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Abstract

It has been known for discrete-time recurrent neural networks (NNs) that
binary-state models using the Heaviside activation function (with Boolean
outputs 0 or 1) are equivalent to finite automata (level 3 in the Chom-
sky hierarchy), while analog-state NNs with rational weights, employing the
saturated-linear function (with real-number outputs in the interval [0, 1]), are
Turing complete (Chomsky level 0) even for three analog units. However, it is
as yet unknown whether there exist subrecursive (i.e. sub-Turing) NN models
which occur on Chomsky levels 1 or 2. In this paper, we provide such a model
which is a binary-state NN extended with one extra analog unit (1ANN). We
achieve a syntactic characterization of languages that are accepted online by
1ANNs in terms of so-called cut languages which are combined in a certain
way by usual operations. We employ this characterization for proving that
languages accepted by 1ANNs with rational weights are context-sensitive
(Chomsky level 1) and we present explicit examples of such languages that
are not context-free (i.e. are above Chomsky level 2). In addition, we for-
mulate a sufficient condition when a 1ANN recognizes a regular language
(Chomsky level 3) in terms of quasi-periodicity of parameters derived from
its real weights, which is satisfied e.g. for rational weights provided that the
inverse of the real self-loop weight of the analog unit is a Pisot number.
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Preprint submitted to Neural Networks April 30, 2019



1. Introduction

The computational power of discrete-time recurrent neural networks
(NNs) with the saturated-linear activation function1 depends on the de-
scriptive complexity of their weight parameters (Siegelmann, 1999; Š́ıma and
Orponen, 2003). NNs with integer weights, corresponding to binary-state
networks (with Boolean outputs 0 or 1), coincide with finite automata (Alon
et al., 1991; Horne and Hush, 1996; Indyk, 1995; Minsky, 1967; Š́ıma, 2014a;
Š́ıma and Wiedermann, 1998). Rational weights make the analog-state NNs
(with real-number outputs in the interval [0, 1]) computationally equivalent
to Turing machines (Indyk, 1995; Siegelmann and Sontag, 1995), and thus
(by a real-time simulation due to Siegelmann and Sontag, 1995) polynomial-
time computations of such networks are characterized by the complexity
class P. Moreover, NNs with arbitrary real weights can even derive “super-
Turing” computational capabilities (Siegelmann, 1999). In particular, their
polynomial-time computations correspond to the nonuniform complexity class
P/poly while any input/output mapping (including undecidable problems)
can be computed within exponential time (Siegelmann and Sontag, 1994). In
addition, a proper hierarchy of nonuniform complexity classes between P and
P/poly has been established for polynomial-time computations of NNs with
increasing Kolmogorov complexity of real weights (Balcázar et al., 1997).

As can be seen, our understanding of the computational power of super-
recursive (i.e. super-Turing) NNs is satisfactorily fine-grained when changing
from rational to arbitrary real weights. In contrast, there is still a gap be-
tween integer and rational weights which results in a jump from regular lan-
guages capturing the lowest level 3 in the Chomsky hierarchy to recursively
enumerable languages on the highest Chomsky level 0. However, it is as yet
unknown whether there exist so-called subrecursive (i.e. sub-Turing)2 NNs
that occur on Chomsky levels 1 or 2. In this paper, we provide such a model.

In order to refine the classification of subrecursive NNs which do not pos-
sess the full power of Turing machines (Chomsky level 0), we initiate the

1The results are partially valid for more general classes of activation functions (Koiran,
1996; Siegelmann, 1996; Š́ıma, 1997; Šorel and Š́ıma, 2004) including the logistic func-
tion (Kilian and Siegelmann, 1996).

2We use the term “subrecursive” to refer to recursion (computability) theory where a
function is called recursive if it is computable by a Turing machine. Thus, by subrecursive
neural networks we mean any class of NNs that are computationally less powerful than
Turing machines.
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study of binary-state NNs extended with a few extra analog neurons hav-
ing real weights. It appears that already a binary-state NN to which only
three analog-state units with rational weights are added, is Turing complete
(Chomsky level 0), since it can implement two stacks of pushdown automata,
a model equivalent to Turing machines (Š́ıma, 2018). Therefore, we consider
a model of binary-state NNs including exactly one extra analog neuron with
real weights. Such a model with an online input/output protocol has been
shown to be computationally equivalent to so-called finite automata with a
register whose domain is partitioned into a finite number of intervals, each
associated with a local state-transition function (Š́ıma, 2014b). Although
this study has been inspired by theoretical issues, NNs with different types
of units/layers are widely used in practical applications, e.g. in deep learn-
ing (Schmidhuber, 2015), and they thus require a detailed mathematical
analysis.

In this paper, we characterize syntactically the class of languages that are
accepted online by binary-state neural networks with an extra analog unit
(1ANN) in terms of so-called cut languages (Š́ıma and Savický, 2018) which
are combined in a certain way by usual operations such as complementation,
intersection, union, concatenation, Kleene star, reversal, the largest prefix-
closed subset, and a letter-to-letter morphism. A cut language L<c contains
finite representations of numbers in a real base β (so-called β-expansions)
using real digits from a finite alphabet A, that are less than a given real
threshold c (i.e. a Dedekind cut).

We have classified the class of cut languages within the Chomsky hierar-
chy (Š́ıma and Savický, 2018). For this purpose, we have introduced a new
concept of a quasi-periodic number having all of its infinite β-expansions
eventually quasi-periodic. In particular, we have proven that a cut lan-
guage L<c is regular iff c is a quasi-periodic number, while L<c is not even
context-free if it is not the case. Nevertheless, any cut language L<c with
rational parameters (threshold, base, and digits) is context-sensitive. These
results have revealed an interesting connection between the analysis of NN
models and an active number-theoretic research field of non-standard nu-
meral systems employing non-integer bases (e.g. Baker, 2014; Baker et al.,
2017; de Vries and Komornik, 2009; Dombek et al., 2011; Erdös et al., 1990;
Frougny and Lai, 2011; Frougny et al., 2014; Glendinning and Sidorov, 2001;
Hare, 2007; Komornik et al., 2011; Komornik and Pedicini, 2017; Kong et al.,
2010; Schmidt, 1980; Sidorov, 2003), which was established already in late
1950’s (Parry, 1960; Rényi, 1957).
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By using the syntactic characterization of 1ANNs achieved in this paper,
we derive a sufficient condition when a 1ANN recognizes a regular language
(Chomsky level 3), in terms of quasi-periodicity of some parameters depend-
ing on its real weights. For example, a 1ANN with weights from the smallest
field extension3 Q(β) over the rational numbers including a real number
β ∈ R, such that the self-loop weight w of its analog unit is 1/β for some
Pisot base β > 1, is computationally equivalent to a finite automaton. For
instance, since every integer n > 1 is a Pisot number (in fact, such integers
are the only rational Pisot numbers), it follows that any 1ANN with rational
weights such that w = 1/n, accepts a regular language.

Furthermore, we show examples of languages accepted by 1ANNs with
rational weights that are not context-free (i.e. are above Chomsky level 2)
while we prove that any language accepted by this model is context-sensitive
(Chomsky level 1). Thus, these results refine the analysis of the computa-
tional power of subrecursive NNs with the weight parameters between integer
and rational weights. Namely, the computational power of binary-state net-
works having integer weights can increase from regular languages (Chomsky
level 3) to that between context-free (Chomsky level 2) and context-sensitive
languages (Chomsky level 1), when an extra analog unit with rational weights
is added, while a condition when this does not bring any additional power
even for real weights, is formulated.

The paper is organized as follows. In Section 2, we introduce basic defi-
nitions concerning the language acceptors based on 1ANNs. In Section 3, we
give a brief review of definitions and results related to quasi-periodic numbers
and cut languages, including unique and eventually periodic β-expansions,
examples of quasi-periodic numbers, and the classification of cut languages
within the Chomsky hierarchy, which will later be used for classifying the
1ANN models. The main technical results of the paper is the representa-
tion theorem providing a syntactic characterization of languages accepted by
1ANNs, which is proven in Section 4 and partially reversed in Section 5. As
a consequence of this characterization, in Section 6, we formulate a sufficient
condition when a language accepted by 1ANN is regular. In addition, we

3Recall that in algebra, the rational numbers (fractions) form the field Q with the two
usual operations, the addition and the multiplication over real numbers. For any real
number β ∈ R, the field extensions Q(β) ⊂ R is the smallest set containing Q ∪ {β} that
is closed under these operations. For example, the golden ratio ϕ = (1 +

√
5)/2 ∈ Q(

√
5)

whereas
√

2 /∈ Q(
√

5). Note that Q(β) = Q for every β ∈ Q.
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show a lower bound on the computational power of 1ANNs by providing an
explicit example of non-context-free languages that are recognized by 1ANNs
with rational weights, while any language accepted by this model proves to
be context-sensitive, which represents a corresponding upper bound. Finally,
we summarize the results and present some open problems in Section 7.

A preliminary version of this paper (Š́ıma, 2017) considered the model
of 1ANNs restricted only to rational weights and exploited the equivalence
of 1ANNs and finite automata with a register, while the present proofs use
direct constructions of 1ANNs with real weights.

2. Neural Language Acceptors With an Extra Analog Unit

We specify a computational model of a binary-state neural network with
an extra analog unit (shortly, 1ANN), N , which will be used online as a
formal language acceptor. The network N consists of s ≥ 3 units (neurons),
indexed as V = {1, . . . , s}. All the units in N are assumed to be binary-state
(shortly binary) neurons (i.e. perceptrons, threshold gates) except for the last
sth neuron which is an analog-state (shortly analog) unit. The neurons are
connected into a directed graph representing an architecture of N , in which
each edge (i, j) ∈ V 2 leading from unit i to j is labeled with a real weight
w(i, j) = wji ∈ R. The absence of a connection within the architecture
corresponds to a zero weight between the respective neurons, and vice versa.

The computational dynamics ofN determines for each unit j ∈ V its state
(output) y

(t)
j at discrete time instants t = 0, 1, 2, . . .. The states y

(t)
j of the first

s−1 binary neurons j ∈ V \{s} are Boolean values 0 or 1, whereas the output

y
(t)
s from analog unit s is a real number from the unit interval I = [0, 1]. This

establishes the network state y(t) =
(
y

(t)
1 , . . . , y

(t)
s−1, y

(t)
s

)
∈ {0, 1}s−1 × I at

each discrete time instant t ≥ 0.
At the beginning of a computation, the neural network N is placed in

an initial state y(0) ∈ {0, 1}s which may also include an external input,

where, for simplicity, we assume y
(0)
s = 0. At discrete time instant t ≥ 0, an

excitation of any neuron j ∈ V is defined as

ξ
(t)
j =

s∑
i=0

wjiy
(t)
i , (1)

including a real bias value wj0 ∈ R which can be viewed as the weight

w(0, j) = wj0 from a formal constant unit input y
(t)
0 ≡ 1 (i.e. 0 ∈ V ). At
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the next instant t+ 1, the neurons j ∈ Vt+1 from a selected subset Vt+1 ⊆ V

compute their new outputs y
(t+1)
j in parallel by applying an activation func-

tion σj : R −→ I to ξ
(t)
j , whereas the remaining units j /∈ Vt+1 do not update

their states, that is,

y
(t+1)
j =

{
σj

(
ξ

(t)
j

)
for j ∈ Vt+1

y
(t)
j for j ∈ V \ Vt+1 .

(2)

For perceptron units j ∈ V \ {s} with binary states yj ∈ {0, 1}, the
Heaviside activation function σj(ξ) = H(ξ) is used where

H(ξ) =

{
1 for ξ ≥ 0
0 for ξ < 0 ,

(3)

while the analog-state unit s ∈ V employs the saturated-linear function
σs(ξ) = σ(ξ) where

σ(ξ) =


1 for ξ ≥ 1
ξ for 0 < ξ < 1
0 for ξ ≤ 0 .

(4)

In this way, the new network state y(t+1) ∈ {0, 1}s−1 × I at time t + 1 is
determined.

Without loss of efficiency (Orponen, 1997), we assume synchronous com-
putations for which the sets Vt that define the computational dynamics of N
according to (2), are predestined deterministically. Usually, the sets Vt corre-
spond to layers in the architecture of N which are updated one by one (e.g., a
feedforward subnetwork). In particular, we use a systematic periodic choice
of Vt so that Vt+d = Vt for every t ≥ 1 where an integer parameter d ≥ 1
represents the number of updates within one macroscopic time step (e.g., d is
the number of layers). For notational simplicity, we assume that the state
of the analog unit s ∈ V is updated exactly once in every macroscopic time
step, say s ∈ Vdτ for every τ ≥ 1.

