
Institute of Computer Science
Academy of Sciences of the Czech Republic

Gradient Learning in Networks of
Smoothly Spiking Neurons
with an Additional Penalty Term

Jǐŕı Š́ıma

Technical report No. 1125

November 2011

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: +420 266 053 030, fax: +420 286 585 789,
e-mail:sima@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

Gradient Learning in Networks of
Smoothly Spiking Neurons
with an Additional Penalty Term

Jǐŕı Š́ıma1

Technical report No. 1125

November 2011

Abstract:

A slightly simplified version of the Spike Response Model SRM0 of a spiking neuron is tailored to gradient
learning. In particular, the evolution of spike trains along the weight and delay parameter trajectories is
made perfectly smooth. For this model a back-propagation-like learning rule is derived which propagates
the error also along the time axis. This approach overcomes the difficulties with the discontinuous-in-
time nature of spiking neurons, which encounter previous gradient learning algorithms (e.g. SpikeProp).
The new algorithm can naturally cope with multiple spikes and experiments confirmed the smoothness of
spike creation/deletion process. Nevertheless, the experiments have also shown that the gradient method
get often stuck in local minima corresponding to transient network configurations which emerge from the
smooth approximation of discrete events. An additional penalty term introduced in the error function did
not help to avoid this side effect, which disqualifies this approach.

Keywords:
spiking neuron, back-propagation, SpikeProp, gradient learning, penalty term

1This work was partially supported by projects GA ČR P202/10/1333 and AV0Z10300504.

1 Learning in Networks of Spiking Neurons

Neural networks establish an important class of learning models that are widely applied in practical
applications to solving artificial intelligence tasks [6]. The prominent position among neural network
models has recently been occupied by networks of spiking (pulse) neurons [5, 9]. As compared to
the traditional perceptron networks [12] the networks of spiking neurons represent a biologically more
plausible model which has a great potential for processing temporal information. However, one of
the main open issues is the development of a practical learning algorithm for the networks of spiking
neurons although the related training problem is known to be NP-complete at least for binary coded
data [10, 19].

Learning in the perceptron networks is usually performed by a gradient descent method, e.g. by
using the back-propagation algorithm [15] which explicitly evaluates the gradient of an error function.
The same approach has been employed in the SpikeProp gradient learning algorithm [2] which learns
the desired firing times of output neurons by adapting the weight parameters in the Spike Response
Model SRM0 [5]. Plenty of experiments with SpikeProp was carried out which clarified e.g. the role
of the parameter initialization and negative weights [11]. The performance of the original algorithm
was improved by adding the momentum term [22]. Moreover, the SpikeProp was further enhanced
with additional learning rules for synaptic delays, thresholds, and time constants [16] which resulted
in faster convergence and smaller network sizes for given learning tasks. An essential speedup was
achieved by approximating the firing time function using the logistic sigmoid [1]. The SpikeProp
algorithm was also extended to recurrent network architectures [21].

Nevertheless, the SpikeProp method and its modifications do not usually allow more than one
spike per neuron which makes it suitable only for ‘time-to-first-spike’ coding scheme [20]. Another
important drawback of these learning heuristics is that the adaptation mechanism fails for the weights
of neurons that do not emit spikes. At the core of these difficulties the fact is that the spike creation
or removal due to weight updates is very discontinuous. Recently, the so-called ASNA-Prop has been
proposed [17] to solve this problem by emulating the feedforward networks of spiking neurons with
the discrete-time analog sigmoid networks with local feedback, which is then used for deriving the
gradient learning rule. Another method estimates the gradient by measuring the fluctuations in the
error function in response to the dynamic neuron parameter perturbation [4].

In the present report which extends our previous work [18]2 we employ a different approach to this
problem of spike creation/deletion. Similarly as the Heaviside function was replaced by the logistic sig-
moid in the conventional back-propagation algorithm to make the neuron function differentiable [15],
we modify a slightly simplified version of the Spike Response Model SRM0 by smoothing out the
discontinuities along the weight and delay parameter trajectories (Section 2). For this purpose we
employ an auxiliary twice differentiable function which is a smooth approximation of the step func-
tion. In particular, a new spike arises through a continuous “division” of the succeeding spike into
two spikes while the spike disappearance is implemented by a continuous “fusion” with its successor.
For our model of smoothly spiking neuron we derive a nontrivial back-propagation-like learning rule
for computing the gradient of the error function with respect to both the weight and delay parameters
(Section 3) which can be used for supervised learning of desired spike trains in corresponding feedfor-
ward networks. In order to take also the temporal dimension into account, we have implemented the
chain rule for computing the partial derivatives of the composite error function so that each neuron
propagates backwards a variable number of partial derivative terms corresponding to different time
instants including the second-order derivative terms. The new gradient learning method can naturally
cope with multiple spikes whose number changes in time. Preliminary experiments with the proposed
learning algorithm exhibited the smoothness of spike creation/deletion process (Section 5). Never-
theless, the experiments have also shown that the gradient method get often stuck in local minima
corresponding to transient network configurations which emerge from the smooth approximation of
discrete events. An additional penalty term introduced in the error function (Section 4) did not help
to avoid this side effect, which disqualifies this approach.

