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(Artificial) Neural Networks (NNs)

1. mathematical models of biological neural networks
e simulating and understanding the brain (The Human Brain Project)

e modeling cognitive functions

2. computing devices alternative to conventional computers

already first computer designers sought their inspiration in the human brain
(e.g., neurocomputer due to Minsky, 1951)

e common tools in machine learning or data mining (learning from training data)
e professional software implementations (e.g. Matlab, Statistica modules)

e successful commercial applications in Al: pattern recognition, control, prediction,
decision-making, signal analysis, fault detection, diagnostics, etc.



Neural Networks as Formal Computational Models

e idealized mathematical models of practical NNs (e.g., analog numerical param-
eters are true real numbers, an unbounded number of computational units, etc.)

e the potential and limits of general-purpose computations with NNs:

What is ultimately or efficiently computable by particular NN models?

e methodology: the computational power and efficiency of NNs is investigated
by comparing formal NN models with more traditional computational models
such as finite automata, Turing machines, Boolean circuits, etc.

e NNs may serve as reference models for analyzing alternative computational
resources (other than time or memory space) such as analog state, continuous
time, energy, temporal coding, etc.

e NN models cover basic characteristics of biological nervous systems (plenty of
densely interconnected simple computational units)

— computational principles of mental processes



The Neural Network Model

e Architecture: s computational units (neurons), indexed as V' = {1,..., s},
connected into a directed graph (V, A) where ACV xV

e cach edge (7,7) € A from neuron i to j is labeled with a real weight w;; € R

(wji = 0iff (i, j) & A)

e each neuron 7 € V is associated with a real bias wjp € R
(i.e. a weight of (0, 7) € A from an additional neuron 0 € V')

e Computational Dynamics: the evolution of network state (output)
t s
y" =,y e 0,1]

at discrete time instant t = 0,1, 2, ...



Discrete-Time Computational Dynamics

1. initial state y(®) € [0, 1]°

2. at discrete time instant ¢ > 0, an excitation is computed as

f;t) = Wjo + Z wﬂyz(t) = Z wﬂyz(t) for ] — 1, ey S
1=1 1=0

where neuron 0 € V' has constant output y(()t) =1 for every t > 0

3. at the next time instant £ 4+ 1, only the neurons 7 € a;.1 from a selected
subset a1 C V' update their states:

S for j € V\ ary

(t+1) { 0;(&;) for j € atq

where o, : R — |0, 1] is an activation function



Activation Functions
1. binary-state neurons with y; € {0,1} (in short, binary neurons)

] 1 for £ >0 . .
op(§) = { 0 for & < 0 Heaviside function

2. analog-state units with y; € [0, 1] (briefly analog neurons)

1 for £ > 1
or(§) =4 & for 0 < & <1 saturated-linear function
0 for £ <0
1 o .
os(&) = logistic (sigmoid) function

1+e¢



(Binary) Neural Networks as Language Acceptors

e language (problem) L C {0, 1}* over binary alphabet

e input string x = z1...x, € {0,1}" of arbitrary length n > 0 is sequentially
presented, bit after bit, via an input neuron 1 € V,

(d(r—=1)) _

U = I, for microscopic time 7 =1,...,n

where integer d > 1 is the time overhead for processing a single input bit

?
e output neuron 2 € V signals whether x € L,

dn) |1 forx e L
2770 forx & L

(at time T'(n) for analog networks)



Computational Power of Neural Networks
(with the saturated-linear activation function)

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)

2. rational weights: Turing machine (Siegelmann, Sontag, 1995)

polynomial time = complexity class P

3. arbitrary real weights: “super-Turing” computation (Siegelmann, Sontag, 1994)
polynomial time = nonuniform complexity class P /poly

exponential time = any |/O mapping
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Computational Power of Neural Networks
(with the saturated-linear activation function)

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)

a gap with respect to the Chomsky hierarchy 7?7?