The computational power of NNs has been studied analogously to the
traditional models of computations so that the networks are exploited as ac-
ceptors of formal languages L ⊆ Σ∗ over a finite alphabet Σ = {λ1, . . . λq} of q
letters (symbols). For the finite networks the following online input/output
protocol has been used (Alon et al., 1991; Horne and Hush, 1996; Indyk,
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1995; Siegelmann, 1996; Š́ıma and Orponen, 2003; Š́ıma and Wiedermann,
1998). An input word (string) x = x1 . . . xn ∈ Σn of arbitrary length n ≥ 0
is sequentially presented to the network, symbol after symbol, via the first
q < s so-called input neurons X = {1, . . . , q} ⊂ V \ {s}. We employ the
popular one-hot encoding of alphabet Σ. This means that each letter λi ∈ Σ
is represented by one input neuron i ∈ X which is activated when symbol
λi is being read. Thus, the states of input neurons X are externally set
(and clamped) at macroscopic time steps so that they represent a current
input symbol regardless of any influence from the remaining neurons in the
network, that is,

y
(τd+k)
i =

{
1 if xτ+1 = λi
0 otherwise

for i ∈ X, τ = 0, . . . , n− 1,
k = 0 . . . , d− 1,

(5)

where an integer d ≥ 1 is the time overhead for processing a single input
symbol which coincides with the macroscopic time step. Then, the so-called
output neuron out ∈ V \ (X ∪ {s}) signals at the macroscopic time instant
τ = n whether the input word belongs to the underlying language L, that is,

y
(nd)
out =

{
1 for x ∈ L
0 for x /∈ L . (6)

Note that the states y
(nd)
X =

(
y

(nd)
1 , . . . , y

(nd)
q

)
∈ {0, 1}q of input neurons X at

the macroscopic time instant τ = n when the network output (6) is produced,
are not specified by (5), since they do not influence this output. We thus
define them formally so that they represent any symbol xn+1 ∈ Σ added
to the input string in order to ensure the formal correctness of dynamics
equations (2). We say that a language L ⊆ Σ∗ is accepted (recognized) by
a 1ANN N , which is denoted by L = L(N ), if for any input word x ∈ Σ∗, x
is accepted by N iff x ∈ L.

Example 1 We illustrate the definition of the 1ANN language acceptor and
its input/output protocol on a simple 1ANN N , which will further be used
in this paper as a running example for clarifying the theorems. The network
N is composed of only s = 5 neurons, that is, V = {0, 1, . . . , 5} where
the last 5-th unit is the analog neuron. The architecture of N is depicted
in Figure 1 where the directed edges connecting units are labeled with the
respective weights w34 = −1, w45 = 1, w52 = 2

3
, and w55 = 1

3
, while the edge
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Figure 1: Example of a 1ANN language acceptor.

drawn without the originating unit 0 ∈ V corresponds to the bias parameter
w40 = −1

2
.

The 1ANN N is employed for recognizing a language L = L(N ) over
the binary alphabet Σ = {λ1, λ2} = {0, 1} including q = |Σ| = 2 symbols,
λ1 = 0 and λ2 = 1. For this purpose, the first two units serve as the input
neurons X = {1, 2} ⊂ V using the one-hot encoding of Σ, whereas the
third unit is the output neuron out = 3 ∈ V \ (X ∪ {s}), which implements
the input/output protocol (5) and (6). Notice that the first neuron 1 ∈ V
corresponding to the input symbol λ1 = 0, is here in fact disconnected from
the network, since in the one-hot encoding, its role is taken by the second
unit 2 ∈ V corresponding to λ2 = 1, whose state is 0 iff the first neuron
outputs 1. In addition, the non-input neurons start at the initial states
y

(0)
3 = 1, y

(0)
4 = y

(0)
5 = 0, and we assume that one macroscopic step of

N consists of d = 2 updates which corresponds to the time overhead for
processing a single input symbol. Namely, V1 = {4}, V2 = {3, 5}, and the set
of neurons Vt that are updated at time instant t ≥ 1, satisfy Vt = Vt+2 for
every t ≥ 1.

For instance, suppose that the input word x = 1100 ∈ {0, 1}4 of length
n = 4 is externally presented to N where x1 = 1, x2 = 1, x3 = 0, x4 = 0,
and let e.g. x5 = 0. Table 1 shows the sequential schedule of presenting
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τ xτ+1 t y
(t)
1 y

(t)
2 y

(t)
3 y

(t)
4 y

(t)
5

the result of
recognition

0 1 0 0 1 1 0 0 ε ∈ L(N )

0 1 1 0 1 1 0 0

1 1 2 0 1 1 0 2
3

1 ∈ L(N )

1 1 3 0 1 1 1 2
3

2 0 4 1 0 0 1 8
9

11 /∈ L(N )

2 0 5 1 0 0 1 8
9

3 0 6 1 0 0 1 8
27

110 /∈ L(N )

3 0 7 1 0 0 0 8
27

4 0 8 1 0 1 0 8
81

1100 ∈ L(N )

Table 1: The accepting computation by the 1ANN N from Figure 1 on the input 1100.

the symbols x1, x2, x3, x4 of x to N through the input neurons X at the
macroscopic time steps τ = 0, 1, 2, 3, respectively. Namely, the state values
y

(2τ)
1 = 1 and y

(2τ)
2 = 0 encode the input symbol xτ+1 = 0 whereas y

(2τ)
1 = 0

and y
(2τ)
2 = 1 translates to xτ+1 = 1 in the one-hot encoding, according to (5).

The computation by N on the input 1100 produces a sequence of network
states which are listed in Table 1 where the updated states of neurons in Vt,
including the externally set inputs, are indicated in boldface. This includes
the result of the recognition which is reported by the output neuron out = 3,
even for each of the five prefixes of x, the empty string ε, 1, 11, 110 and 1100,
at the respective macroscopic time steps τ = 0, 1, 2, 3, 4, according to (6).

3. Quasi-Periodic Numbers and Cut Languages

In this section, we recall the notions of quasi-periodic numbers and cut
languages, which have been introduced by the author (Š́ıma and Savický,
2018) within the context of 1ANN analysis. Nevertheless, these concepts
also appear to be interesting in numeral systems within algebraic number
theory (see the references throughout this section). The following detailed
exposition is thus motivated by the fact that the positional numeral systems
provide a connection between the world of NNs and the world of formal lan-
guages. Namely, the idea of periodicity in the non-standard numeral systems
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with non-integer bases appears to be related to regular cut languages (see
Theorem 2 below). The bridge between these two worlds is then built in the
representation theorem in Section 4, providing a syntactic characterization
of languages accepted by 1ANNs in terms of cut languages.

The section is organized as follows. In Paragraph 3.1, we first review
the definitions and results concerning β-expansions. In Paragraph 3.2, we
introduce and illustrate by examples the concept of quasi-periodic numbers
which is then used for classifying the cut languages within the Chomsky
hierarchy in Paragraph 3.3.

3.1. β-Expansions: Uniqueness and Periodicity

Hereafter, let β be a real number such that |β| > 1, which represents a
base (radix) of non-standard positional numeral system, and let A 6= ∅ be a
finite set of real digits. We say that a word (string) a = a1 . . . an ∈ A∗ over
alphabet A is a finite β-expansion of a real number x if

x = (a)β = (a1 . . . an)β =
n∑
k=1

akβ
−k . (7)

Note that we use only negative powers of β while omitting the radix point
at the left of β-expansions. Moreover, a = a1a2a3 . . . ∈ Aω is an (infinite)
β-expansion of a real number x, where Aω denotes the set of all countably
infinite words over A, if

x = (a)β = (a1a2a3 . . .)β =
∞∑
k=1

akβ
−k . (8)

Observe that the infinite sum in (8) can be viewed as a power series in variable
β−1 which is convergent due to |β| > 1.

Obviously, β-expansions are a generalization of the integer-base numeral
representations such as the classical decimal expansions in base β = 10 with
the digits from A = {0, 1, . . . , 9} or the binary expansions in base β = 2
with the digit alphabet A = {0, 1}. For instance, (75)10 = 7 · 10−1 + 5 · 10−2

and (11)2 = 1 · 2−1 + 1 · 2−2 are the finite β-expansions of 3
4

for these two
integer bases, respectively, while the same number can be represented by

the finite β-expansion 3
4

= 7
4
·
(

5
2

)−1
+ 5

16
·
(

5
2

)−2
using the non-integer base

β = 5
2

and alphabet A =
{

5
16
, 7

4

}
. The representations in non-integer bases

have systematically been studied since late 1950’s, starting with the seminal
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papers due to Rényi (1957) and Parry (1960), and nowadays, they are still
the subject of active research with important applications. For example,
recent results on non-integer numeral systems find their applications in the
algorithms for fast parallel addition (Frougny et al., 2014).

Furthermore, an infinite β-expansion a ∈ Aω is called eventually periodic
if a = a1a2 . . . ak1(ak1+1ak1+2 . . . ak2)

ω where m = k2 − k1 > 0 is the length of
a repetend (repeating digits) ak1+1ak1+2 . . . ak2 ∈ Am, while k1 is the length
of preperiodic part a1a2 . . . ak1 ∈ Ak1 . For k1 = 0, we call such a β-expansion
(purely) periodic. Any eventually periodic β-expansion can be evaluated as

(a1a2 . . . ak1(ak1+1ak1+2 . . . ak2)
ω)β = (a1 . . . ak1)β + β−k1% (9)

where a so-called periodic point % = ((ak1+1ak1+2 . . . ak2)
ω)β ∈ R satisfies

(ak1+1ak1+2 . . . ak2)β =
m∑
k=1

ak1+kβ
−k = %

(
1− β−m

)
(10)

by the sum of geometric series with the common ratio β−m.
For simplicity, it is usually assumed in the literature that a real base meets

β > 1 and the standard digits are integers from A = {0, 1, . . . , dβe − 1},
which ensures that a β-expansion exists for every real number x ∈ Dβ where
Dβ is the interval Dβ = [0 , (dβe − 1) /(β − 1)]. For an integer base β ∈ N
when Dβ = I, it is well known that every irrational number x ∈ Dβ \Q
has a unique infinite β-expansion, while any rational x ∈ Dβ ∩ Q has ei-
ther a unique eventually periodic β-expansion (e.g., the endpoints 0 and
1 of Dβ have the trivial β-expansions 0ω and (β − 1)ω, respectively), or
exactly the two distinct eventually periodic β-expansions, a1a2 . . . an0ω and
a1a2 . . . an−1(an − 1)(β − 1)ω, if there exists a finite β-expansion a1a2 . . . an ∈
A∗ of x = (a1a2 . . . an)β such that an 6= 0. An example of such an ambiguity
is 3

4
= (75)10 = (750ω)10 = (749ω)10.

For a non-integer base β, by contrast, almost every number x ∈ Dβ

has a continuum of distinct β-expansions (Sidorov, 2003). In particular, for
1 < β < 2 when A = {0, 1}, every number x ∈ Dβ = [0, 1/(β − 1)] except
for the endpoints 0 and 1/(β − 1), has a continuum of distinct β-expansions
if 1 < β < ϕ where ϕ = (1 +

√
5)/2 ≈ 1.618034 is the golden ratio (Erdös

et al., 1990). On the other hand, for ϕ ≤ β < q where q ≈ 1.787232 is
the (transcendental) Komornik-Loreti constant (i.e. the unique solution of
equation

∑∞
k=1 tkq

−k = 1 where (tk)
∞
k=1 is the Thue-Morse sequence in which
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tk ∈ {0, 1} is the parity of the number of 1s in the binary representation
of k), there are countably many numbers in Dβ that have unique β-expansions
which are eventually periodic (Glendinning and Sidorov, 2001). Moreover, for
q ≤ β < 2, there is a continuum of numbers in Dβ with unique β-expansions.

These results have further been generalized to any non-integer base β > 2
combined with the standard integer digits from A = {0, 1, . . . , dβe − 1},
by using generalized golden ratios (Baker, 2014) and generalized Komornik-
Loreti constants (de Vries and Komornik, 2009; Kong et al., 2010). For a
general reasonable alphabet A (when Dβ is an interval) that may include
non-integer digits, which is the case considered in this paper, there exist
two critical bases ϕA and qA such that 1 < ϕA ≤ qA and the number of
unique β-expansions is finite if 1 < β < ϕA, countable if ϕA < β < qA, and
uncountable if β > qA. Nevertheless, the determination of these critical bases
(and even the existence of qA) for arbitrary A is still not complete even for
three digits (Komornik et al., 2011; Komornik and Pedicini, 2017).

The β-expansions of a given number can be ordered lexicographically
and its maximal (resp. minimal) β-expansion is called greedy (resp. lazy).
Obviously, any unique β-expansion is simultaneously greedy and lazy. For
simplicity, assume β > 1 and A = {0, 1, . . . , dβe − 1}, and denote by Per(β)
the set of numbers whose greedy β-expansion using the digits from A, is
eventually periodic. For any integer base β ∈ Z, it is well known that
Per(β) = Q∩I. For a non-integer base β, we have Per(β) ⊆ Q(β)∩Dβ where
Q(β) denotes the smallest field extension3 over Q including β, according to
(9) and (10).

