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Probabilistic Turing Machine (PTM)

read-only read-only
input tape n random tape >T(n)
X oj11]0|1]| Yy
K_J —>  fair coin flips
finite state T(n) worst-case
control q i i
time complexity
read-write
working tape \v
R — —>

S(n) space complexity

BPL (Bounded-error Probabilistic Logarithmic-space)
class of problems L = L(M) solvable by PTMs A with two-sided error 0 < § < 3
in logarithmic space S(n) = O(logn) and polynomial time T'(n) = O(n°):
if v € L, then Pry .y, [M(z,y)=1>1-9
if © & L, then Pry.up, [M(z,y) =1] <9
(U, is the uniform distribution on {0, 1}™)
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RL (Randomized Logarithmic-space)
class of problems I = L(M) solvable by PTMs M with one-sided error 0 < § < 1
in logarithmic space S(n) = O(logn) and polynomial time T'(n) = O(n°):
if v € L, then Pry .y, [M(z,y)=1>1-9
if o & L, then Pry.up, . [M(z,y) =1] =0, i.e. M(z,y) = 0 for every y
— if M(x,y) =1, thenx € L



Derandomization of Space-Bounded Computation

deterministic simulation of PTM performs M (x,y) for every fixed setting of
random input y € {0,1}" (where m = T'(n)) and computes the probability

of accepting computations

Zye{o,l}m M(z,y) B { >1—0 — acceptsz

Pry.u,, [M(z,y) = 1] = om <0 — rejects x

— the simulation time is exponential in T'(n)

Is there an efficient simulation of PTM? Does randomness add power?

BPL-L RL-=L



Pseudorandom Generator (PRG)

g:{0,1}° — {0,1}", s<m

stretches a short uniformly random seed of s bits into m bits that cannot be
distinguished from uniform ones by small space machines M:

Pry.u, [M(y) =1 = Pr..y, [M(g(z)) =1]| < ¢
where € > 0 is the error

deterministic simulation of PTM performs M (x, g(z)) for every fixed setting of
seed z € {0, 1}* and approximates the probability of accepting computations

2zeqory M(z,9(2))
28

Pry.p, [M(x,y) =1] =

efficient derandomization (BPL=L): an explicit PRG with seed length s = O(logn)
and sufficiently small error £, computable in logarithmic space that fools logarithmic
space machines M



Branching Program P

a leveled directed acyclic multi-graph G = (V, E):

e one source s € V of zero in-degree at level 0

e sinks of zero out-degree at the last level d (=depth)

e every inner (=non-sink) node has out-degree 2

e the inner nodes are labeled with input Boolean variables x4, ..., z,

e the two edges outgoing from any inner node at level £ < d lead to nodes at
the next level £ + 1 and are labeled 0 and 1

e the sinks are labeled 0 and 1

width = the maximum number of nodes in one level



branching program P computes Boolean function P : {0,1}" — {0, 1}:

source () level 0

.. level £+1

............... level d



Branching Programs (BPs)
a non-uniform model of space-bounded computation:
infinite family of branching programs { P}, one P, for each input length n > 1

Turing machine M that uses space s(n) and runs in time t(n)
is modeled by
branching program P, of width 2°(") and depth ¢(n)

input tape
Xj
) S v TM’s configuration ——~__» BP’s node
/ | (state, head positions,
: 0 1
I I working tape content)
| | e.g.
| q | initial conf. —— Ssource
i . | accepting conf, —— 1-sink
WOTKINg ! rejecting conf. ——> 0-sink
tape ' l '




Restrictions

Read-Once BPs (1-BPs): every input variable is tested at most once along each
computational path

Oblivious BPs: at each level only one variable is queried

—— provably less efficient model (Beame, Machmouchi, CCC 2011)

an efficient construction of PRG for 1-BPs of polynomial size suffices to
derandomize BPL

Explicit Pseudorandom Generators for 1-BPs

polynomial width: PRG with seed length O(log”n) (Nisan, 1992)
width w = 2: PRG with seed length O(%log n) (Saks, Zuckerman, 1999)

width w = 3: known techniques fail to improve the seed length O(log”n) from
Nisan's result (RANDOM 2009, STOC 2010, 2011, FOCS 2010, CCC 2011)



More Restrictions

regular 1-BP: every inner non-source node has in-degree 2

permutation 1-BP: regular 1-BP where the two edges leading to any inner
non-source node are labeled 0 and 1 (i.e. edges between levels labeled with 0

respectively 1 create a permutation)

