A Sufficient Condition for Sets Hitting the Class of Read-Once Branching Programs of Width 3

Jiří Šíma, Stanislav Žák

Institute of Computer Science Academy of Sciences of the Czech Republic

Probabilistic Turing Machine (PTM)

BPL (Bounded-error Probabilistic Logarithmic-space) class of problems L = L(M) solvable by PTMs M with two-sided error $0 \le \delta < \frac{1}{2}$ in logarithmic space $S(n) = O(\log n)$ and polynomial time $T(n) = O(n^c)$:

if
$$x \in L$$
, then $Pr_{y \sim U_{T(n)}}[M(x, y) = 1] \ge 1 - \delta$
if $x \notin L$, then $Pr_{y \sim U_{T(n)}}[M(x, y) = 1] \le \delta$

(U_m is the uniform distribution on $\{0,1\}^m$)

Probabilistic Turing Machine (PTM)

RL (Randomized Logarithmic-space)

class of problems L = L(M) solvable by PTMs M with one-sided error $0 < \delta < 1$ in logarithmic space $S(n) = O(\log n)$ and polynomial time $T(n) = O(n^c)$:

$$\begin{array}{l} \text{if } x \in L \text{, then } Pr_{y \sim U_{T(n)}}\left[M(x,y)=1\right] \geq 1-\delta \\ \text{if } x \not\in L \text{, then } Pr_{y \sim U_{T(n)}}\left[M(x,y)=1\right]=0 \text{, i.e. } M(x,y)=0 \text{ for every } y \\ \longrightarrow \text{ if } M(x,y)=1 \text{, then } x \in L \end{array}$$

Derandomization of Space-Bounded Computation

deterministic simulation of PTM performs M(x, y) for every fixed setting of random input $y \in \{0, 1\}^m$ (where m = T(n)) and computes the probability of accepting computations

$$Pr_{y \sim U_m}\left[M(x, y) = 1\right] = \frac{\sum_{y \in \{0,1\}^m} M(x, y)}{2^m} = \begin{cases} \geq 1 - \delta & \longrightarrow \text{ accepts } x \\ \leq \delta & \longrightarrow \text{ rejects } x \end{cases}$$

 \longrightarrow the simulation time is exponential in T(n)

Is there an efficient simulation of PTM? Does randomness add power?

 $\mathbf{BPL} \stackrel{?}{=} \mathbf{L}, \quad \mathbf{RL} \stackrel{?}{=} \mathbf{L}$

Pseudorandom Generator (PRG)

 $g: \{0,1\}^s \longrightarrow \{0,1\}^m, \quad s \ll m$

stretches a short uniformly random seed of s bits into m bits that cannot be distinguished from uniform ones by small space machines M:

$$Pr_{y \sim U_m} \left[M(y) = 1 \right] - Pr_{z \sim U_s} \left[M(g(z)) = 1 \right] \right| \le \varepsilon$$

where $\varepsilon > 0$ is the error

deterministic simulation of PTM performs M(x, g(z)) for every fixed setting of seed $z \in \{0, 1\}^s$ and approximates the probability of accepting computations

$$Pr_{y \sim U_m}[M(x,y) = 1] \doteq \frac{\sum_{z \in \{0,1\}^s} M(x,g(z))}{2^s}$$

efficient derandomization (BPL=L): an explicit PRG with seed length $s = O(\log n)$ and sufficiently small error ε , computable in logarithmic space that fools logarithmic space machines M

Branching Program *P*

a leveled directed acyclic multi-graph G = (V, E):

- one source $s \in V$ of zero in-degree at level 0
- sinks of zero out-degree at the last level d (=depth)
- every inner (=non-sink) node has out-degree 2
- the inner nodes are labeled with input Boolean variables x_1, \ldots, x_n
- \bullet the two edges outgoing from any inner node at level $\ell < d$ lead to nodes at the next level $\ell+1$ and are labeled 0 and 1
- \bullet the sinks are labeled 0 and 1

width = the maximum number of nodes in one level

branching program P computes Boolean function $P : \{0, 1\}^n \longrightarrow \{0, 1\}$:

Branching Programs (BPs)

a non-uniform model of space-bounded computation:

infinite family of branching programs $\{P_n\}$, one P_n for each input length $n \ge 1$

Turing machine M that uses space s(n) and runs in time t(n)

is modeled by

branching program P_n of width $2^{s(n)}$ and depth t(n)

Restrictions

Read-Once BPs (1-BPs): every input variable is tested at most once along each computational path

Oblivious BPs: at each level only one variable is queried

 \longrightarrow provably less efficient model (Beame, Machmouchi, CCC 2011)

an efficient construction of PRG for 1-BPs of polynomial size suffices to derandomize BPL

Explicit Pseudorandom Generators for 1-BPs

polynomial width: PRG with seed length $O(\log^2 n)$ (Nisan, 1992) width w = 2: PRG with seed length $O(\frac{1}{\varepsilon} \log n)$ (Saks, Zuckerman, 1999) width w = 3: known techniques fail to improve the seed length $O(\log^2 n)$ from Nisan's result (RANDOM 2009, STOC 2010, 2011, FOCS 2010, CCC 2011)