A related line of study concerns Hebbian learning [3, 8, 13] and self-organization [14] in networks

2 We have removed the formal intial spikes at zero time and introduce an additional penalty term in the error
function.

1

of spiking neurons. See also paper [7] for a recent review of supervised learning methods in spiking
neural networks.

2 A Feedforward Network of Smoothly Spiking Neurons

Formally, a feedforward network can be defined as a set of spiking (pulse) neurons V which are densely
connected into a directed (connected) graph representing an architecture of the network. Some of these
neurons may serve as external inputs or outputs, and hence we assume X ⊆ V and Y ⊆ V to be
a set of input and output neurons, respectively, while the remaining ones are called hidden neurons.
We denote by j← the set of all neurons from which an edge leads to j while j→ denotes the set of all
neurons to which an edge leads from j. As usual we assume j← = ∅ for j ∈ X and j→ = ∅ for j ∈ Y
whereas j← 6= ∅ and j→ 6= ∅ for j ∈ V \ (X ∪ Y). Each edge in the architecture leading from neuron i
to j is labeled with a real (synaptic) weight wji and delay dji ≥ 0. In addition, a real bias parameter
wj0 is assigned to each noninput neuron j ∈ V \X which can be viewed as the weight from a formal
constant unit input3. All these weights and delays altogether create the network parameter vectors
w and d, respectively.

We first define an auxiliary function that will be used for making the computational dynamics
of the network smooth with respect to both the time and parameters w and d. In particular, a
twice differentiable nondecreasing function of one variable σ(α, β, δ) : < −→ [α, β] (or σ for short)
is introduced which has three real parameters α ≤ β and δ > 0 such that σ(x) = α for x ≤ 0 and
σ(x) = β for x ≥ δ whereas the first and second derivatives satisfy σ′(0) = σ′(δ) = σ′′(0) = σ′′(δ) = 0.
In fact, σ is a smooth approximation of the step function where δ controls the approximation error.
In order to fulfill the conditions on the derivatives we can employ, e.g., the primitive function

∫
Ax2(x− δ)2 dx = A

(
x5

5
− 2δ

x4

4
+ δ2 x3

3

)
+ C (2.1)

for a normalized σ0 = σ(0, 1, δ) on [0, δ] where the real constants C = 0 and A = 30/δ5 are determined
from σ0(0) = 0 and σ0(δ) = 1. Thus we can choose σ(α, β, δ ; x) = (β − α)σ0(x) + α for x ∈ [0, δ]
which results in the following definition:

σ(α, β, δ ; x) =

α for x < 0
(β − α)

((
6x

δ − 15
)

x
δ + 10

) (
x
δ

)3 + α for 0 ≤ x ≤ δ
β for x > δ .

(2.2)

We will also need the following partial derivatives of σ:

σ′(x) =
∂

∂ x
σ(x) =

{
30
δ (β − α)

((
x
δ − 2

)
x
δ + 1

) (
x
δ

)2 for 0 ≤ x ≤ δ
0 otherwise,

(2.3)

σ′′(x) =
∂ 2

∂ x2
σ(x) =

{
60
δ2 (β − α)

((
2x

δ − 3
)

x
δ + 1

)
x
δ for 0 ≤ x ≤ δ

0 otherwise, (2.4)

∂

∂ α
σ(x) =

1 for x < 0
1− ((

6x
δ − 15

)
x
δ + 10

) (
x
δ

)3 for 0 ≤ x ≤ δ
0 for x > δ ,

(2.5)

∂

∂ β
σ(x) =

0 for x < 0((
6x

δ − 15
)

x
δ + 10

) (
x
δ

)3 for 0 ≤ x ≤ δ
1 for x > δ .

(2.6)

In addition, we will use the logistic sigmoid function

P (λ ; x) =
1

1 + e−λx
(2.7)

3For simplicity, we assume a constant threshold function (which equals the opposite value of the bias), thus excluding
the refractory effects [5] but using the presented techniques one can generalize the model of smoothly spiking neuron
and the learning algorithm for a nonconstant threshold function.

2

(or shortly P (x)) with a real gain parameter λ (e.g. λ = 4) whose derivative is known to be

P ′(x) = λP (x)(1− P (x)) . (2.8)

Now we introduce the smooth computational dynamics of the network. Each spiking neuron j ∈ V
in the network may produce a sequence of pj ≥ 0 spikes (firing times) 0 < tj1 < tj2 < · · · < tjpj

< T
as outlined in Figure 2.1. In addition, define formally tj,pj+1 = T . For every input neuron j ∈ X,
this sequence of spikes is given externally as a global input to the network. For a noninput neuron
j ∈ V \X, on the other hand, the underlying firing times are computed as the time instants at which
its excitation

ξj(t) = wj0 +
∑

i∈j←

wji ε (t− dji − τi(t− dji)) (2.9)

evolving in time t ∈ [0, T] crosses 0 from below, that is,
{
0 ≤ t ≤ T | ξj(t) = 0 & ξ′j(t) > 0

}
=

{
tj1 < tj2 < · · · < tjpj

}
(2.10)

as shown in Figure 2.2. Formula (2.9) defines the excitation of neuron j ∈ V \X at time t as a weighted
sum of responses to the last spikes from neurons i ∈ j← delayed by dji preceding time instant t. Here
ε : < −→ < denotes the smooth response function for all neurons, e.g.