On the other hand, if Q ∩ I ⊂ Per(β), then β must be either a Pisot or
a Salem number (Schmidt, 1980) where a Pisot number is a real algebraic
integer (a root of some monic polynomial with integer coefficients) greater
than 1 such that all its Galois conjugates (other roots of such a unique
monic polynomial with minimal degree) are in absolute value less than 1.
A characteristic property of Pisot numbers is that their powers approach
integers at an exponential rate. Similarly, a Salem number is a real algebraic
integer greater than 1 such that all its Galois conjugates are in absolute value
less or equal to 1 and at least one equals 1. In particular, for any β ∈ Q \ Z
which cannot be a Pisot nor Salem number by the integral root theorem,
there exists a rational number from Dβ ∩Q whose greedy β-expansion is not
eventually periodic. Nevertheless, it was shown for any Pisot number β that
Per(β) = Q(β) ∩ Dβ (Schmidt, 1980), while for Salem numbers this is still
an open problem (Hare, 2007). Recently, these results have partially been
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generalized to negative base β < −1 and non-integer digits in A (Baker et al.,
2017; Dombek et al., 2011; Frougny and Lai, 2011).

3.2. Quasi-Periodic Numbers

We have generalized the notion of eventual periodicity defined by (9)
and (10) (Š́ıma and Savický, 2018). We say that an infinite β-expansion
a1a2a3 . . . ∈ Aω is eventually quasi-periodic with a periodic point % ∈ R if
there is an increasing infinite sequence of indices, 0 ≤ k1 < k2 < · · · , such
that for every i ≥ 1,

(aki+1 . . . aki+1
)β =

mi∑
k=1

aki+kβ
−k = %

(
1− β−mi

)
(11)

(cf. (10)) where mi = ki+1 − ki > 0 is the length of quasi-repetend
aki+1 . . . aki+1

∈ Ami , while k1 is the length of preperiodic part a1 . . . ak1 ∈ Ak1 .
For k1 = 0, we call such a β-expansion (purely) quasi-periodic. Any eventu-
ally quasi-periodic β-expansion can be evaluated as

(a1a2a3 . . .)β =
∞∑
k=1

akβ
−k = (a1 . . . ak1)β + β−k1% (12)

(cf. (9)) by using (11) since

∞∑
k=k1+1

akβ
−k =

∞∑
i=1

β−ki
mi∑
k=1

aki+kβ
−k = %

∞∑
i=1

β−ki
(
1− β−mi

)
= %

∞∑
i=1

(
β−ki − β−ki+1

)
= %

(
β−k1 +

∞∑
i=2

β−ki −
∞∑
i=1

β−ki+1

)
= β−k1% (13)

is an absolutely convergent series. In fact, condition (11) is equivalent to
the statement that every quasi-repetend creates a periodic β-expansion of %,
that is, for every i ≥ 1,

((aki+1 . . . aki+1
)ω)β = % . (14)

It follows from (12) that the preperiodic part together with an arbitrary
sequence of quasi-repetends satisfying (11) respectively (14) for the same pe-
riodic point %, yields a β-expansion of the same number. The quasi-repetends
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in a single eventually quasi-periodic β-expansion can be distinct having dif-
ferent length which can even be unbounded (see Example 3). Clearly, every
eventually periodic β-expansion is eventually quasi-periodic with a sequence
of identical quasi-repetends. For illustration, we present a simple example of
eventually quasi-periodic β-expansions:

Example 2 (Š́ıma and Savický, 2018, Example 1) Assume A = {0, 1} and
let β ≈ 1.220744 be the real root of the polynomial x4 − x− 1, which means

β4 − β − 1 = 0 , (15)

such that 1 < β < 2. Any infinite word a ∈ Aω generated by the ω-regular
expression4 00 (010 + 1000)ω is an eventually quasi-periodic β-expansion of
the number 1 with the periodic point % = β2. In particular, the prefix 00
is the preperiodic part of length k1 = 2, while 010 and 1000 represent two
quasi-repetends of length 3 and 4, respectively, satisfying condition (11):

(010)β = β−2 = β2
(
1− β−3

)
(16)

(1000)β = β−1 = β2
(
1− β−4

)
(17)

since both equations (16) and (17) for β reduce to (15), when multiplied by
β2 and β, respectively. For every word a, formula (12) is instantiated here as

(a)β = (00)β + β−2β2 = 1 . (18)

Observe that for instance, a = 00 (010 1000 010)ω = 000 (1010000 100)ω can
also be decomposed into the preperiodic part 000 and two quasi-repetends
1010000 and 100 with the periodic point % = β3.

We have introduced so-called quasi-periodic numbers (Š́ıma and Savický,
2018). We say that a real number c is β-quasi-periodic within A if every
infinite β-expansion of c using the digits from A, is eventually quasi-periodic.
Note that a number c that has no β-expansion at all, or has, in addition, a
finite β-expansion whereas 0 /∈ A, is also considered formally to be β-quasi-
periodic. For example, the numbers from the complement of the Cantor set
are formally 3-quasi-periodic within {0, 2}, since they have no 3-expansion
for the alphabet {0, 2}.

4We use the plus sign for denoting the alternation in regular expressions, which is the
union of two sets of strings, corresponding to the logical OR operation.
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Thus, a β-quasi-periodic number within A with at least two different
quasi-repetends has uncountably many eventually quasi-periodic β-expan-
sions, while at most countably many of them are eventually periodic which
are generated using individual quasi-repetends as repetends. Moreover, any
greedy eventually quasi-periodic β-expansion of a number can employ only
one identical repetend, and hence it must be eventually periodic, although the
number itself need not be β-quasi-periodic within A. This implies QPer(β) ⊆
Per(β) where QPer(β) denotes the set of β-quasi-periodic numbers within A,
which have an infinite β-expansion. In general, a number that is not β-
quasi-periodic within A can still have some of its β-expansions eventually
quasi-periodic.

For the bases β that are or are not Salem or Pisot numbers, we present
examples of numbers that are β-quasi-periodic within the binary alphabet
A = {0, 1} which is the case widely used in the literature. Simpler examples
can easily be found for larger alphabets and/or for arbitrary real digits.

Example 3 (Š́ıma and Savický, 2018, Example 4) Let β ≈ 1.722084 be the
real root of the polynomial x4 − x3 − x2 − x+ 1 such that β > 1, which is a
Salem number. One can show that all β-expansions of the real number

c = 1
9

(
4β3 − 2β2 − 2β − 5

)
≈ 0.672505 (19)

using the binary alphabet A = {0, 1}, are generated by the ω-regular expres-
sion

(100010 + 011(011101)∗100)ω

+ (100010 + 011(011101)∗100)∗011(011101)ω , (20)

and prove to be eventually quasi-periodic, which ensures that c is β-quasi-
periodic within A. This example also illustrates that there can be constant,
polynomial, or exponential number of distinct quasi-repetends of a given
length. For instance, for a preperiodic part of the form (100010)k011 for
k ≥ 0, we have only one quasi-repetend of length 6n, for n ≥ 2, namely
100(100010)n−1011, while for the preperiodic part (100010)k0, we have n ≥ 1
distinct quasi-repetends of length 6n, namely 11(011101)n1100(100010)n20
where n1, n2 ≥ 0 such that n − 1 = n1 + n2. Moreover, for the
preperiodic part 1(000101)k, we have 2n−2 quasi-repetends of the form
00010(011(011101)∗100)∗1 having the length 6n, for n ≥ 2.

Another example employs the plastic constant (i.e. the minimal Pisot
number) β ≈ 1.324718 which is the unique real root of the polynomial x3 −
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x−1, for which c = 1 proves to be β-quasi-periodic number within A = {0, 1}.
In addition, there are also β-quasi-periodic numbers within A = {0, 1} for the
base β that is neither Pisot nor Salem number. For instance, let β ≈ 1.685137
be the unique real root of the polynomial x5 − x4 − x2 − x− 1, whose some
Galois conjugates are in absolute value greater than 1. Then all the β-
expansions of the real number c = 1

3
(−β4 + 3β3− 2β − 1) ≈ 0.640563, which

are generated by the ω-regular expression (10000+01(01111)∗10)ω+(10000+
01(01111)∗10)∗01(01111)ω, are eventually quasi-periodic.

On the other hand, we provide examples of rational and irrational num-
bers that are not β-quasi-periodic within A for rational and irrational bases
β, despite their greedy and/or lazy β-expansion is eventually periodic.

Example 4 (Š́ıma and Savický, 2018, Example 3 and 5) Let A = {0, 1}.
We first consider rational β = 3

2
< ϕ which ensures there are uncountably

many infinite β-expansions of the number 1 (see Paragraph 3.1) which all
can be shown to be not eventually periodic. Thus, the number 1 is not
3
2
-quasi-periodic within {0, 1}.

Further consider irrational β =
√

2 ≈ 1.414214. The infinite words
110ω and 001ω are eventually periodic greedy and lazy β-expansions of c =
1
2
(β + 1) ≈ 1.207107, respectively. Nevertheless, c is not β-quasi-periodic

within A since any β-expansion of c with the prefix 0111 proves to be not
eventually quasi-periodic. In addition, c = 1

3
is an example of a rational num-

ber with the periodic greedy β-expansion (0001)ω whose lazy β-expansion is
not eventually periodic.

For Pisot bases β and digits from Q(β), the following theorem shows
that QPer(β) = Per(β) ⊆ Q(β) ⊆ QPer(β) where QPer(β) denotes the
set of β-quasi-periodic numbers within A, including those with no infinite
β-expansion.

Theorem 1 (Š́ıma and Savický, 2018, Theorem 5) Let β be a Pisot number
and assume A ⊂ Q(β). Then any number c ∈ Q(β) is β-quasi-periodic
within A.

3.3. Cut Languages Within the Chomsky hierarchy

Let Γ 6= ∅ be a finite alphabet which represents the digits through the
mapping α : Γ −→ A. We introduce a so-called cut language L<c ⊆ Γ∗ over
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alphabet Γ, which contains the representations of all finite β-expansions of
the numbers that are less than a given real threshold c, that is,

L<c =

{
z1 . . . zn ∈ Γ∗

∣∣∣∣∣
n∑
k=1

α(zk)β
−k < c

}
. (21)

The cut language L>c with the greater-than symbol is defined analogously. In
other words, a cut language is composed of finite β-expansions of a Dedekind
cut from which its name comes from. For instance, assume the base β = 10,
the digits A = {0, 1, . . . , 9}, and let α be the identity mapping on Γ = A.
Then the cut language

L<
√

2−1 =
{
a1 . . . an ∈ A∗

∣∣∣ (a1 . . . an)10 = a1
10

+ a2
100

+ · · ·+ an
10n

<
√

2− 1
}

(22)

with the threshold c =
√

2− 1, contains all the finite decimal expansions of
the (eventually non-periodic rational) numbers that are less than

√
2− 1 ≈

0.414214, e.g. the words ε, 4, 41, 414, 4142 belong to the cut language L<
√

2−1,
whereas the words 5, 42, 415, 4143 are not in L<

√
2−1.

We have classified the cut languages within the Chomsky hierarchy by
using the concept of quasi-periodic numbers introduced in Paragraph 3.2,
which is summarized in the following Theorems 2 and 3.

Theorem 2 (Š́ıma and Savický, 2018, Corollary 2) Any cut language L<c ⊆
Γ∗ over alphabet Γ with base β is either regular if c is β-quasi-periodic within
A = α(Γ), or non-context-free otherwise.

Theorem 3 (Š́ıma and Savický, 2018, Theorem 8) Let β ∈ Q be a rational
base and A = α(Γ) ⊂ Q be a set of rational digits encoded by alphabet Γ. Ev-
ery cut language L<c ⊆ Γ∗ with rational threshold c ∈ Q is context-sensitive.

4. The Representation Theorem for 1ANNs

The main technical result of the paper is a syntactic characterization of
languages accepted by 1ANNs, which is formulated in the following represen-
tation Theorem 4. The statement of this theorem is necessarily complicated
because of complex 1ANN computational dynamics. Therefore, we will illus-
trate the theorem and its proof on the 1ANN N from running Example 1.
Nevertheless, the resulting formula describing the languages recognized by
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1ANNs is mainly based on the cut languages introduced in Paragraph 3.3,
which are combined by usual operations including complementation, inter-
section, union, concatenation, Kleene star, reversal, the largest prefix-closed
subset, and a letter-to-letter morphism. The analysis of the computational
power of 1ANNs in Section 6 can thus be reduced to that of cut languages
since regular and context-sensitive languages are closed under these opera-
tions.

The idea of the representation theorem is to characterize a language L =
L(N ) ⊆ Σ∗ over the input alphabet Σ, that is accepted by a 1ANN N , in
terms of simpler cut languages over an alphabet Γ. Namely, a word x ∈
L is characterized by a sequence of the network states y(0)y(1) . . .y(t∗) ∈
({0, 1}s−1 × I)∗ which N traverses during its accepting computation on the
input x, within the time t∗ of update steps. However, the state alphabet
{0, 1}s−1 × I of N is infinite since output values from the analog neuron are
real numbers in the unit interval I. Nevertheless, this unit interval I can
be partitioned into a finite number p of subintervals such that the infinite
state alphabet of N is represented by the finite alphabet Γ which is roughly
{0, 1}s−1 × {1, . . . , p} where an analog output value from I is now replaced
by an index of the subinterval to which this output value belongs. Moreover,
the partition of I is such that the words over Γ that yield analog values in
one of the subintervals, form an intersection of two cut languages (or their
complements). This provides the desired characterization of L in terms of
cut languages.