regular (Typ-3) X recursively enumerable (Type-0) languages
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polynomial time = complexity class P

polynomial time & increasing Kolmogorov complexity of real weights =
a proper hierarchy of nonuniform complexity classes between P and P/poly

(Balcdzar, Gavalda, Siegelmann, 1997)

3. arbitrary real weights: “super-Turing” computation (Siegelmann, Sontag, 1994)
polynomial time = nonuniform complexity class P/poly

exponential time = any |I/O mapping



A Binary Neural Network with an Analog Neuron (NN1A)

two analog neurons (together with a few binary ones) can implement a 2-stack

pushdown automaton = Turing machine (Siegelmann, Sontag, 1995)

— What is the computational power of ONE extra analog neuron ?

e rational weights: wj; € Q for every 5,2 € V

e binary-state neurons j € V' \ {s} employ the Heaviside activation function:

oj=0g — y;€{0,1} forevery j=0,...,5—1
e an extra analog-state unit s € V applies the saturated-linear activation function:

o, =0, — ys;€l=0Qn|0,1]

Theorem 1 A binary-state neural network with an analog neuron is (by mutual
simulations) computationally equivalent to a finite automaton with a register.



A Finite Automaton with a Register (FAR)

(reminiscent of a FA with multiplication due to Ibarra, Sahni, Kim, 1976)
a nine-tuple (Q, X, {l1,...,L,},a,(A, ..., 7)), 6, qo, 20, F') where

e () is a finite set of states including start state gy € () and subset of accept
(final) states FF C @; > = {0, 1} is a binary input alphabet

e automaton is augmented with a register storing a rational number from domain
[ = @QnN|0, 1} which is partitioned into intervals [ = I;Ul,U...UI, of different
types: open, closed, half-closed, or degenerate (containing a single point)

e cach interval I, (1 < r < p) is associated with a local state-transition function
0, - QQ X X — () which is employed if the current register value falls into I,

e the register is initialized with start value 2z, € I and its value z € I, is updated
to o7 (az + A(q,x)) where a € Q is a multiplier and A, : Q x X — Q
(1 < r < p)isarational shift function depending on current state and input bit

00 : Q) xI xX— () x1Iisa global state-transition function which, given
current state ¢ € (), register value z € I and input bit x € X, produces the
new state and register value as

0(q,z,x) = (0,(q,z),0(az + Ay(q,x))) if zel,



What Is the Computational Power of NN1A = FAR ?

upper bound: a finite automaton with a register can be simulated by a (deterministic)
linear bounded automaton (linear-space Turing machine) —

neural networks with one analog unit accept at most context-sensitive languages
? lower bound: Is there a language accepted by a FAR which is not context-free 7

the computational power of NN1A is between Type-3 and Type-1 languages in
the Chomsky hierarchy

When the extra analog neuron does not increase the power of binary NNs 7



Quasi-Periodic Power Series

a power series » .~ bia” is eventually quasi-periodic if there is a real number P
and an increasing infinite sequence of indices 0 < k1 < ky < k3 < --- such that
m; = ki1 — k; is bounded and for every » > 1,

m;—1 k
k0 bkﬁka _

=P
I —am

e example: eventually periodic sequence (b;);2, where k; is the length of
preperiodic part and m; = m is the period

e for |a| < 1, the sum of eventually quasi-periodic power series is
00 k1—1
Z bra® = Z bpa® + o™ P (equals P for k1 = 0)
k=0 k=0

e the sum does not change if any quasi-repeating block by, by, 11,..., bk, —1 is
removed or inserted in between two other blocks, or if the blocks are permuted

olet k1 > 1, [a| <1, and a =7}, ¢ =L beirreducible. If ¢ = S brat €T
is eventually quasi-periodic, then ay|(coby — ¢1) and for every i,7 > 1,
as | co(by,—1 — bkj—1> (e.g. as | ¢ for ky = 0).