ε(t) = e−(t−1)2 · σ0(t) (2.11)

where recall
σ0(t) = σ(0, 1, δ0 ; t) (2.12)

is defined by (2.2) using parameter δ0 particularly for the definition of ε. Clearly, ε is a twice differen-
tiable function with a relatively flat spike shape as depicted in Figure 2.3 which reaches its maximum
ε(1) = 1 for t = 1. Furthermore, τi : < −→ < is a smooth approximation of the stair function shown
in Figure 2.4 that gives the last firing time tis of neuron i preceding a given time t for t > ti1 whereas
formally τi(t) = ti1 for t ≤ ti1 (particularly for pi = 0, we get τi(t) = ti1 = T).

In particular, we define the function τj for any neuron j ∈ V as follows. The firing times tj1 <

tj2 < · · · < tjpj of j are first transformed one by one into 0 < t̃j1 < t̃j2 < · · · < t̃jpj < T = ˜tj,pj+1 by
formula

t̃js =

{
tjs for j ∈ X

σ
(
tjs, ˜tj,s+1, δ ; δ − ξ′j(tjs)

)
for j ∈ V \X

(2.13)

using (2.2) where s goes in sequence from pj down to 1, and ξ′j(tjs) for j ∈ V \ X is the derivative
of excitation ξj at time tjs which is positive according to (2.10). Clearly, t̃js = tjs for ξ′j(tjs) ≥ δ

while t̃js ∈ (tjs, ˜tj,s+1) is smoothly decreasing with increasing small ξ′j(tjs) ∈ (0, δ) as depicted in
Figure 2.5. The purpose of this transformation is to make the creation and deletion of spikes smooth
with respect to the weight and delay updates as outlined in Figure 2.6. In particular, by moving along

Figure 2.1: A spiking neuron j.

3

Figure 2.2: The excitation ξj(t) of neuron j defining its firing times.

the weight and delay trajectories, the excitation ξj may reach and further cross 0 from below (spike
creation), which leads to an increase in the first derivatives of excitation ξ′j(tjs) at the crossing point
tjs starting at zero as depicted in the zoom square in Figure 2.6. Thus, the new transformed spike
t̃js arises through a continuous “division” of the succeeding (transformed) spike ˜tj,s+1 into two spikes
while the spike disappearance is implemented similarly by a continuous “fusion” with its successor,
which is controlled by the first derivative of the excitation. The transformed spikes then define

τj(t) = t̃j1 +
pj+1∑
s=2

(
t̃js − ˜tj,s−1

)
P c

(
t− t̃js

)
(2.14)

using the logistic sigmoid (2.7) as shown in Figure 2.7 where c ≥ 1 (e.g. c = 3) is an optional exponent
whose growth decreases the value of P (0) shifting the transient phase of P (x) to positive x. The
derivative of j’s excitation with respect to time t can be derived from (2.9):

ξ′j(t) =
∑

i∈j←

wji ε′ (t− dji − τi(t− dji)) (1− τ ′i(t− dji)) (2.15)

where the derivative of response function

ε′(t) = e−(t−1)2 · (σ′0(t)− 2(t− 1)σ0(t)) (2.16)

can be evaluated using (2.12) and (2.3) while

τ ′i(t) =
∂

∂ t
τi(t) = cλ

pi+1∑
s=2

(
t̃is − ˜ti,s−1

)
P c

(
t− t̃is

)(
1− P

(
t− t̃is

))
(2.17)

is calculated from (2.14) and (2.8).

Figure 2.3: The response function ε(t).

4

Figure 2.4: The stair function.

Figure 2.5: The spike transformation.

3 The Back-Propagation Rule

A training pattern associates a global temporal input specifying the spike trains 0 < ti1 < ti2 <
· · · < tipi < T for every input neuron i ∈ X with corresponding sequences of desired firing times
0 < %j1 < %j2 < · · · < %jqj < T = %jqj+1 prescribed for all output neurons j ∈ Y . The discrepancy
between the desired and actual sequences of spikes for the underlying global temporal input can be
measured by the following L2 error

E1(w,d) =
1
2

∑

j∈Y

(
(τj(0)− %j1)

2 +
qj∑

s=1

(τj (%j,s+1)− %js)
2

)
(3.1)

which is a function of the weight and delay parameters w and d, respectively. In particular, τj(%j,s+1)
is the smooth approximation of the last firing time of output neuron j ∈ Y preceding time instant
%j,s+1 which is desired to be %js, while we need τj(0) = %j1 for the first desired spike according to (2.14).