Theorem 4 Let N be a 1ANN such that 0 < |wss| < 1. For any j ∈ V \X
such that wjs 6= 0, denote

cj (ỹ) = −
s−1∑
i=0

wji
wjs

yi for ỹ = (y1, . . . , ys−1) ∈ {0, 1}s−1 . (23)

We define a base

β =
1

wss
(24)

and a digit alphabet A = A1 ∪ A2 where

A1 =
{
− cs (ỹ)

∣∣ ỹ ∈ {0, 1}s−1
}

(25)

A2 =
{
a0 + a1β

−1 + a2β
−2
∣∣ a0, a1 ∈ A1 , a2 ∈ {0, β}

}
. (26)
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In addition, we introduce a set 5

C =

{
(cj (ỹ) , − sgn (wjs))

∣∣∣∣ j ∈ V \ (X ∪ {s}) , ỹ ∈ {0, 1}s−1

s.t. wjs 6= 0 & cj (ỹ) ∈ I

}
∪
{

(0,−1) , (0, 1) , (1,−1) , (1, 1)
}
⊂ I× {−1, 1} (27)

=
{

(c1, s1), (c2, s2), . . . , (cp+1, sp+1)
}
,

encoding the p+ 1 closed half-lines [0,+∞), (−∞, 0], [1,+∞), (−∞, 1], and

Hj(ỹ) =

{
[cj (ỹ ) , +∞) if (cj (ỹ) , −1) ∈ C
(−∞ , cj (ỹ )] if (cj (ỹ) , 1) ∈ C (28)

with the finite end-points called thresholds from the unit interval I, which is
sorted lexicographically as

(c1, s1) < (c2, s2) < · · · < (cp+1, sp+1) . (29)

Then any language L = L(N ) ⊆ Σ∗ that is accepted by N , can be written as

L = h ((L ∩R0)∗ · L ∩R) (30)

where the dot operator denotes the concatenation and
• h : Γ∗ −→ Σ∗ is a letter-to-letter morphism (i.e. h(Γ) ⊆ Σ) from a set
of strings over a finite alphabet Γ = Γ′ ∪ Γ′′ such that Γ′ is partitioned into
Γ1, . . . ,Γp and Γ′′ = Γλ × Γσ where Γσ = Γ1 ∪ Γp and Γλ = Γ′ \ Γσ,
• R ⊆ Γ∗ and R0 = Γ′′ · Γ∗λ · Γσ ∪ Γσ are regular languages,
• language L is defined as

L =

(
p⋃
r=1

LRr · Γr

)Pref

(31)

in which SPref denotes the largest prefix-closed subset of S ∪Γ∪{ε}, ε is the

5Clearly, the cardinality of C is upper bounded as |C| = p+1 ≤ (s−q−1)2s−1+4. Note
also that the thresholds cj (ỹ) in the definition of C are restricted to the unit interval I in
order to fall in the state domain of the analog neuron s, according to (4).
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empty string, SR is the reversal of language S,

L1 = L>0

Lr =


L<cr ∩ L<cr+1 if sr = −1 & sr+1 = −1
L<cr ∩ L>cr+1 if sr = −1 & sr+1 = 1
L>cr ∩ L<cr+1 if sr = 1 & sr+1 = −1
L>cr ∩ L>cr+1 if sr = 1 & sr+1 = 1

for r = 2, . . . , p− 1 (32)

Lp = L<1

where L<c = Γ∗λ · Γ′′ \ L<c denotes the complement,

L<c =

{
z1 . . . zn ∈ Γ∗λ · Γ′′

∣∣∣∣∣
n∑
k=1

α(zk)β
−k < c

}
(33)

is a cut language (analogously L>c), and α : Γ −→ A is a mapping to the
digit alphabet such that α(Γ′) ⊆ A1, α(Γ′′) ⊆ A2, and for every (z1, z2) ∈ Γ′′,

α
(
(z1, z2)

)
=

{
α(z1) + α(z2)β−1 if z1 ∈ Γ1

α(z1) + α(z2)β−1 + β · β−2 if z1 ∈ Γp .
(34)

Example 1 (continuing from p. 7) We illustrate Theorem 4 by applying
it to the 1ANN N from running Example 1, which is depicted in Figure 1.
Thus, we have β = 1/w55 = 3 due to (24), and A1 = {0, 2} according to
(25) where c5(0, 0, 0, 0) = 0 and c5(0, 1, 0, 0) = −w52/w55 = −2 are the only
distinct values of c5 (ỹ) for ỹ ∈ {0, 1}4 by (23) because w5i 6= 0 only for i = 2
when i ∈ {0, . . . , 4}. It follows that

A2 =
{

0, 1
3
, 2

3
, 1, 2, 7

3
, 8

3
, 3
}

= A (35)

which is produced by (26) for a0, a1 ∈ {0, 2} and a2 ∈ {0, 3}. Furthermore,

C =
{

(0,−1) , (0, 1) ,
(

1
2
,−1

)
, (1,−1) , (1, 1)

}
(36)

according to (27), since wj5 6= 0 only for j = 4 when j ∈ V \(X∪{s}) = {3, 4},
and c4(0, 0, 0, 0) = −w40/w45 = 1

2
is the only possible value of c4 (ỹ) for ỹ ∈

{0, 1}4 because w4i = 0 for every i = 1, . . . , 4, and sgn(w45) = 1. This encodes
the corresponding p + 1 = 5 half-lines [0,+∞), (−∞, 0], [1,+∞), (−∞, 1],
and H4(0, 0, 0, 0) = [1

2
,+∞) by (28). It follows that the characterization (30)

of L = L(N ) is based on the languages

L1 = L>0 , L2 = L>0 ∩ L< 1
2
, L3 = L< 1

2
∩ L<1 , L4 = L<1 , (37)
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which are defined using the cut languages according to (32). We will con-
tinue below in this running example by instantiating the alphabet Γ and the
mapping α in the proof of Theorem 4.

Proof (Theorem 4). An input string x = x1 . . . xn ∈ Σ∗ belongs to L =
L(N ) iff there is an accepting computation of N on x which is described

by a sequence of its states y(0),y(1), . . . ,y(nd) with y
(nd)
out = 1, following the

computational dynamics (1), (2), and the input/output protocol (5), (6). For
every time instant t = 0, 1, . . . , nd− 1 and for any non-input binary neuron
j ∈ Vt+1 \ (X ∪ {s}) whose state is updated at time t+ 1, we have

y
(t+1)
j = 1 iff

s−1∑
i=0

wjiy
(t)
i + wjsy

(t)
s ≥ 0 (38)

according to (1)–(3). For wjs 6= 0, this condition can be rewritten as

y
(t+1)
j = 1 iff y(t)

s ∈ Hj

(
ỹ(t)
)

(39)

where Hj

(
ỹ(t)
)

is a half-line defined by (28), (27), and (23) for the states of

binary neurons ỹ(t) =
(
y

(t)
1 , . . . , y

(t)
s−1

)
∈ {0, 1}s−1 at time t ≥ 0.

By using the order of thresholds (29), we partition the unit interval I into
the p intervals,

Ir =


[cr , cr+1) if sr = −1 & sr+1 = −1
[cr , cr+1] if sr = −1 & sr+1 = 1
(cr , cr+1) if sr = 1 & sr+1 = −1
(cr , cr+1] if sr = 1 & sr+1 = 1

for r = 1, . . . , p (40)

corresponding to (32). Note that if cr = cr+1 for some 1 ≤ r ≤ p, we know
−1 = sr < sr+1 = 1 due to C is a lexicographically ordered set, which
produces the degenerate interval [cr, cr]. Thus, I1 = [0, 0] and Ip = [1, 1]
because (0,−1), (0, 1), (1,−1), (1, 1) ∈ C according to (27). It follows from

(39) and (40) that the states of non-input binary neurons y
(t+1)
q+1 , . . . , y

(t+1)
s−1 ∈

{0, 1} at time instant t+ 1, are uniquely determined by both ỹ(t) ∈ {0, 1}s−1

and the interval Ir (1 ≤ r ≤ p) to which the analog state y
(t)
s belongs.

Since we assume that the states of input neurons X ⊂ V and analog unit
s ∈ Vdτ are simultaneously updated once in a macroscopic time step τ ≥ 1,
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we have

y
(τd)
X = y

(τd+1)
X = y

(τd+2)
X = · · · = y

((τ+1)d−1)
X

y
(τd)
s = y

(τd+1)
s = y

(τd+2)
s = · · · = y

((τ+1)d−1)
s

for τ = 0, . . . , n− 1 , (41)

by (2) and (5). For every τ = 0, . . . , n, we define the index rτ ∈ {1, . . . , p} of

interval Irτ so that y
(τd)
s ∈ Irτ , especially, r0 = 1 because y

(0)
s = 0 is assumed.

As the computational dynamics of N is deterministic satisfying Vt+d = Vt for
every t ≥ 1, and because of (41), the states of binary neurons, ỹ((τ+1)d−1) ∈
{0, 1}s−1 at the time instant (τ+1)d−1 for any macroscopic time step τ ≥ 0,
are uniquely determined by both ỹ(τd) ∈ {0, 1}s−1 and rτ ∈ {1, . . . , p}, which
defines the mapping ν : {0, 1}s−1 × {1, . . . , p} −→ {0, 1}s−1 that meets

ỹ((τ+1)d−1) = ν
(
ỹ(τd), rτ

)
. (42)

For the non-input binary neurons q+1, . . . , s−1 ∈ V \(X∪{s}), this mapping
extends uniquely to the next time instant by ν : {0, 1}s−1 × {1, . . . , p} −→
{0, 1}s−q−1, satisfying(

y
((τ+1)d)
q+1 , . . . , y

((τ+1)d)
s−1

)
= ν

(
ỹ(τd), rτ

)
. (43)

Thus, we encode the underlying computation by using a string z0 . . . zn ∈
Γ∗ over a finite alphabet Γ = Γ′ ∪ Γ′′ which consists of basic letters

Γ′ =

p⋃
r=1

Γr where Γr = {0, 1}s−1 × {r} for r = 1, . . . , p , (44)

and so-called contextual symbols

Γ′′ = Γλ × Γσ where Γσ = Γ1 ∪ Γp and Γλ = Γ′ \ Γσ . (45)

In particular, the underlying string is composed of z0 =
(
ỹ(0), r0

)
with r0 = 1

and

zτ =


(
ỹ(τd), rτ

)
∈ Γ′

if rτ−1 6∈ {1, p} or rτ ∈ {1, p}((
ỹ(τd), rτ

)
,
(
ỹ((τ−1)d), rτ−1

))
∈ Γ′′

if rτ−1 ∈ {1, p} & rτ 6∈ {1, p}

for τ = 1, . . . , n . (46)

Clearly, the basic letter zτ ∈ Γrτ ⊂ Γ′ encodes the network state y(τd) ∈
{0, 1}s−1 × I at the macroscopic time step τ ≥ 0, by using the states of
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binary neurons ỹ(τd) ∈ {0, 1}s−1 and the index rτ ∈ {1, . . . , p}. Similarly for
the contextual symbols zτ ∈ Γ′′ whose additional role is to mark the points
of the computation at which the state value y

(τd)
s ∈ I of the analog unit s

enters the linear part the activation function (4), which means y
(τd)
s ∈ (0, 1)

(i.e. 1 < rτ < p) whereas y
((τ−1)d)
s ∈ {0, 1} (i.e. rτ−1 ∈ {1, p}). Thus, any

contextual symbol followed by basic letters from Γλ, is the starting letter of
a reverse word in a cut language as will be argued below. Therefore, the
contextual symbols encode an extra information about the previous network
state which is needed for a proper initialization of the sum in the cut language
definition (33) (for k = n). We define the mapping α : Γ −→ A for any z ∈ Γ
as

α(z) =


−cs (ν(z)) if z ∈ Γ′

−cs (ν(ỹ, r))− cs (ν(ỹ′, 1)) β−1

if z = ((ỹ, r), (ỹ′, 1)) ∈ Γ′′

−cs (ν(ỹ, r))− cs (ν(ỹ′, p)) β−1 + β · β−2

if z = ((ỹ, r), (ỹ′, p)) ∈ Γ′′

(47)

by using (23) and (42), which satisfies α(Γ′) ⊆ A1, α(Γ′′) ⊆ A2, and (34).