Recent Results on PRGs for regular 1-BPs

oblivious permutation 1-BPs of constant width: PRG with seed length O (10g % log n)
(Koucky, Nimbhorkar, Pudldk, STOC 2011)

oblivious regular 1-BPs of constant width:

e two constructions of PRG with seed length O (10gn (log logn + log %))
(Braverman, Rao, Raz, Yehudoff, FOCS 2010; Brody, Verbin, FOCS 2010)

o PRG with seed length O (log1logn) (De, ccc 2011)

X regular 1-BPs of constant width cannot even evaluate read-once conjunctions
of non-constant number of literals (e.g. DNF, CNF)



Hitting Set Generator

the one-sided error version of pseudo-random generator

Hitting Set:

Let ¢ > 0 and P, be a class of BPs with n inputs. A set H,, C {0,1}" is an
e-hitting set for P, if for every P € P,

P
3 = F

Priy, [P(x) =1] = implies (da € H,) P(a)=1.

For every n (given in unary), the hitting set generator (HSG) for a class of families
of BPs produces hitting set H,,.

deterministic simulation of a randomized algorithm with one-sided error performs
the computation for every fixed setting of random input from the hitting set and
accepts if there is at least one accepting computation



Hitting Set Generator for 1-BPs of Width 3

a normalized form of BP: the probability distribution of inputs on the three nodes
at each level is ordered as

pr>pr>p3s>0 (pr+p2+ps=1)

a simple 1-BP of width 3 excludes one special level-to-level transition pattern in
its normalized form (about 40 possible patterns in normalized width-3 1-BPs):

© © ©
b > P, > 5o > 0

p1(€+l) > pz(e+1) S p3(€+1) >0
— any regular width-3 1-BP is simple

a polynomial-time construction of (%)—hitting set for simple 1-BPs of width 3

which need not be oblivious (§ima, Zak, SOFSEM 2007)



The Weak Richness Condition

A set A C {0,1}" is weakly e-rich if for any index set I C {1,...,n} and for
any partition {Q1,...,Q,,Ry,...,R.} of I (¢ >0, r > 0) satisfying

1—1q]( 2%) xH( 2R)>5 (1)

j=1
for any ¢ € {0, 1}" there exists a € A that meets
(Fdje{l,....q})(VieQj)a;,=¢ and
(V]E{l,,?“})(HZERJ)CLZ#CZ (2)

Equivalent to c-Hitting Sets for Read-Once DNF & CNF:

The product on the left-hand side of inequality in (1) expresses the probability
that a random a € {0,1}" (not necessarily in A) satisfies condition (2) which
can be interpreted as a read-once conjunction of DNF and CNF

\/ /\ i) A /\ \/ —l(x;) where /l(x;)= { z; fore; =1

' _ ' _ —X; fOI’ C, — 0.
J=11i€eqQ; J=1 i€R;



The Weak Richness Condition Is Necessary

Theorem 1 Any e-hitting set for the class of 1-BPs of width 3 is weakly e-rich.

|dea of Proof:

e 1-BPs of width 3 can implement conjunctions of DNF and CNF

e a hitting set for a class of functions hits any of its subclass



The Weak Richness Condition

A set A C {0,1}" is weakly e-rich if for any index set I C {1,...,n} and for
any partition {Q1,...,Q,,Ry,...,R.} of I (¢ >0, r > 0) satisfying

1—1q]( 2%) xH( 2R)>5 (1)

J=1

for any ¢ € {0, 1}" there exists a € A that meets
(Fdje{l,....q})(VieQj)a;,=¢ and
(V]E{l,,?“})(HZERJ)CLZ#CZ (2)

Observation:
Condition (1) implies that there is j € {1,...,q} such that |Q,| < logn.

— The (Full) Richness Condition:

Replace ()1, ..., Q, by @ such that || < logn
and remove the blue text from the definition above.