We will derive a back-propagation-like rule for computing the gradient of the error function (3.1)
which can then be minimized using a gradient descent method, e.g.

w
(t)
ji = w

(t−1)
ji − α

∂ E1

∂ wji

(
w(t−1)

)
for i ∈ j← ∪ {0} , (3.2)

d
(t)
ji = d

(t−1)
ji − α

∂ E1

∂ dji

(
d(t−1)

)
for i ∈ j← (3.3)

for every j ∈ V starting with suitable initial paramater values w(0),d(0) where 0 < α < 1 is a learning
rate. Unlike the conventional back-propagation learning algorithm for the perceptron network, the

5

Figure 2.6: The smooth creation and deletion of spikes.

Figure 2.7: The smooth approximation of the stair function.

new rule for the network of spiking neurons must take also the temporal dimension into account.
In particular, the chain rule for computing the partial derivatives of the composite error function
E1(w,d) requires each neuron to propagate backwards a certain number of partial derivative terms
corresponding to different time instants. For this purpose, each noninput neuron j ∈ V \ X stores
a list Pj of mj ordered triples (πjc, π

′
jc, ujc) for c = 1, . . . , mj where πjc, π

′
jc denote the values of

derivative terms associated with time ujc such that

∂ E1

∂ wji
=

mj∑
c=1

(
πjc · ∂

∂ wji
τj(ujc) + π′jc ·

∂

∂ wji
τ ′j(ujc)

)
for i ∈ j← ∪ {0} , (3.4)

∂ E1

∂ dji
=

mj∑
c=1

(
πjc · ∂

∂ dji
τj(ujc) + π′jc ·

∂

∂ dji
τ ′j(ujc)

)
for i ∈ j← . (3.5)

Notice that the triples (πjc1 , π
′
jc1

, ujc1) and (πjc2 , π
′
jc2

, ujc2) corresponding to the same time instant
ujc1 = ujc2 can be merged into one (πjc1 + πjc2 , π

′
jc1

+ π′jc2
, ujc1) and also the triples (πjc, π

′
jc, ujc)

with πjc = π′jc = 0 can be omitted.
For any noninput neuron j ∈ V \X we will calculate the underlying derivative terms πjc, π

′
jc at

required time instants ujc. For an output neuron j ∈ Y the list

Pj = ((τj(0)− %j1 , 0 , 0) ; (τj(%j,s+1)− %js , 0 , %j,s+1) , s = 1, . . . , qj) (3.6)

6

is obtained directly from (3.1). For creating Pi for a hidden neuron i ∈ j← for some j ∈ V \X, we
derive a recursive procedure using the partial derivatives

∂

∂ wi`
τj(t) =

pj∑
s=1

∂

∂ t̃js

τj(t) · ∂ t̃js

∂ wi`
, (3.7)

∂

∂ wi`
τ ′j(t) =

pj∑
s=1

∂

∂ t̃js

τ ′j(t) ·
∂ t̃js

∂ wi`
(3.8)

e.g. for some wi` at time t where

∂

∂ t̃js

τj(t) =

P c
(
t− t̃js

)(
1− cλ

(
t̃js − ˜tj,s−1

) (
1− P

(
t− t̃js

)))
− P c

(
t− ˜tj,s+1

)

for s > 1 ,

1− P c
(
t− t̃j2

)
for s = 1 ,

(3.9)

∂

∂ t̃js

τ ′j(t) =

cλ
(((

1− cλ
(
t̃js − ˜tj,s−1

)(
1− P

(
t− t̃js

)))
+ λ

(
t̃js − ˜tj,s−1

)
P

(
t− t̃js

))

× P c
(
t− t̃js

)(
1− P

(
t− t̃js

))
− P c

(
t− ˜tj,s+1

)(
1− P

(
t− ˜tj,s+1

)))

for s > 1 ,

−cλP c
(
t− t̃j2

) (
1− P

(
t− t̃j2

))
for s = 1 ,

(3.10)

follows from (2.14), (2.17), and (2.8).
Furthermore,

∂ t̃js

∂ wi`
=

∂ t̃js

∂ ˜tj,s+1

· ∂ ˜tj,s+1

∂ wi`
+

(
∂ t̃js

∂ tjs
· ∂ tjs

∂ τi
+

∂ t̃js

∂ ξ′j
· ∂ ξ′j
∂ τi

)
∂

∂ wi`
τi(tjs − dji)

+
∂ t̃js

∂ ξ′j
· ∂ ξ′j
∂ τ ′i

· ∂

∂ wi`
τ ′i(tjs − dji) (3.11)

according to (2.13) and (2.15) where

∂ t̃js

∂ ˜tj,s+1

=
{

∂
∂ β σ

(
δ − ξ′j (tjs)

)
for s < pj ,

0 for s = pj ,
(3.12)

∂ t̃js

∂ tjs
=

(
∂

∂ α
− ξ′′j (tjs) · ∂

∂ x

)
σ

(
tjs, ˜tj,s+1, δ ; δ − ξ′j(tjs)