The Main Result

Theorem 2 Let R = (Q, %, {[1,..., L,},a,(Ay,..., ), 9, qo, 20, F) be a finite
automaton with a register satisfying |a| < 1. Denote by C C T the set of all
endpoints of intervals I,...,1, and B = | J/_; A.(Q x ) U{0,1,z} C Q
includes all possible shifts. If every series ZZOZO b.a® € C with all b, € B is
eventually quasi-periodic, then L(R) accepted by R is a regular language.

Open Problems:

e complete the analysis for |a| > 1

e a necessary condition for L(R) to be regular



Expansions of Numbers in Non-Integer Bases (rényi, 1957)

® a power series ¢ = » ), bra® can be interpreted as a so-called 3-expansion
of ¢ € 0,1] in base B =1 > 1 using the digits by, from a finite set B

min B max B

eany c € [ﬁ_l e } has a $-expansion iff

,, _ max B —min B
max |b—0b] <
bb'EB; bAY b —1

) " B—1
x for B = {0,1} and § > 2, i.e. 0 < a < 1, there are ¢ € [0, 1] with no
B-expansions (3-expansions create a Cantor-like set)

l.e. any ¢ € [O @} has a (B-expansion for usual B = {0,1,..., (8] — 1}

— a FAR accepts a regular language if the endpoints of intervals [;,..., I,
do not have (3-expansions at all

e for integer bases § € Z and B = {0,...,08 — 1}, a B-expansion of ¢ is
eventually periodic (or finite) iff ¢ is a rational number

— a FAR with multiplier a = 1/, where 8 € Z, accepts a regular language



Unique [-Expansions (sidorov, 2009)
for simplicity, assume B = {0,1} and 1 < 8 < 2, that is, % <a<l

o3 € (1,¢) where » = (1 + +/5)/2 is the golden ratio, 0.618... < a < 1:
any ¢ € (0, 1] has a continuum of distinct $-expansions including non-quasi-
periodic ones

e € |, q.) where q. is the Komornik-Loreti constant, 0.559 ... < a < 0.618 .. .:
countably many ¢ € |0, 1] have unique eventually periodic 3-expansions

(g is the unique solution of equation >"7° txq- " = 1 where (¢;)7, is the Thue-Morse se-
quence in which t;; € {0, 1} is the parity of the number of 1's in the binary representation of k)

o€ [q.2),ie 5 <a<0559... acontinuum of numbers ¢ € [0,1] have
unique [-expansions which create a Cantor-like set



Quasi-Periodic Greedy S-Expansions (schmidt, 1980; Hare, 2007)

the lexicographically maximal (resp. minimal) S-expansion of a number is called
greedy (resp. lazy)

Per(3) C [0,1] is a set of numbers having quasi-periodic greedy (-expansions

Theorem: If I = QM |0, 1] C Per(f3), then [ is either a Pisot or a Salem number.

Pisot (resp. Salem) number is a real algebraic integer (a root of some monic polynomial with
integer coefficients) > 1 such that all its Galois conjugates (other roots of such a polynomial with

minimal degree) are in absolute value < 1 (resp. < 1 and at least one = 1)

Theorem: If B is a Pisot number, then I C Per(3). (for Salem numbers still open)

Corollary: For any non-integer rational 5 € Q \ Z there exists ¢ € I whose
(greedy) ([-expansion is not quasi-periodic.



Conclusions

e the analysis of computational power of neural nets between integer a rational
weights has partially been refined

e our preliminary study reveals open problems and new research directions

e an interesting link to an active research field on [3-expansions of numbers in
non-integer bases:

Adamczewski et al., 2010; Allouche et al., 2008; Chunarom & Laohakosol,

2010; Dajani et al., 2012; De Vries & Komornik, 2009; Glendinning & Sidorov,
2001; Hare, 2007; Komornik & Loreti, 2002; Parry, 1960; Rényi, 1957; Schmidt,
1980; Sidorov, 2009; & references there