Example 1 (continuing from p. 20) The ongoing proof of Theorem 4 is
accompanied by the running example of the 1ANN language acceptorN from
Figure 1, for which the preceding definitions are now instantiated. Thus,
consider the accepting computation by N on the input word 1100, as is
presented in Table 1. Since wj5 6= 0 only for the binary neuron j = 4,
condition (39) applies to 4 ∈ Vt+1 for t ≥ 0:

y
(t+1)
4 = 1 iff y

(t)
5 ∈ H4(0, 0, 0, 0) = [1

2
,+∞) (48)

(cf. Table 1). The unit interval I is partitioned into the p = 4 subintervals

I1 = [0, 0], I2 =
(
0, 1

2

)
, I3 =

[
1
2
, 1
)
, I4 = [1, 1] , (49)

according to (40) and (36). It follows that

r0 = 1, r1 = 3, r2 = 3, r3 = 2, r4 = 2 , (50)

satisfying y
(2τ)
5 ∈ Irτ by Table 1. The mapping ν : {0, 1}4 × {1, 2, 3, 4} −→

{0, 1}4 meets

ỹ(1) = ν
(
ỹ(0), r0

)
= ν((0, 1, 1, 0), 1) = (0, 1, 1, 0) (51)

ỹ(3) = ν
(
ỹ(2), r1

)
= ν((0, 1, 1, 0), 3) = (0, 1, 1, 1) (52)

ỹ(5) = ν
(
ỹ(4), r2

)
= ν((1, 0, 0, 1), 3) = (1, 0, 0, 1) (53)

ỹ(7) = ν
(
ỹ(6), r3

)
= ν((1, 0, 0, 1), 2) = (1, 0, 0, 0) (54)
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by (42).
The sequence of states of N at the macroscopic time steps τ = 0, 1, 2, 3, 4

during the computation on the input x = 1100 is encoded by a string
z0z1z2z3z4 ∈ Γ∗ over the alphabet Γ = Γ′ ∪ Γ′′ which is composed of the
basic letters Γ′ = Γ1 ∪Γ2 ∪Γ3 ∪Γ4 where Γr = {0, 1}4×{r} for r = 1, 2, 3, 4,
and the contextual symbols Γ′′ = Γλ×Γσ where Γλ = Γ2∪Γ3 and Γσ = Γ1∪Γ4,
according to (44) and (45), respectively. It follows from (46) that

z0 =
(
ỹ(0), r0

)
= ((0, 1, 1, 0), 1) ∈ Γ1 ⊂ Γ′ (55)

z1 =
((
ỹ(2), r1

)
,
(
ỹ(0), r0

))
= (((0, 1, 1, 0), 3), ((0, 1, 1, 0), 1)) ∈ Γ3 × Γ1 ⊂ Γ′′ (56)

z2 =
(
ỹ(4), r2

)
= ((1, 0, 0, 1), 3) ∈ Γ3 ⊂ Γ′ (57)

z3 =
(
ỹ(6), r3

)
= ((1, 0, 0, 1), 2) ∈ Γ2 ⊂ Γ′ (58)

z4 =
(
ỹ(8), r4

)
= ((1, 0, 1, 0), 2) ∈ Γ2 ⊂ Γ′ (59)

for which the mapping α : Γ −→
{

0, 1
3
, 2

3
, 1, 2, 7

3
, 8

3
, 3
}

produces

α(z0) = −c5(ν(z0)) = −c5(ν((0, 1, 1, 0), 1)) = −c5(0, 1, 1, 0) = 2 (60)

α(z1) = α(((0, 1, 1, 0), 3), ((0, 1, 1, 0), 1))

= −c5(ν((0, 1, 1, 0), 3))− c5(ν((0, 1, 1, 0), 1))β−1

= −c5(0, 1, 1, 1)− c5(0, 1, 1, 0) · 3−1 = 8
3

(61)

α(z2) = −c5(ν(z2)) = −c5(ν((1, 0, 0, 1), 3)) = −c5(1, 0, 0, 1) = 0 (62)

α(z3) = −c5(ν(z3)) = −c5(ν((1, 0, 0, 1), 2)) = −c5(1, 0, 0, 0) = 0 (63)

by (47), (55)–(59), (51)–(54), and (23).

We further continue in the proof of Theorem 4. Let 0 = τ1 < τ2 < · · · <
τm ≤ n be all the indices such that zτ` ∈ Γσ , which implies rτ` ∈ {1, p}
and y

(τ`d)
s ∈ {0, 1}, for ` = 1, . . . ,m, and formally denote τ0 = −1 and

τm+1 = n. For each ` ∈ {1, . . . ,m} such that τ` + 1 < τ`+1, and for every
τ = τ`, . . . , τ`+1 − 2, we know zτ+1 /∈ Γσ which ensures

0 < y((τ+1)d)
s = ξ((τ+1)d−1)

s =
s−1∑
i=0

wsiy
((τ+1)d−1)
i + wssy

(τd)
s < 1 . (64)

The recursive formula (64) for the analog state y
(τd)
s is applied (τ − τ` + 1)
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times, which results in

ξ((τ+1)d−1)
s =

τ−τ`+1∑
k=1

wkss

(
s−1∑
i=0

wsi
wss

y
((τ−k+2)d−1)
i

)
+ wτ−τ`+1

ss y(τ`d)
s , (65)

for every τ = τ`, . . . , τ`+1 − 1. By using (23), (24), and (42), this yields

ξ((τ+1)d−1)
s = −

τ−τ`+1∑
k=1

cs
(
ν
(
ỹ((τ−k+1)d), rτ−k+1

))
β−k +

y
(τ`d)
s

wss
β−(τ−τ`+2), (66)

which can be written down as

ξ((τ+1)d−1)
s = −

τ−τ`−1∑
k=1

cs
(
ν
(
ỹ((τ−k+1)d), rτ−k+1

))
β−k

+

(
− cs

(
ν
(
ỹ((τ`+1)d), rτ`+1

))
− cs

(
ν
(
ỹ(τ`d), rτ`

))
β−1

+
y

(τ`d)
s

wss
β−2

)
β−(τ−τ`) . (67)

Hence,

ξ((τ+1)d−1)
s =

τ−τ∑̀
k=1

α(zτ−k+1)β−k (68)

according to (46) and (47), as zτ`+1 ∈ Γ′′ due to rτ` ∈ {1, p} and rτ`+1 /∈ {1, p}
for τ` + 1 < τ`+1.

For each ` ∈ {1, . . . ,m} such that τ` + 1 < τ`+1, and for every
τ = τ` + 1, . . . , τ`+1 − 1, we know zτ`+1 . . . zτ ∈ Γ′′ · Γ∗λ. According to (4),

(32), (33), (40), and (68), zτ`+1 . . . zτ ∈ LRr iff y
((τ+1)d)
s = σ

(
ξ

((τ+1)d−1)
s

)
=

σ
(∑τ−τ`

k=1 α(zτ−k+1)β−k
)
∈ Ir iff rτ+1 = r by the definition of rτ+1, iff

zτ+1 ∈ Γr due to (46). It follows that for every ` = 1, . . . ,m− 1, substring

zτ`+1 . . . zτ`+1
∈ L ∩R0 =

(
p⋃
r=1

LRr · Γr

)Pref

∩ Γ′′ · Γ∗λ · Γσ (69)

since any of its prefix zτ`+1 . . . zτ ∈ LRr ⊆ Γ′′ · Γ∗λ for τ` + 1 ≤ τ < τ`+1, is
followed by zτ+1 ∈ Γr , including zτ`+1

∈ Γσ for τ = τ`+1 − 1. Analogously,
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zτm+1 . . . zn ∈ L . In addition, for any ` ∈ {0, . . . ,m− 1} such that τ` + 1 =
τ`+1, also zτ`+1

∈ Γσ ⊆ L ∩ R0. It follows that any computation by N is
encoded by

z0 . . . zn =

(
m−1∏
`=0

zτ`+1 . . . zτ`+1

)
· zτm+1 . . . zn ∈ (L ∩R0)∗ · L (70)

where the product symbol is used for the repeated concatenation of strings.

Example 1 (continuing from p. 23) The preceding formulas are again il-
lustrated on the running example of the 1ANN language acceptor N (Fig-
ure 1) and its accepting computation on the input word 1100 of length n = 4
(Table 1), which is encoded by the string z0z1z2z3z4 ∈ Γ∗ specified in (55)–
(59). In this string, z0 ∈ Γ1 is the only symbol that belongs to Γσ = Γ1 ∪Γ4,
which means m = 1 and τ1 = 0, whereas formally τ0 = −1 and τ2 = 4.
Thus, let ` = 1 which meets 1 = τ1 + 1 = τ` + 1 < τ`+1 = τ2 = 4.
For every τ = 0, 1, 2 we have zτ+1 /∈ Γσ which validates the recursive for-

mula 0 < y
(2τ+2)
5 = ξ

(2τ+1)
5 = w52y

(2τ+1)
2 + w55y

(2τ)
5 = 2

3
y

(2τ+1)
2 + 1

3
y

(2τ)
5 < 1,

by (64). According to (68), this formula is used for deriving the equation

y
(2τ+2)
5 = ξ

(2τ+1)
5 =

∑τ
k=1 α(zτ−k+1)β−k for every τ = 0, 1, 2, 3, which is in-

stantiated as

y
(2)
5 = 0 (71)

y
(4)
5 = α(z1)β−1 = 8

3
· 1

3
= 8

9
(72)

y
(6)
5 = α(z2)β−1 + α(z1)β−2 = 8

3
· 1

9
= 8

27
(73)

y
(8)
5 = α(z3)β−1 + α(z2)β−2 + α(z1)β−3 = 8

3
· 1

27
= 8

81
(74)

(cf. Table 1) by using (60)–(63). Obviously, z0 ∈ Γ1 ⊂ Γσ ⊂ L ∩ R0. More-
over, we know that the strings z1, z1z2, z1z2z3 belong to Γ′′ · Γ∗λ and

z1 ∈ LR3 iff y
(4)
5 ∈ I3 iff z2 ∈ Γ3 (75)

z1z2 ∈ LR2 iff y
(6)
5 ∈ I2 iff z3 ∈ Γ2 (76)

z1z2z3 ∈ LR2 iff y
(8)
5 ∈ I2 iff z4 ∈ Γ2 (77)

due to (37), (49), (50), and (72)–(74), which ensures

z1z2 ∈ LR3 · Γ3 , z1z2z3 ∈ LR2 · Γ2 , z1z2z3z4 ∈ LR2 · Γ2 , (78)

implying z1z2z3z4 ∈ L by (31). Hence z0z1z2z3z4 ∈ (L ∩R0) · L .
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We will finish the proof of Theorem 4. The role of language R ⊆ Γ∗ in (30)
is to restrict the strings z0 . . . zn ∈ L∗ only to those encoding valid accepting
computations of N , mainly with respect to the macroscopic computational
dynamics of non-input binary neurons and to the consistency of symbols
from Γσ and Γ′′. In particular, these strings (if nonempty) must start with

an initial letter z0 =
(
ỹ(0), r0

)
∈ Γ′ such that y(0) =

(
ỹ(0), y

(0)
s

)
∈ {0, 1}s−1×I

is the initial state of N , including the one-hot encoding y
(0)
X of the first input

symbol according to (5), and the initial output y
(0)
s = 0 of analog unit s, which

corresponds to r0 = 1. Any subsequent letter zτ ∈ Γ, for 1 ≤ τ ≤ n, has to
be either a basic symbol zτ =

(
ỹ(τd), rτ

)
∈ Γ′ if rτ−1 6∈ {1, p} or rτ ∈ {1, p},

or a contextual symbol zτ =
((
ỹ(τd), rτ

)
,
(
ỹ((τ−1)d), rτ−1

))
∈ Γ′′ which comes

after letter zτ−1 =
(
ỹ((τ−1)d), rτ−1

)
∈ Γσ, if rτ−1 ∈ {1, p} and rτ 6∈ {1, p}.

Each symbol zτ , for 0 ≤ τ < n, must be followed by
(
ỹ((τ+1)d), rτ+1

)
∈ Γ′ or((

ỹ((τ+1)d), rτ+1

)
,
(
ỹ(τd), rτ

))
∈ Γ′′ such that ỹ((τ+1)d) =

(
y

(τd)
X , ν

(
ỹ(τd), rτ

))
according to (5) and (43), and zn satisfying y

(τn)
out = 1 terminates the string

by (6). In addition, ε ∈ R if y
(0)
out = 1. Furthermore, for any ` ∈ {1, . . . ,m−1}

such that τ` + 1 = τ`+1, which ensures zτ` =
(
ỹ(τ`d), rτ`

)
∈ Γσ and zτ`+1

=(
ỹ(τ`+1d), rτ`+1

)
∈ Γσ with rτ` , rτ`+1

∈ {1, p}, the valid computation must
satisfy

rτ`+1
=


1 if cs (ν (zτ`)) β

−1 ≥ 0 & rτ` = 1
1 if (1− cs (ν (zτ`))) β

−1 ≤ 0 & rτ` = p
p if cs (ν (zτ`)) β

−1 ≤ −1 & rτ` = 1
p if (1− cs (ν (zτ`))) β

−1 ≥ 1 & rτ` = p

(79)

according to (4) and (40), since ξ
((τ+1)d)
s =

(
y

(τd)
s − cs (ν (zτ ))

)
β−1 due to

(1), (23), (24), (41), and (42), where y
(τd)
s = 0 if rτ` = 1 while y

(τd)
s = 1 if

rτ` = p. Obviously, language R can be recognized by a finite automaton and
hence it is regular.