)
(3.13)

can be evaluated using (2.6), (2.5), and (2.3), whereas

ξ′′j (t) =
∑

i∈j←

wji

(
ε′′ (t− dji − τi (t− dji)) (1− τ ′i (t− dji))

2

−ε′ (t− dji − τi (t− dji)) τ ′′i (t− dji)
)

(3.14)

is derived from (2.15) in which

ε′′(t) = e−(t−1)2
(
σ′′0 (t)− 4(t− 1)σ′0(t) +

(
4(t− 1)2 − 2

)
σ0(t)

)
, (3.15)

τ ′′i (t) =
∂2

∂ t2
τi(t) = cλ2

pi+1∑
s=2

(
t̃is − ˜ti,s−1

)
P c

(
t− t̃is

)(
1− P

(
t− t̃is

))

×
(
c
(
1− P

(
t− t̃is

))
− P

(
t− t̃is

))
(3.16)

can be calculated from (2.16) and (2.17) using (2.12), (2.3), (2.4), and (2.8). In addition,

∂ t̃js

∂ ξ′j
= −σ′

(
tjs, ˜tj,s+1, δ ; δ − ξ′j(tjs)

)
, (3.17)

7

∂ ξ′j
∂ τi

= −wji ε′′(tjs − dji − τi(tjs − dji))(1− τ ′i(tjs − dji)) , (3.18)

∂ ξ′j
∂ τ ′i

= −wji ε′(tjs − dji − τi(tjs − dji)). (3.19)

Finally, we calculate the partial derivative ∂ tjs

∂ τi
for i ∈ j← which also appears in (3.11). According

to (2.9) and (2.10), the dependence of tjs on τi can only be expressed implicitly as ξj(tjs) = 0 which
implies the total differential identity

ξ′j(tjs) dtjs +
∂ ξj

∂ wi`
dwi` = 0 (3.20)

employing e.g. the variable wi` for which ∂ τk

∂ wi`
= 0 for k ∈ j← unless i = k. Hence,

ξ′j(tjs) · ∂ tjs

∂ wi`
= − ∂ ξj

∂ wi`
= −∂ ξj

∂ τi
· ∂ τi

∂ wi`
(3.21)

which gives
∂ tjs

∂ τi
=

∂ tjs

∂ wi`

∂ τi

∂ wi`

=
−∂ ξj

∂ τi

ξ′j(tjs)
=

wji ε′(tjs − dji − τi(tjs − dji))
ξ′j(tjs)

(3.22)

where ξ′j(tjs) 6= 0 according to (2.10).

Now, formula (3.11) for the derivative ∂ t̃js

∂ wi`
in terms of ∂ ˜tj,s+1

∂ wi`
is applied recursively, which is

further plugged into (3.7) and (3.8) as follows:

∂

∂ wi`
τj(t) =

pj∑
s=1

∂

∂ t̃js

τj(t)
s+njs∑
r=s

(
r−1∏
q=s

∂ t̃jq

∂ ˜tj,q+1

)((
∂ t̃jr

∂ tjr
· ∂ tjr

∂ τi
+

∂ t̃jr

∂ ξ′j
· ∂ ξ′j
∂ τi

)
∂

∂ wi`
τi(tjr − dji)

+
∂ t̃jr

∂ ξ′j
· ∂ ξ′j
∂ τ ′i

· ∂

∂ wi`
τ ′i(tjr − dji)

)
, (3.23)

∂

∂ wi`
τ ′j(t) =

pj∑
s=1

∂

∂ t̃js

τ ′j(t)
s+njs∑
r=s

(
r−1∏
q=s

∂ t̃jq

∂ ˜tj,q+1

)((
∂ t̃jr

∂ tjr
· ∂ tjr

∂ τi
+

∂ t̃jr

∂ ξ′j
· ∂ ξ′j
∂ τi

)
∂

∂ wi`
τi(tjr − dji)

+
∂ t̃jr

∂ ξ′j
· ∂ ξ′j
∂ τ ′i

· ∂

∂ wi`
τ ′i(tjr − dji)

)
(3.24)

where 0 ≤ njs ≤ pj − s is defined to be the least index such that

∂ ˜tj,s+njs

∂ ˜tj,s+njs+1

= 0 (3.25)

which exists since at least
∂ t̃j,pj

∂ ˜tj,pj+1
= 0 according to (3.12). Note that the product

∏r−1
q=s

∂ t̃jq

∂ ˜tj,q+1

in formulas (3.23) and (3.24) equals formally 1 for r = s. The summands of formulas (3.23) and
(3.24) are used for creating the list Pi for a hidden neuron i ∈ V \ (X ∪ Y) so that conditions
(3.4) and (3.5) hold for wji and dji replaced with wi` and di`, respectively, provided that the lists
Pj = ((πjc, π

′
jc, ujc) , c = 1, . . . ,mj) have already been created for all j ∈ i→, that is

Pi =

(
fjcsr

(
∂ t̃jr

∂ tjr
· ∂ tjr

∂ τi
+

∂ t̃jr

∂ ξ′j
· ∂ ξ′j
∂ τi

)
, fjcsr · ∂ t̃jr

∂ ξ′j
· ∂ ξ′j
∂ τ ′i

, tjr − dji

)
(3.26)

including factors

fjcsr =

(
πjc · ∂

∂ t̃js

τj(ujc) + π′jc ·
∂

∂ t̃js

τ ′j(ujc)

)
r−1∏
q=s

∂ t̃jq

∂ ˜tj,q+1

(3.27)

8

for all j ∈ i→, c = 1, . . . ,mj , s = 1, . . . , pj , and r = s, . . . , s + njs, according to the chain rule,
where the underlying derivatives can be computed by using formulas (3.9), (3.10), (3.12), (3.13),
(3.17)–(3.19), and (3.22).

