $=1$)

Theorem: If β is a Pisot number, then $\mathbb{I} \subseteq \operatorname{Per}(\beta)$. (for Salem numbers still open)
Corollary: For any non-integer rational $\beta \in \mathbb{Q} \backslash \mathbb{Z}$ there exists $c \in \mathbb{I}$ whose (greedy) β-expansion is not quasi-periodic.

Conclusions

- the analysis of computational power of neural nets between integer a rational weights has partially been refined
- our preliminary study reveals open problems and new research directions
- an interesting link to an active research field on β-expansions of numbers in non-integer bases:

Adamczewski et al., 2010; Allouche et al., 2008; Chunarom \& Laohakosol, 2010; Dajani et al., 2012; De Vries \& Komornik, 2009; Glendinning \& Sidorov, 2001; Hare, 2007; Komornik \& Loreti, 2002; Parry, 1960; Rényi, 1957; Schmidt, 1980; Sidorov, 2009; \& references there