Finally, the letter-to-letter morphism h : Γ∗ −→ Σ∗ is defined as h(z) =
λi ∈ Σ for z = (ỹ, r) ∈ Γ′ or for y = ((ỹ, r), (ỹ′, r′)) ∈ Γ′′ where ỹ =
(y1, . . . , ys−1) such that yi = 1 for i ∈ X, which extracts the input strings
accepted by N according to (5). This completes the proof that L can be
written as (30). �
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5. The Reverse Implication of the Representation Theorem

In this section, we attempt to complete the syntactic characterization of
1ANNs from Section 4. Since it is unclear whether the languages accepted
by 1ANNs are closed under morphism, the implication in the representation
Theorem 4 can only be partially reversed, cf. (30) and (80):

Theorem 5 Let β be a real base such that |β| > 1, A ⊂ R be a finite set of
real digits, and {0, 1} × {−1, 1} ⊆ C =

{
(c1, s1), (c2, s2), . . . , (cp+1, sp+1)

}
⊂

I× {−1, 1} be sorted lexicographically according to (29). Then any language
L ⊆ Γ∗ that can be written as

L = (L ∩R0)∗ · L ∩R (80)

where languages L, R,R0 ⊂ Γ∗ are defined as in Theorem 4, can be recognized
by a 1ANN, N , that is, L = L(N ).

Proof. Let L ⊆ Γ∗ be a language that can be written as (80). We will
construct a 1ANN N such that L = L(N ). The network N is schematically
depicted in Figure 2 where the layers or their parts are indicated and only
a few representative units and connections are drawn while the precise def-
inition of N follows step by step throughout the proof. The directed edges
connecting units are labeled with the corresponding weights whereas the
edges drawn without an originating unit correspond to the bias parameters.

According to Horne and Hush (1996), one can construct a binary-state
(size-optimal) neural network N ′ that simulates a finite automaton A rec-
ognizing the regular language R ⊆ Γ∗ within the time overhead d = 4 for
processing one input symbol. Denote by V ′ the set of binary units of N ′,
including the input neurons X ⊂ V ′ and the output neuron out ∈ V ′ which
implement the input/output protocol (5) and (6), respectively, using the no-
tation Γ = {λi | i ∈ X}. Moreover, V ′t ⊆ V ′ are the sets of neurons that
update their states at time t ≥ 1 according to (2), which satisfy V ′t+4 = V ′t
for every t ≥ 1, where V ′1 , V

′
2 , V

′
3 , V

′
4 ⊆ V ′ correspond to the four layers in

N ′ that evaluate the transition function of A using the method of threshold
circuit synthesis (Lupanov, 1973; cf. Š́ıma, 2014a). Thus, out ∈ V ′4 , and we

have initially y
(0)
out = 1 iff ε ∈ L iff ε ∈ R due to ε ∈ L by the definition.

We add a subnetwork that recognizes the language (L ∩R0)∗ · L, to the
neural networkN ′, by extending the respective layers ofN ′ with binary-state
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Figure 2: A schema of the neural network N that accepts the language (80).

neurons and one extra analog unit s as

V1 = V ′1 ∪ {Hr | r = 1, . . . , p+ 1} ∪ {%0, %1, %2, %3} (81)

V2 = V ′2 ∪ {Ir | r = 1, . . . , p} ∪ {rej0} (82)

V3 = V ′3 ∪ {rej} (83)

V4 = V ′4 ∪ {s} , (84)

which determines the computational dynamics (2) of N because Vt+4 = Vt
for every t ≥ 1. For simplicity, we identify the names of added neurons in V1

and V2 with the intervals Hr and Ir, respectively, having thus two meanings
which can clearly be distinguished by the context.

The binary-state neurons %0, %1, %2, %3 ∈ V1 implement a finite automaton
A0 that recognizes the regular language R0 = Γ′′ · (Γλ)∗ · Γσ ∪ Γσ iteratively
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within (L ∩R0)∗ · L by using the following weights and biases:

w(i, %0) = w(i, %3) = 1 for i ∈ X s.t. λi ∈ Γσ (85)

w(i, %1) = 1 for i ∈ X s.t. λi ∈ Γ′′ (86)

w(i, %2) = 1 for i ∈ X s.t. λi ∈ Γλ (87)

w(%0, %0) = w(%3, %0) = 1 (88)

w(%0, %1) = w(%3, %1) = 1 (89)

w(%1, %2) = w(%2, %2) = 1 (90)

w(%1, %3) = w(%2, %3) = 1 (91)

w(0, %0) = w(0, %1) = w(0, %2) = w(0, %3) = −2 . (92)

The initial state of N is defined so that at the beginning, the state of %0 is
activated, which means y

(0)
%0 = 1, whereas y

(0)
%1 = y

(0)
%2 = y

(0)
%3 = 0. This single

activation traverses the units %0, %1, %2, %3 ∈ V1 whose states are updated at
time instants 4τ + 1 during the macroscopic steps τ ≥ 0, while they indicate
whether the current input symbol zτ+1 ∈ Γ is from Γσ,Γ

′′,Γλ,Γσ, respectively,
as a part of a string from R0:

y(4τ+1)
%0

= 1 iff zτ+1 ∈ Γσ and either τ = 0 or zτ ∈ Γσ (93)

y(4τ+1)
%1

= 1 iff zτ+1 ∈ Γ′′ and either τ = 0 or zτ ∈ Γσ (94)

y(4τ+1)
%2

= 1 iff zτ+1 ∈ Γλ and either zτ ∈ Γ′′ or zτ ∈ Γλ (95)

y(4τ+1)
%3

= 1 iff zτ+1 ∈ Γσ and either zτ ∈ Γλ or zτ ∈ Γ′′ . (96)

The conditions (93)–(96) are proven by induction on τ ≥ 0. We verify (93),
whereas the argument for (94)–(96) is analogous. Recall that at most one

neuron i ∈ X such that λi ∈ Γσ can be activated due to (5). Thus, y
(4τ+1)
%0 = 1

iff

ξ(4τ)
%0

= w(0, %0) +
∑

i∈X :λi∈Γσ

w(i, %0)y
(4τ)
i + w(%0, %0)y(4τ)

%0

+w(%3, %0)y(4τ)
%3
≥ 0 (97)

iff
∑

i∈X :λi∈Γσ
y

(4τ)
i + y

(4τ)
%0 + y

(4τ)
%3 ≥ 2 iff zτ+1 ∈ Γσ and either τ = 0 when we

know y
(4τ)
%0 = 1 or either y

(4(τ−1)+1)
%0 = 1 or y

(4(τ−1)+1)
%3 = 1 iff zτ+1 ∈ Γσ and

either τ = 0 or zτ ∈ Γσ by using the induction hypothesis for (93) or (96),
which completes the proof of (93). Finally, the neuron rej0 ∈ V2 represents
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the reject state of finite automaton A0, which is implemented by the weights
and bias

w(%i, rej0) = −1 for i = 1, 2, 3, 4 (98)

w(0, rej0) = 0 . (99)

It follows that

y
(4τ+2)
rej0

= 1 iff y(4τ+1)
%i

= 0 for every i = 1, 2, 3, 4 . (100)

For each τ ≥ 0 and r ∈ {1, . . . , p+ 1}, the binary output y
(4τ+1)
Hr

∈ {0, 1}
from neuron Hr ∈ V1 at time instant 4τ + 1 indicates whether the state
y

(4τ)
s ∈ I of analog unit s ∈ V4 at macroscopic time τ , falls into the corre-

sponding half-line Hr (cf. (28)), that is,

y
(4τ+1)
Hr

=

{
1 if y

(4τ)
s ∈ Hr

0 if y
(4τ)
s /∈ Hr

where Hr =

{
[cr,∞) if sr = −1
(−∞, cr] if sr = 1 .

(101)

This is implemented by the weights and biases of units Hr ∈ V1,

w(s,Hr) = −sr , w(0, Hr) = srcr for r = 1 . . . , p+ 1 , (102)

since y
(4τ+1)
Hr

= 1 iff ξ
(4τ)
Hr

= w(0, Hr) + w(s,Hr)y
(4τ)
s ≥ 0 iff srcr − sry(4τ)

s =

sr

(
cr − y(4τ)

s

)
≥ 0 iff either sr = −1 and y

(4τ)
s ≥ cr, or sr = 1 and y

(4τ)
s ≤ cr

iff y
(4τ)
s ∈ Hr.
By using the intervals Ir introduced in (40), we define the weights and

biases of neurons Ir ∈ V2 as

w(i, Ir) = 1 for i ∈ X s.t. λi ∈ Γr

w(Hr, Ir) = −sr , w(Hr+1, Ir) = sr+1 for r = 1 . . . , p . (103)

w(0, Ir) =
sr − sr+1

2
− 2

We show that

y
(4τ+2)
Ir

= 1 iff y(4τ)
s ∈ Ir and zτ+1 ∈ Γr . (104)

Recall that at most one neuron i ∈ X such that λi ∈ Γr can be activated due
to (5). We have y

(4τ+2)
Ir

= 1 iff ξ
(4τ+1)
Ir

= w(0, Ir)+
∑

i∈X :λi∈Γr
w(i, Ir)y

(4τ+1)
i +

31



w(Hr, Ir)y
(4τ+1)
Hr

+ w(Hr+1, Ir)y
(4τ+1)
Hr+1

≥ 0 iff sr−sr+1

2
− 2 +

∑
i∈X :λi∈Γr

y
(4τ)
i −

sry
(4τ+1)
Hr

+sr+1y
(4τ+1)
Hr+1

≥ 0. For example, consider the case when sr = −1 and
sr+1 = −1, which means Hr = [cr,∞), Hr+1 = [cr+1,∞), and Ir = [cr, cr+1),

while the argument in the remaining cases is similar. Thus, y
(4τ+2)
Ir

= 1 iff∑
i∈X :λi∈Γr

y
(4τ)
i + y

(4τ+1)
Hr

− y
(4τ+1)
Hr+1

≥ 2 iff zτ+1 ∈ Γr and y
(4τ+1)
Hr

= 1 and

y
(4τ+1)
Hr+1

= 0 iff zτ+1 ∈ Γr and y
(4τ)
s ∈ Hr \Hr+1 = Ir .

Since the intervals Ir for r = 1, . . . , p, create the partition of the unit
interval I, at most one neuron among the units Ir ∈ V2 is activated according
to (104). The neuron rej ∈ V3 activates and remains activated if no neuron
Ir ∈ V2 is activated and, at the same time, the current input symbol is either
from Γλ or from Γσ preceded by the symbol from Γλ ∪ Γ′′. In addition,
rej ∈ V3 also activates when the unit rej0 ∈ V2 is activated. Thus, y

(t)
rej = 1

for all t ≥ 4τ + 3 iff y
(4τ+2)
Ir

= 0 for every r = 1, . . . , p, and either y
(4τ+1)
%2 = 1

or y
(4τ+1)
%3 = 1, or y

(4τ+2)
rej0

= 1. This is implemented by the weights and bias
of unit rej ∈ V3,

w(Ir, rej) = −1 for r = 1 . . . , p (105)

w(%0, rej) = w(%1, rej) = −1 (106)

w(rej0, rej) = 1 (107)

w(rej, rej) = 2 (108)

w(0, rej) = 0 . (109)

Clearly, y
(4τ+3)
rej = 1 iff

ξ
(4τ+2)
rej = w(0, rej) +

p∑
r=1

w(Ir, rej)y
(4τ+2)
Ir

+ w(%0, rej)y(4τ+2)
%0

+w(%1, rej)y(4τ+2)
%1

+ w(rej0, rej)y
(4τ+2)
rej0

+w(rej, rej)y
(4τ+2)
rej ≥ 0 (110)

iff
∑p

r=1 y
(4τ+2)
Ir

+y
(4τ+1)
%0 +y

(4τ+1)
%1 −y(4τ+2)

rej0
−2y

(4(τ−1)+3)
rej ≤ 0 iff y

(4τ+2)
Ir

= 0 for

every r = 1, . . . , p, and y
(4τ+1)
%0 = y

(4τ+1)
%1 = 0, or y

(4τ+2)
rej0

= 1 or y
(4(τ−1)+3)
rej = 1.

Recall that y
(4τ+1)
%0 = y

(4τ+1)
%1 = y

(4τ+2)
rej0

= 0 implies either y
(4τ+1)
%2 = 1 or

y
(4τ+1)
%3 = 1. Moreover, we know

∑p
r=1 y

(4τ+2)
Ir

+ y
(4τ+1)
%0 + y

(4τ+1)
%1 ≤ 2 which

ensures y
(t)
rej = 1 for all t ≥ 4τ + 3, once y

(4τ+3)
rej = 1.
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The neuron rej ∈ V3 is connected to the output neuron out ∈ V4 via the
dominating negative weight w(rej, out) = −W − 1 where

W =
∑
i∈V ′
|w(i, out)| , (111)

which ensures y
(4(τ+1))
out = 0 whenever y

(4τ+3)
rej = 1. Finally, we define the

weights and bias of analog neuron s ∈ V4 as

w(i, s) = α(λi)β
−1 for i ∈ X s.t. λi ∈ Γλ ∪ Γ′′ (112)

w(s, s) = β−1 (113)

w(Ip, s) = −β−1 (114)

w(0, s) = 0 , (115)

which completes the definition of 1ANN N .
We show that L = L(N ). Let z1 . . . zn ∈ Γ∗ be an input string to N .