Thus, the back-propagation algorithm starts with output neurons j ∈ Y for which the lists Pj

are first created by (3.6) and further continues by propagating the derivative terms at various time
instants backwards while creating the lists Pi also for hidden neurons i ∈ V \ (X ∪ Y) according to
(3.26). These lists are then used for computing the gradient of the error function (3.1) according to
(3.4) and (3.5) where the derivatives

∂

∂ wji
τj(t) =

pj∑
s=1

∂

∂ t̃js

τj(t)
s+njs∑
r=s

(
r−1∏
q=s

∂ t̃jq

∂ ˜tj,q+1

)(
∂ t̃jr

∂ tjr
· ∂ tjr

∂ wji
+

∂ t̃jr

∂ ξ′j
· ∂ ξ′j
∂ wji

)
, (3.28)

∂

∂ wji
τ ′j(t) =

pj∑
s=1

∂

∂ t̃js

τ ′j(t)
s+njs∑
r=s

(
r−1∏
q=s

∂ t̃jq

∂ ˜tj,q+1

)(
∂ t̃jr

∂ tjr
· ∂ tjr

∂ wji
+

∂ t̃jr

∂ ξ′j
· ∂ ξ′j
∂ wji

)
, (3.29)

∂

∂ dji
τj(t) =

pj∑
s=1

∂

∂ t̃js

τj(t)
s+njs∑
r=s

(
r−1∏
q=s

∂ t̃jq

∂ ˜tj,q+1

)(
∂ t̃jr

∂ tjr
· ∂ tjr

∂ dji
+

∂ t̃jr

∂ ξ′j
· ∂ ξ′j
∂ dji

)
, (3.30)

∂

∂ dji
τ ′j(t) =

pj∑
s=1

∂

∂ t̃js

τ ′j(t)
s+njs∑
r=s

(
r−1∏
q=s

∂ t̃jq

∂ ˜tj,q+1

)(
∂ t̃jr

∂ tjr
· ∂ tjr

∂ dji
+

∂ t̃jr

∂ ξ′j
· ∂ ξ′j
∂ dji

)
(3.31)

are calculated analogously to (3.23) and (3.24). Moreover, the dependencies of tjr on wji and dji can
again be expressed only implicitly as ξj(tjr) = 0 according to (2.9) and (2.10) which gives

∂ tjr

∂ wji
= −

∂ ξj

∂ wji

∂ ξj

∂ tjr

=

{ − 1
ξ′

j
(tjr) for i = 0

− ε(tjr−dji−τi(tjr−dji))
ξ′

j
(tjr) for i ∈ j← ,

(3.32)

∂ tjr

∂ dji
= −

∂ ξj

∂ dji

∂ ξj

∂ tjr

=
wji ε′ (tjr − dji − τi(tjr − dji)) (1− τ ′i(tjr − dji))

ξ′j(tjr)
(3.33)

by the implicit function theorem. In addition,

∂ ξ′j
∂ wji

=
{

0 for i = 0
ε′(tjr − dji − τi(tjr − dji))(1− τ ′i(tjr − dji)) for i ∈ j← ,

(3.34)

∂ ξ′j
∂ dji

= wji

(
ε′(tjr − dji − τi(tjr − dji))τ ′′i (tjr − dji)

−ε′′(tjr − dji − τi(tjr − dji))(1− τ ′i(tjr − dji))2
)

(3.35)

which completes the calculation of the gradient of the error function.

4 Additional Penalty Term

Experiments with the back-propagation algorithm introduced in Section 3 have shown that the error
function (3.1) can reach a local minimum at which transformed firing times t̃js are far from corre-
sponding rising or vanishing spikes tjs, which occurs when ξ′(tjs) < δ according to (2.13). In this case,
the actual sequences of output spikes do not coincide with the desired ones. In order to avoid this
pathology, we introduce an additional penalty term E2 which, being minimized, forces ξ′(tjs) ≥ δ. In
particular, the total error is defined as

E(w,d) = E1(w,d) + E2(w,d) (4.1)

where E1(w,d) is the original error function (3.1) and

E2(w,d) = −
∑

j∈Y

pj∑
s=1

σ(0, δ, δ ; ξ′j(tjs)) (4.2)

9

exploits function (2.2). Thus, the gradient of the total error (4.1) which can be used in learning rule
(3.2) and (3.3) for E1 replaced with E, can be expressed as

∂ E

∂ wji
=

∂ E1

∂ wji
+

∂ E2

∂ wji
,

∂ E

∂ dji
=

∂ E1

∂ dji
+

∂ E2

∂ dji
(4.3)

where the gradient of the original error function (3.1) is computed by the back-propagation algorithm
described in Section 3 while the formulas for the partial derivatives of E2 with respect to weight and
delay parameters are derived in the following.