The Richness Condition

A set A C {0,1}" is e-rich if for any index set I C {1,...,n}, for any subset
() C I and partition { Ry, ..., R} of I\Q (r > 0) satisfying || < logn and

ﬁ (1 - 2|1zj|> 2 €, (3)

j=1
for any ¢ € {0, 1}" there exists a € A that meets

VieQ)a,=¢ and (Vjed{l,....,r})(Fie€Rj)a; #c. (4)

Comments:

e Any e-rich set is weakly e-rich.

e Condition (4) can be interpreted as a read-once CNF with O(logn) single
literals and clauses whose sizes satisfy (3):

A r; forc =1
/\ O(x;) N /\ \/ —l(x;) where fl(x;)= { o, forei =0,

1€Q) J=1 i€R,;



Almost O(logn)-Wise Independent Sets Are =-Rich

A C {0,1}"is (k, 0)-wise independent set if for any index set S C {1,...,n}
of size |S| < k, the probability distribution on the bit locations from S is almost
uniform, i.e. for any ¢ € {0, 1}"

A%(e)| 1

Al 2l
where A°(c) = {a € A| (Vi € S)a; = ¢;}.

<p

Alon, Goldreich, Hastad, Peralta, 1992: for any § > 0 and k = O(logn),
(k, 3)-wise independent set A can be constructed in time polynomial in 5
Theorem 2 (Sima, Zak, CSR 2011) Lete > 0, C' be the least odd integer greater
than (2In1)?, and 0 < 3 < ﬁ Then any ([ (C+2)logn], 3)-wise independent
set is e-rich.

Corollary 1 Almost O(logn)-wise independent sets are hitting sets for the
conjunctions of DNF and CNF.

previously known for DNFs resp. CNFs (De,Etesami, Trevisan,Tulsiani,RANDOM 2010)



Intuition behind the Proof

Let A be a ([(C + 2)logn], 3)-wise independent set. We will show A is e-rich:

Assume subset Q C I C {1,...,n} and partition {Ry,..., R,} of I\ Q) satisfy
Q| <logn and [];_,(1 - 1/218i1 > ¢

For a given ¢ € {0,1}" we want to show that there is a € A that meets
VieQ)ai=¢ and (Vje{l,....,r})(Fie€Rj)a;#c;.

We will prove that the probability

A%(e) \ Uy, A%i(0)

p(A) = ] > 0.

By using the assumption that A is almost O(logn)-wise independent one can
approximate



The Main Result: The Richness Condition Is ‘Sufficient’

Theorem 3 Lete > 2. If A is "' !-rich for some &’ < ¢, then H = 3(A) which
contains all the vectors within the Hamming distance of 3 from any a € A, is an
e-hitting set for the class of 1-BPs of width 3.

Corollary: Any almost O(log n)-wise independent set extended with all the vectors
within the Hamming distance of 3 is a polynomial-time constructible e-hitting set
for 1-BPs of width 3 with acceptance probability € > 5/6.

The richness condition expresses an essential property of hitting sets for 1-BPs of
width 3 while being independent of a rather technical formalism of BPs.



Idea of Proof

P71
Let P be a normalized 1-BP of width 3 such that ‘ ( >‘ 2

> e > — .
- §

On the contrary assume that P(a) = 0 for every a € H = (3(A), which
constrains the structure of P:

A Simple Example: There are no three paths of length at most 3 starting in
the three different nodes at one level and leading to 1-sinks at level d (= depth).

level 3
d-3
d-2 typical

/_\J
d-1 structure

d_ 1
d p3 > g
1 1 0

l-sinks  0-sink

(d)  (d) d
P+, >% 1g)>%

Starting from the last level d, the structure of P is analyzed inductively block
after block to lower levels (very complex case analysis).



A Block-Like Structure of BP P

Ry, (resp. Qp1, ..., Q) contains the indices of
the variables that are queried on the correspond-
ing ‘boldface’ computational path whose edge la-
bels define relevant bits ¢; € {0,1} (i € Ry)
so that any input passing through this path that
differs from ¢ (resp. agrees with ¢) reaches the
double-edge path in the first column

I1(1-5m) 2

b=1
— (Vbe{1,...,7“})(3@'6}25)&2-#02-

Recursive Step:

1. Either [[,7 (1 k) > =

 olRy
—— continue in the analysis with block r+1,

2. or there is () such that || < logn among

Q117 ) Qlcﬂa O QT—H,lJ O QT+1,QT+1

— (VieQ)a;=c¢




Conclusion & Open Problems

e the explicit polynomial-time construction of a hitting set for 1-BPs of width 3

e a breakthrough in the effort to construct HSGs for 1-BPs of bounded width
(De, CCC 2011)
X

Such constructions were known only for width 2 or for oblivious regular/permutation

1-BPs of bounded width.

e Can the result be achieved for any acceptance probability ¢ > 0 ?
(X our result holds for € > 5/6)

e Can the technique be extended to width 4 or to bounded width ?