Denote by 1 ≤ τ1 < τ2 < · · · < τm ≤ n all the indices such that zτ` ∈ Γσ =
Γ1∪Γp for ` = 1, . . . ,m, and formally define τ0 = 0 and τm+1 = n. We proceed

by induction on ` ≥ 0 up to ` = m. Assume that y
(4τ`)
rej = 0, y

(4τ`)
s = 0,

and either y
(4τ`)
%0 = 1 or y

(4τ`)
%3 = 1, which holds for ` = 0. We prove that

zτ`+1zτ`+2 . . . zτ`+1
∈ L∩R0 iff y

(4(τ`+1−1)+3)
rej = 0. According to (93)–(96), and

(100), we already know that zτ`+1 . . . zτ`+1
/∈ R0 iff y

(4(τ`+1−1)+2)
rej0

= 1 implying

y
(4(τ`+1−1)+3)
rej = 1. Thus, assume zτ`+1 . . . zτ`+1

∈ R0 which ensures y
(4τ)
rej0

= 0
for every τ = τ`, . . . , τ`+1, and it suffices to show that zτ`+1 . . . zτ`+1

∈ L iff

y
(4(τ`+1−1)+3)
rej = 0.

First consider the case when τ` + 1 = τ`+1 , which means zτ`+1
∈ Γσ ⊂

L ∩ R0 . We have y
(4τ`+1)
%0 = 1 by (93). If zτ`+1

∈ Γ1, then y
(4τ`+2)
I1

= 1

due to 0 = y
(4τ`)
s ∈ I1 = [0, 0], which implies ξ

(4τ`+2)
rej = w(I1, rej)y

(4τ`+2)
I1

+

w(%0, rej)y
(4τ`+1)
%0 = −2 according to (105)–(110), and hence y

(4(τ`+1−1)+3)
rej = 0.

If zτ`+1
∈ Γp, then y

(4τ`+2)
Ip

= 0 due to 0 = y
(4τ`)
s /∈ Ip = [1, 1], which

implies ξ
(4τ`+2)
rej = w(%0, rej)y

(4τ`+1)
%0 = −1, and hence, y

(4(τ`+1−1)+3)
rej = 0.

In addition, ξ
(4τ`+3)
s = w(0, s) +

∑
i∈X :λi∈Γλ∪Γ′′ w(i, s)y

(4τ`)
i + w(s, s)y

(4τ`)
s +

w(Ip, s)y
(4τ`+2)
Ip

= 0 according to (112)–(115), because y
(4τ`)
i = 0 for all i ∈ X

due to zτ`+1 /∈ Γλ ∪ Γ′′, and y
(4τ`)
s = y

(4τ`+2)
Ip

= 0. Hence, the assumption
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y
(4τ`+1)
s = 0 and y

(4τ`+1)
%0 = 1 is preserved for ` + 1. This completes the proof

that zτ`+1 . . . zτ`+1
∈ L iff y

(4(τ`+1−1)+3)
rej = 0 for τ` + 1 = τ`+1 .

Further consider the case when τ`+1 < τ`+1 , which implies zτ`+1 . . . zτ`+1
∈

Γ′′ · (Γλ)∗ · Γσ due to zτ`+1 . . . zτ`+1
∈ R0 . Hence, y

(4τ`+1)
%1 = y

(4(τ`+1−1)+1)
%3 = 1,

and y
(4τ+1)
%2 = 1 for every τ = τ` + 1, . . . , τ`+1 − 2. We show by induction

on τ ≥ τ` up to τ = τ`+1 − 1 that zτ`+1 . . . zτ+1 ∈ L iff y
(4τ+3)
rej = 0, and

ξ
(4τ+3)
s =

∑τ−τ`+1
k=1 α(zτ−k+2)β−k for zτ`+1 . . . zτ+1 ∈ L such that τ < τ`+1− 1.

For τ = τ`, we have zτ`+1 ∈ Γ′′ ⊆ L which means y
(4τ`+2)
Ir

= 0 for ev-

ery r = 1, . . . , p, by (104). According to (105)–(110), we thus have ξ
(4τ`+2)
rej =

w(%1, rej)y
(4τ`+1)
%1 = −1, and hence y

(4τ`+3)
rej = 0. Moreover, ξ

(4τ`+3)
s = w(0, s)+∑

i∈X :λi∈Γλ∪Γ′′ w(i, s)y
(4τ`)
i + w(s, s)y

(4τ`)
s + w(Ip, s)y

(4τ`+2)
Ip

= α(zτ`+1)β−1 by

(112) due to y
(4τ`)
s = 0 and y

(4τ`+2)
Ip

= 0.
In the induction step when τ > τ` , we assume zτ`+1 . . . zτ ∈ L iff

y
(4(τ−1)+3)
rej = 0, and ξ

(4(τ−1)+3)
s =

∑τ−τ`
k=1 α(zτ−k+1)β−k for zτ`+1 . . . zτ ∈ L.

If zτ`+1 . . . zτ /∈ L, then zτ`+1 . . . zτ+1 /∈ L due to L is prefix-closed by

(31), and by induction hypothesis we have y
(4(τ−1)+3)
rej = 1 which ensures

y
(4τ+3)
rej = 1. Thus, further assume zτ`+1 . . . zτ ∈ L which means y

(4(τ−1)+3)
rej = 0

and ξ
(4(τ−1)+3)
s =

∑τ−τ`
k=1 α(zτ−k+1)β−k. By using (4) we obtain y

(4τ)
s =

σ
(
ξ

(4(τ−1)+3)
s

)
∈ Ir for some r ∈ {1, . . . , p}, and hence, zτzτ−1 . . . zτ`+1 ∈ Lr.

It follows that zτ`+1 . . . zτ+1 ∈ L iff zτ`+1 . . . zτ+1 ∈ LRr · Γr iff zτ+1 ∈ Γr
iff y

(4τ+2)
Ir

= 1 iff y
(4τ+3)
rej = 0 because ξ

(4τ+2)
rej = −y(4τ+2)

Ir
due to y

(4τ+1)
%0 =

y
(4τ+1)
%2 = y

(4τ+2)
rej0

= y
(4(τ−1)+3)
rej = 0. For zτ`+1 . . . zτ+1 ∈ L such that τ <

τ`+1 − 1, we know zτ+1 ∈ Γλ , which ensures 0 < y
(4τ)
s = ξ

(4(τ−1)+3)
s < 1 and

y
(4τ+2)
Ip

= 0, and hence,

ξ(4τ+3)
s = w(0, s) +

∑
i∈X :λi∈Γλ∪Γ′′

w(i, s)y
(4τ)
i + w(s, s)y(4τ)

s + w(Ip, s)y
(4τ+2)
Ip

= α (zτ+1) β−1 + β−1

τ−τ∑̀
k=1

α(zτ−k+1)β−k =

τ−τ`+1∑
k=1

α(zτ−k+2)β−k(116)

according to (112)–(115). This completes the induction on τ , which proves

zτ`+1 . . . zτ`+1
∈ L iff y

(4(τ`+1−1)+3)
rej = 0 also for τ` + 1 < τ`+1 .

In addition, for τ = τ`+1−1, we know zτ`+1
∈ Γσ = Γ1∪Γp , which implies

y
(4(τ`+1−1)+1)
%3 = 1 and ξ

(4(τ`+1−1)+3)
s = w(s, s)y

(4(τ`+1−1))
s +w(Ip, s)y

(4(τ`+1−1)+2)
Ip

.
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If zτ`+1
∈ Γ1 , then y

(4(τ`+1−1))
s = 0 and y

(4(τ`+1−1)+2)
Ip

= 0, which gives

ξ
(4(τ`+1−1)+3)
s = 0. If zτ`+1

∈ Γp , then y
(4(τ`+1−1))
s = 1 and y

(4(τ`+1−1)+2)
Ip

= 1,

which also produces ξ
(4(τ`+1−1)+3)
s = β−1−β−1 = 0. It follows that y

(4τ`+1)
s = 0

which together with y
(4τ`+1)
%3 = 1, preserves the assumption for `+ 1.

Thus by induction on ` = 1, . . . ,m, we obtain z1 . . . zn ∈ (L ∩R0)∗ · L iff

y
(4(n−1)+3)
rej = 0, which implies z1 . . . zn ∈ L = (L ∩ R0)∗ · L ∩ R iff y

(4n)
out = 1.

Hence, L = L(N ). �

6. 1ANNs Within the Chomsky Hierarchy

In this section, we analyze the computational power of 1ANNs by using
the representation Theorem 4 and the classification of cut languages within
the Chomsky hierarchy presented in Paragraph 3.3. We first formulate a suffi-
cient condition when a 1ANN with real weights recognizes a regular language.

Theorem 6 Let N be a 1ANN such that 0 < |wss| < 1. Define the base,
βN = 1

wss
, the digit alphabet,

AN =
{
−cs (ỹ)

∣∣ ỹ ∈ {0, 1}s−1
}
∪ {0, βN} , (117)

and the set of thresholds,

CN =
{
cj (ỹ) ∈ I

∣∣ j ∈ V \ (X ∪ s) : wjs 6= 0 , ỹ ∈ {0, 1}s−1
}
∪ {0, 1} (118)

where cj (ỹ) for j ∈ V \ X such that wjs 6= 0, is defined in (23). If every
threshold c ∈ CN is a βN -quasi-periodic number within AN , then the language
L = L(N ) recognized by N , is regular.

Example 1 (continuing from p. 20) We illustrate the statement of The-
orem 6 on the running example of the 1ANN language acceptor N which is
depicted in Figure 1. By plugging the corresponding weights of N into (117)
and (118) we obtain βN = 1/w55 = 3, AN = {0, 2, 3}, and CN =

{
0, 1

2
, 1
}

,
cf. (35) and (36), respectively. We know βN = 3 ∈ Z is a Pisot number since
every integer greater than 1 is Pisot. In addition, the digit alphabet is con-
tained in the field extension3 Q(3) due to AN = {0, 2, 3} ⊂ Z ⊂ Q = Q(3),
and similarly, the set of thresholds meets CN =

{
0, 1

2
, 1
}
⊂ Q = Q(3).

Hence, every c ∈ CN is a βN -quasi-periodic number within AN , according to
Theorem 1. Thus, the assumption of Theorem 6 is satisfied, which implies
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that the language L = L(N ) recognized by N is regular. Indeed, the 1ANN
N recognizes the language

L = L(N ) = {x1 . . . xn ∈ {0, 1}∗ |n ≤ 1 or xn−1 = 0} (119)

over the binary alphabet Σ = {0, 1} that (apart from ε, 0, 1 ∈ L) contains all
the words whose next-to-last symbol is 0, which is regular. It is because the
output of the analog unit meets

y
(2τ+2)
5 = σ

(
2
3
y

(2τ)
2 + 1

3
y

(2τ)
5

){ ≥ 2
3

if y
(2τ)
2 = 1

≤ 1
3

if y
(2τ)
2 = 0

(120)

for every τ ≥ 0, due to y
(2τ)
5 ∈ I, which means y

(2τ)
2 = 0 iff y

(2τ+2)
5 < 1

2
iff

y
(2τ+3)
4 = 0 iff y

(2τ+4)
3 = 1.