For parameters wji and dji associated with an output neuron j ∈ Y , we simply differentiate (4.2):

∂ E2

∂ wji
= −

pj∑
s=1

σ′(0, δ, δ ; ξ′j(tjs)) ·
(

∂ ξ′j
∂ wji

+ ξ′′j (tjs) · ∂ tjs

∂ wji

)
(4.4)

∂ E2

∂ dji
= −

pj∑
s=1

σ′(0, δ, δ ; ξ′j(tjs)) ·
(

∂ ξ′j
∂ dji

+ ξ′′j (tjs) · ∂ tjs

∂ dji

)
(4.5)

which can be evaluated using (2.3), (3.34), (3.14), (3.32), (3.35), and (3.33).
The partial derivates of E2 with respect to wi` and di` for hidden neurons i ∈ V \ (X ∪ Y), are

calculated recursively. First consider neuron i such that i ∈ j← for some output neuron j ∈ Y , for
which the underlying derivatives ∂ E2

∂ wi`
for ` ∈ i← ∪ {0} and ∂ E2

∂ di`
for ` ∈ i← are below reduced to

∂
∂ wi`

τi(tjs − dji), ∂
∂ wi`

τ ′i(tjs − dji) and ∂
∂ di`

τi(tjs − dji), ∂
∂ di`

τ ′i(tjs − dji), respectively, which can be
computed using (3.28)–(3.31):

∂ E2

∂ wi`
= −

∑

j∈Y

pj∑
s=1

σ′(0, δ, δ; ξ′j(tjs)) ·
∂ ξ′j(tjs)

∂ wi`
,

∂ E2

∂ di`
= −

∑

j∈Y

pj∑
s=1

σ′(0, δ, δ; ξ′j(tjs)) ·
∂ ξ′j(tjs)

∂ di`
(4.6)

where
∂ ξ′j(tjs)

∂ wi`
=

(
∂ ξ′j
∂ τi

+ ξ′′j (tjs) · ∂ tjs

∂ τi

)
∂

∂ wi`
τi(tjs − dji) +

∂ ξ′j
∂ τ ′i

· ∂

∂ wi`
τ ′i(tjs − dji) , (4.7)

∂ ξ′j(tjs)
∂ di`

=
(

∂ ξ′j
∂ τi

+ ξ′′j (tjs) · ∂ tjs

∂ τi

)
∂

∂ di`
τi(tjs − dji) +

∂ ξ′j
∂ τ ′i

· ∂

∂ di`
τ ′i(tjs − dji) . (4.8)

By comparing formulas (4.6), (4.7) and (4.8) with (3.4) and (3.5), we can extend list Pi of triples
(πic, π

′
ic, uic) introduced for back-propagation rule in Section 3 by the following items corresponding

to error E2:(
−σ′(0, δ, δ ; ξ′j(tjs)) ·

(
∂ ξ′j
∂ τi

+ ξ′′j (tjs) · ∂ tjs

∂ τi

)
, −σ′(0, δ, δ ; ξ′j(tjs)) ·

∂ ξ′j
∂ τ ′i

, tjs − dji

)
(4.9)

for every j ∈ Y ∩ i→, s = 1, . . . , pj according to the chain rule and (4.3), which can be evaluated using
(2.3), (2.15), (3.18), (3.14), (3.22), and (3.19). In this way, the recursive computation of the partial
derivatives of E2 with respect to wi` and di` for any hidden neuron i ∈ V \ (X ∪ Y), is integrated in
the back-propagation algorithm described in Section 3.

5 Experiments and Conclusion

We have implemented the proposed learning algorithm and performed several preliminary computer
simulations with simple toy problems such as XOR with temporal encoding. These experiments also
served as a tool for debugging our model of a smoothly spiking neuron, e.g. for choosing suitable
function shapes. The first experimental results confirmed the smoothness of spike creation/deletion.
For example, Figure 5.1 from [18] where a slightly different model was used (cf. Footnote 2) shows
how the graph of function τj(t) evolves in the course of weight and delay adaptation for a spiking
neuron j. Recall τj(t) is the smooth approximation of the stair function which produces the last firing
time preceding a given time t (cf. Figure 2.7). Figure 5.1 depicts the process of a spike creation during
training when the time instant of a new spike t̃js “detaches” from the preceding4 spike tj,s−1 (which,

4In this report we use the succeeding spike for the split in contrast to [18].

10

for simplicity, is assumed here to be “fixed” for a moment, i.e. ˜tj,s−1 = tj,s−1) and “moves” smoothly
with increasing ξ′j(tjs) > 0 to its actual position t̃js = tjs (ξj(tjs) = 0) where ξ′j(tjs) reaches threshold
value δ. In a general case, more spikes can smoothly be generated at the same time which was also
observed in our experiments.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 200 400 600 800 1000

Figure 5.1: Spike creation.