Proof (Theorem 6). According to Theorem 4, we can write the language
L = L(N ) recognized by 1ANN N in the form (30). Let Γ0 = {γ0, γ1} be
composed of two new letters not contained in Γ. We define the homomor-
phism g : Γ∗ −→ (Γ′ ∪ Γ0)∗ so that for every z ∈ Γ = Γ′ ∪ Γ′′,

g(z) =

{
z if z ∈ Γ′

z1 z2 g
′(z2) if z = (z1, z2) ∈ Γ′′ = Γλ × Γσ

(121)

where g′ : Γσ −→ Γ0 such that

g′(z2) =

{
γ0 if z2 ∈ Γ1

γ1 if z2 ∈ Γp .
(122)

Observe that for any c ∈ CN , the homomorphism g generates the cut lan-
guage

L′<c = g (L<c) =

{
z′1 . . . z

′
n ∈ Γ∗λ · Γλ · Γσ · Γ0

∣∣∣∣∣
n∑
k=1

α′ (z′k) β
−k
N < c

}
(123)

over the alphabet Γ′ ∪ Γ0 (similarly L′>c) from the cut language (33), where
α′ : Γ′ ∪ Γ0 −→ AN extends (34) as

α′(z) =


α(z) if z ∈ Γ′

0 if z = γ0 ∈ Γ0

βN if z = γ1 ∈ Γ0 ,
(124)
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such that for any z ∈ Γ∗λ · Γ′′ it holds z ∈ L<c iff g(z) ∈ L′<c . In par-
ticular, for any z = z1 . . . zn−1(zn1, zn2) ∈ Γ∗λ · Γ′′, we have z ∈ L<c iff∑n−1

k=1 α(zk)β
−k
N + α

(
(zn1, zn2)

)
β−nN < c iff

n−1∑
k=1

α′(zk)β
−k
N + α′(zn1)β−nN + α′(zn2)β−n−1

N + α′ (g′(zn2)) β−n−2
N < c (125)

by (34), (122), and (124) iff g(z) ∈ L′<c due to (121).
Assume that every c ∈ CN is βN -quasi-periodic number within AN . Ac-

cording to Theorem 2, the cut language L′<c over alphabet Γ′ ∪ Γ0 such that
α′(Γ′ ∪ Γ0) ⊆ AN , is regular for any c ∈ CN , and hence, L<c = g−1 (L′<c) is
regular by (123) since regular languages are closed under inverse homomor-
phism. This ensures that the languages L1, . . . , Lp defined in (32) are also
regular because regular languages are closed under complement and intersec-
tion. Furthermore, regular languages are known to be closed under reversal,
concatenation, union, Kleene star, and homomorphism. In addition, if S is
regular, then its largest prefix-closed subset SPref is also regular as a corre-
sponding finite automaton A1 recognizing S = L(A1) can be reduced to A2

such that SPref = L(A2), by eliminating all the non-final states in A1. It
follows that the language L = L(N ) in (30) defined using (33), is regular. �

As a consequence of Theorems 1 and 6, we obtain that any 1ANN whose
inverse of the self-loop weight of the analog unit is a Pisot number β, while
all its weights are in the smallest field extension over rational numbers in-
cluding β, is equivalent to a finite automaton.

Corollary 1 Let N be a 1ANN such that 0 < |wss| < 1. If βN = 1/wss is
a Pisot number and wji ∈ Q(βN ) for every j = 1, . . . , s and i = 0, . . . , s,
then L(N ) is regular.

Proof. It follows from the assumption that cj(ỹ) ∈ Q(βN ) for every ỹ ∈
{0, 1}s−1 and j ∈ V \X such that wjs 6= 0, due to (23). Hence, AN ⊂ Q(βN )
and CN ⊂ Q(βN ) by (117) and (118), respectively. According to Theorem 1,
we thus have that every threshold c ∈ CN is a βN -quasi-periodic number
within AN since βN is a Pisot number, which implies that L(N ) is regular
by Theorem 6. �

Example 1 (continuing from p. 35) In order to illustrate Corollary 1, we
use it for another verification that the 1ANN language acceptor N from the
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Figure 3: Example of a 1ANN that recognizes a regular language.

running example (Figure 1) recognizes a regular language. Clearly, the 1ANN
N has only rational weights including the self-loop weight w55 = 1

3
whose

inverse is an integer βN = 3 ∈ Z. Thus, βN = 3 is a Pisot number and
the weights of N are in the field extension3 Q(3) = Q. Hence, Corollary 1
confirms that L(N ) is regular, which we know from (119).

In general, if a 1ANN N has rational weights wji ∈ Q for every j =
1, . . . , s and i = 0, . . . , s, including the self-loop weight of the analog unit,
wss = 1/βN that is the inverse of some integer βN > 1 (a Pisot number),
then N recognizes a regular language. This remains valid even if wss is the
inverse of a non-integer Pisot which is not rational. For instance, the plastic

constant ρ =
(

3
√

9−
√

69 +
3
√

9 +
√

69
)
/ 3
√

18 ≈ 1.324718 (cf. Example 3)

can be employed. Namely, if the rational weight w55 = 1
3

in Figure 1 is
replaced by w55 = 1/ρ ≈ 0.754878 as depicted in Figure 3, then this modified
1ANN acceptor still recognizes only a regular language by Corollary 1, which,
at the first sight, is not as clear as it was for the original N in (119).

On the other hand, 1ANNs with rational weights appear to be computa-
tionally more powerful than finite automata. We prove that they can even
recognize languages that are not context-free. For this purpose, we first show
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in the following lemma how 1ANNs recognize single cut languages.

Lemma 1 Let Γ 6= ∅ be a finite alphabet representing the digits in A through
the mapping α : Γ −→ A, and let c ∈ R. In addition, assume that

µ = inf
z1...zn∈Γ∗

n∑
k=1

α(zk)β
−k ≥ 0 . (126)

Then the language L = LR<c · Γ where L<c is a cut language over alphabet Γ,
can be recognized by a 1ANN.

Proof. Denote

ν = sup
z1...zn∈Γ∗

n∑
k=1

α(zk)β
−k (127)

which is finite due to |β| > 1. Further assume 0 ≤ µ < c ≤ ν since otherwise
L<c = ∅ or L<c = Γ∗ which can trivially be recognized by a 1ANN.

We will construct a 1ANNN that recognizes the language L(N ) = LR<c· Γ
within the time overhead d = 2 for processing one input symbol. The set of
neurons Vt that are updated at time instant t ≥ 1, satisfy Vt = Vt+2 for every
t ≥ 1. Apart from the input neurons X ⊆ V and the output neuron out ∈ V2

which implement the input/output protocol (5) and (6), respectively, we
have the analog unit s ∈ V2 and one binary neuron cut ∈ V1. We define the
corresponding weights as follows:

w(s, cut) = 1 (128)

w(0, cut) = − c

ν
(129)

w(i, s) =
α(λi)

βν
for i ∈ X s.t. λi ∈ Γ (130)

w(s, s) = β−1 (131)

w(0, s) = 0 (132)

w(cut, out) = −1 (133)

w(0, out) = 0 (134)

The network N is schematically depicted in Figure 4.
Let z1 . . . zn ∈ Γ∗ be an input to N . We show by induction on τ ≥ 0 that

y(2τ)
s =

1

ν

τ∑
k=1

α(zτ−k+1)β−k . (135)
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Figure 4: A schema of the neural network N that accepts the language LR
<c · Γ.

For τ = 0, we assume the initial states y
(0)
s = 0, y

(0)
cut = 0, and y

(0)
out = 1.

According to the definition of weights (130)–(132), for τ > 0, we have

ξ(2(τ−1))
s = w(0, s) +

∑
i∈X :λi∈Γ

w(i, s)y
(2(τ−1))
i + w(s, s)y(2(τ−1))

s

=
α(zτ )

βν
+ β−1 · 1

ν

τ−1∑
k=1

α(zτ−k)β
−k =

1

ν

τ∑
k=1

α(zτ−k+1)β−k (136)

by the induction hypothesis. It follows from (126), (127), and (136) that

0 ≤ ξ
(2(τ−1))
s ≤ 1, and hence, y

(2τ)
s = σ

(
ξ

(2(τ−1))
s

)
= ξ

(2(τ−1))
s by (4), which

completes the proof of (135).
In particular, for τ = n− 1, we obtain

y(2(n−1))
s =

1

ν

n−1∑
k=1

α(zn−k)β
−k (137)
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from (135). According to (128) and (129), we have

ξ
(2(n−1))
cut = w(0, cut) + w(s, cut)y(2(n−1))

s =
1

ν

(
n−1∑
k=1

α(zn−k)β
−k − c

)
(138)

for the binary neuron cut ∈ V1, which implies

y
(2(n−1)+1)
cut = 1 iff

n−1∑
k=1

α(zn−k)β
−k ≥ c (139)

due to (3), (138), and ν > 0. Moreover, the output neuron out ∈ V2 computes
the logical negation of output from cut ∈ V1 by (133) and (134), and hence,

y
(2n)
out = 1 iff

n−1∑
k=1

α(zn−k)β
−k < c (140)

from (139). We can conclude that z1 . . . zn ∈ LR<c · Γ iff zn−1 . . . z1 ∈ L<c iff

y
(2n)
out = 1 due to (140), which means L(N ) = LR<c · Γ. �

Theorem 7 There is a language L′ = L(N ′) accepted by a 1ANN N ′ with
rational weights, which is not context-free.

Proof. Example 4 presents instances of numbers that are not quasi-periodic,
e.g. c = 1 is not β-quasi-periodic within A = {0, 1} for β = 3

2
. Let Γ = A and

α : Γ −→ A be the identity. According to Theorem 2, we thus know that the
corresponding cut language L<c ⊆ Γ∗ over alphabet Γ is not context-free. It
follows that the same holds for L′ = LR<c · Γ since LR<c = {y ∈ Γ∗ |y0 ∈ L′}
and the context-free languages are closed under GSM (generalized sequential
machine) mapping and reversal. On the other hand, L′ can be recognized
by a 1ANN N ′ according to Lemma 1, because (126) follows from β > 0
and α(z) = z ≥ 0 for z ∈ Γ = {0, 1}. Moreover, N ′ has rational weights

(128)–(134) since c = 1, β = 3
2

and ν =
∑∞

k=1

(
3
2

)−k
= 2 by (127). �

Example 1 (continuing from p. 35) In fact, Lemma 1 is a generaliza-
tion of the running example of the 1ANN language acceptor N that is de-
picted in Figure 1 which is an instance of Figure 4 for X = {1, 2} with

41



Figure 5: Example of a 1ANN N ′ recognizing a language that is not context-free.

α(λ1) = α(0) = 0 and α(λ2) = α(1) = 1, out = 3, cut = 4, s = 5, c = 1
4
,

β = 3, and ν =
∑∞

k=1 3−k = 1
2
. It follows that

L = L(N ) = LR
< 1

4
· {0, 1} =

{
x1 . . . xn ∈ {0, 1}∗

∣∣∣∣∣
n−1∑
k=1

xn−k 3−k <
1

4

}
(141)

which coincides with the language (119) since in fact only the next-to-last
symbol xn−1 in (141) decides whether x1 . . . xn ∈ L. Namely, if xn−1 = 1,
then

∑n−1
k=1 xn−k 3−k ≥ 1

3
, while

∑n−1
k=1 xn−k 3−k ≤

∑∞
k=2 3−k = 1

6
for xn−1 = 0.

In contrast, the non-context-free language in Theorem 7 (see its proof),

L′ = L(N ′) = LR<1 · {0, 1} =

{
x1 . . . xn ∈ {0, 1}∗

∣∣∣∣∣
n−1∑
k=1

xn−k
(

3
2

)−k
< 1

}
(142)

is accepted by N ′ which is an instance of the 1ANN in Figure 4 (Lemma 1)
for c = 1, β = 3

2
and ν = 2. In particular, N ′ differs from N in Figure 1 only

in the weights w52 = 1
3
, and w55 = 2

3
, as depicted in Figure 5.

Theorem 7 provides a lower bound on the computational power of 1ANNs
with rational weights. In the following theorem we prove a corresponding
upper bound.
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Theorem 8 Any language L = L(N ) accepted by a 1ANN N with rational
weights and 0 < |wss| < 1, is context-sensitive.

Proof. According to Theorem 4, the language L = L(N ) accepted by
a 1ANN N can be written in the form (30) where β ∈ Q, A ⊂ Q, and
c1, . . . , cp+1 ∈ Q are rationals by the assumption on the weights of N . Since
the context-sensitive languages are closed under complementation and inter-
section, Theorem 3 ensures that Lr used in (31) is context-sensitive for every
r = 1, . . . , p.

Furthermore, the context-sensitive languages are known to be closed un-
der reversal, concatenation, union, Kleene star, and ε-free homomorphism.
In addition, if S is context-sensitive, then its largest prefix-closed subset
SPref is also context-sensitive as a nondeterministic linear bounded automa-
ton (LBA)MPref that recognizes SPref = L(MPref ) runs successively LBA
M for S = L(M) on every prefix of an input which can be stored within
linear space, and SPref accepts if all these runs of M are accepting compu-
tations. Thus, it follows from (30) and (31) that the language L is context-
sensitive. �

7. Conclusion

In this paper we have characterized the class of languages that are ac-
cepted online by binary-state neural networks with an extra analog unit,
which is a subrecursive (sub-Turing) intermediate computational model be-
tween binary-state NNs, corresponding to finite automata, and analog-state
NNs which are Turing universal. By using this characterization we have
shown that the computational power of such networks with rational weights
is between context-free and context-sensitive languages. In addition, we have
formulated a sufficient condition when these networks accept only regular
languages in terms of quasi-periodicity of their real weight parameters. The
question of whether this condition is also necessary remains open.

Another challenge for further research is to generalize the representation
Theorem 4 to offline 2ANNs employing two extra analog units and to find
out whether 2ANNs are Turing universal (cf. Š́ıma, 2018). The ultimate goal
is to prove a proper “natural” hierarchy of NNs between integer and rational
weights similarly as it is known between rational and real weights (Balcázar
et al., 1997) and possibly, map it to known hierarchies of regular/context-
free languages. This problem is related to a more general issue of finding
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suitable complexity measures of subrecursive NNs establishing the complexity
hierarchies, which could be employed in practical neurocomputing, e.g. the
precision of weight parameters, energy complexity (Š́ıma, 2014a), temporal
coding etc.
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