Nevertheless, the experiments have also shown that the gradient method get often stuck in local
minima corresponding to transient network configurations which emerge from the smooth approxima-
tion of discrete events. In Section 4 we have proposed a solution to this problem which is based on
an additional penalty term introduced in the error function. However, this approach did not help to
avoid the underlying side effect, which disqualifies our learning algorithm for networks of smoothly
spiking neurons.

Acknowledgments

I would like to thank Petr Savický for his idea of expressing the condition on the derivatives by the
primitive function (2.1) and of using the total differential identity (3.20), to Petra Vidnerová for her
help with computer experiments, and to Eva Posṕı̌silová for drawing the figures.

11

Bibliography

[1] Berkovec, K.: Learning in networks of spiking neurons. (in Czech) M.Sc. Thesis, Faculty of
Mathematics and Physics, Charles University, Prague, Czech Republic (2005)

[2] Bohte, S.M., Kok, J.N., La Poutré, H.: Error-backpropagation in temporally encoded networks
of spiking neurons. Neurocomputing 48 (1-4) (2002) 17–37

[3] Bohte, S.M., La Poutré, H., Kok, J.N.: Unsupervised clustering with spiking neurons by sparse
temporal coding and multi-layer RBF networks. IEEE Transactions on Neural Networks 13 (2)
(2002) 426–435

[4] Fiete, I.R., Seung, H.S.: Gradient learning in spiking neural networks by dynamic perturbation
of conductances. Physical Review Letters 97, 048104 (2006)

[5] Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity.
Cambridge University Press, Cambridge, UK (2002)

[6] Haykin, S.: Neural Networks: A Comprehensive Foundation. (2nd ed.) Prentice-Hall, Upper
Saddle River, NJ (1999)

[7] Kasiński, A., Ponulak, F.: Comparison of supervised learning methods for spike time coding in
spiking neural networks. International Journal of Applied Mathematics and Computer Science
16 (1) (2006) 101–113

[8] Kempter, R., Gerstner, W., van Hemmen, J.L.: Hebbian learning and spiking neurons. Physical
Review E 59 (4) (1999) 4498–4514

[9] Maass, W., Bishop, C.M. (Eds.): Pulsed Neural Networks. MIT Press, Cambridge, MA (1999)

[10] Maass, W., Schmitt, M.: On the complexity of learning for spiking neurons with temporal coding.
Information and Computation 153 (1) (1999) 26–46

[11] Moore, S.C.: Back-propagation in spiking neural networks. M.Sc. Thesis, Department of Com-
puter Science, University of Bath, UK (2002)

[12] Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organization
in the brain. Psychological Review 65 (6) (1958) 386–408

[13] Ruf, B., Schmitt, M.: Hebbian learning in networks of spiking neurons using temporal coding.
Proceedings of the IWANN’97 International Work-Conference on Artificial and Natural Neural
Networks, Lanzarote, Canary Islands, Spain, LNCS 1240, Springer Verlag, Berlin (1997) 380–389

[14] Ruf, B., Schmitt, M.: Self-organizing maps of spiking neurons using temporal coding, In Bower,
J.M. (ed.): Computational Neuroscience: Trends in Research. Plenum Press, New York (1998)
509–514

[15] Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating
errors. Nature 323 (1986) 533–536

12

[16] Schrauwen, B., Van Campenhout, J.: Extending SpikeProp. Proceedings of the IJCNN 2004
IEEE International Joint Conference on Neural Networks, Budapest, Hungary, Vol. 1, IEEE,
Piscataway, NJ (2004) 471–475

[17] Schrauwen, B., Van Campenhout, J.: Backpropagation for population-temporal coded spiking
neural networks. Proceedings of the IJCNN 2006 IEEE International Joint Conference on Neural
Networks, Vancouver, BC, Canada, Vol. 3, IEEE, Piscataway, NJ (2006) 3463–3470

[18] Š́ıma, J.: Gradient learning in networks of smoothly spiking neurons (revised version). Technical
Report V-1045, Institute of Computer Science, Academy of Sciences of the Czech Republic,
Prague, Czech Republic (2009)

[19] Š́ıma, J., Sgall, J.: On the non-learnability of a single spiking neuron. Neural Computation 17
(12) (2005) 2635–2647

[20] Thorpe, S., Delorme, A., Van Rullen, R.: Spike-based strategies for rapid processing. Neural
Networks 14 (6-7) (2001) 715–725

[21] Tiňo, P., Mills, A.J.S.: Learning beyond finite memory in recurrent networks of spiking neurons.
Neural Computation 18 (3) (2006) 591–613

[22] Xin, J., Embrechts, M.J.: Supervised learning with spiking neuron networks. Proceedings of the
IJCNN 2001 IEEE International Joint Conference on Neural Networks, Washington D.C., Vol. 3,
IEEE, Piscataway, NJ (2001) 1772–1777

13