More Restrictions

regular 1-BP: every inner non-source node has in-degree 2

permutation 1-BP: regular 1-BP where the two edges leading to any inner non-source node are labeled 0 and 1 (i.e. edges between levels labeled with 0 respectively 1 create a permutation)

Recent Results on PRGs for regular 1-BPs

oblivious permutation 1-BPs of constant width: PRG with seed length $O\left(\log \frac{1}{\varepsilon} \log n\right)$ (Koucký, Nimbhorkar, Pudlák, STOC 2011)

oblivious regular 1-BPs of constant width:

- two constructions of PRG with seed length $O\left(\log n \left(\log \log n + \log \frac{1}{\varepsilon}\right)\right)$ (Braverman, Rao, Raz, Yehudoff, FOCS 2010; Brody, Verbin, FOCS 2010)
- PRG with seed length $O\left(\log \frac{1}{\varepsilon} \log n\right)$ (De, CCC 2011)

 \times regular 1-BPs of constant width cannot even evaluate read-once conjunctions of non-constant number of literals (e.g. DNF, CNF)

Hitting Set Generator

the one-sided error version of pseudo-random generator

Hitting Set:

Let $\varepsilon > 0$ and \mathcal{P}_n be a class of BPs with n inputs. A set $H_n \subseteq \{0,1\}^n$ is an ε -hitting set for \mathcal{P}_n if for every $P \in \mathcal{P}_n$,

$$Pr_{x \sim U_n}\left[P(x) = 1\right] = \frac{\left|P^{-1}(1)\right|}{2^n} \ge \varepsilon \quad \text{implies} \quad (\exists a \in H_n) \ P(a) = 1.$$

For every n (given in unary), the hitting set generator (HSG) for a class of families of BPs produces hitting set H_n .

deterministic simulation of a randomized algorithm with one-sided error performs the computation for every fixed setting of random input from the hitting set and accepts if there is at least one accepting computation

Hitting Set Generator for 1-BPs of Width 3

a normalized form of BP: the probability distribution of inputs on the three nodes at each level is ordered as

$$p_1 \ge p_2 \ge p_3 > 0$$
 $(p_1 + p_2 + p_3 = 1)$

a simple 1-BP of width 3 excludes one special level-to-level transition pattern in its normalized form (about 40 possible patterns in normalized width-3 1-BPs):

 \longrightarrow any regular width-3 1-BP is simple

a polynomial-time construction of $\left(\frac{191}{192}\right)$ -hitting set for simple 1-BPs of width 3 which need not be oblivious (\check{S}_{ima} , \check{Z}_{ak} , SOFSEM 2007)

The Weak Richness Condition

A set $A \subseteq \{0,1\}^n$ is weakly ε -rich if for any index set $I \subseteq \{1,\ldots,n\}$ and for any partition $\{Q_1,\ldots,Q_q,R_1,\ldots,R_r\}$ of I $(q \ge 0, r \ge 0)$ satisfying

$$\left(1 - \prod_{j=1}^{q} \left(1 - \frac{1}{2^{|Q_j|}}\right)\right) \times \prod_{j=1}^{r} \left(1 - \frac{1}{2^{|R_j|}}\right) \ge \varepsilon, \qquad (1)$$

for any $c \in \{0,1\}^n$ there exists $a \in A$ that meets

$$\exists j \in \{1, \dots, q\}) (\forall i \in Q_j) a_i = c_i \quad \text{and} (\forall j \in \{1, \dots, r\}) (\exists i \in R_j) a_i \neq c_i.$$
(2)

Equivalent to ε -Hitting Sets for Read-Once DNF & CNF:

The product on the left-hand side of inequality in (1) expresses the probability that a random $a \in \{0,1\}^n$ (not necessarily in A) satisfies condition (2) which can be interpreted as a read-once conjunction of DNF and CNF

$$\bigvee_{j=1}^{q} \bigwedge_{i \in Q_{j}} \ell(x_{i}) \wedge \bigwedge_{j=1}^{r} \bigvee_{i \in R_{j}} \neg \ell(x_{i}) \quad \text{where} \quad \ell(x_{i}) = \begin{cases} x_{i} & \text{for } c_{i} = 1 \\ \neg x_{i} & \text{for } c_{i} = 0 \end{cases}.$$

The Weak Richness Condition Is Necessary

Theorem 1 Any ε -hitting set for the class of 1-BPs of width 3 is weakly ε -rich.

Idea of Proof:

- 1-BPs of width 3 can implement conjunctions of DNF and CNF
- a hitting set for a class of functions hits any of its subclass

The Weak Richness Condition

A set $A \subseteq \{0,1\}^n$ is weakly ε -rich if for any index set $I \subseteq \{1,\ldots,n\}$ and for any partition $\{Q_1,\ldots,Q_q,R_1,\ldots,R_r\}$ of I $(q \ge 0, r \ge 0)$ satisfying

$$\left(1 - \prod_{j=1}^{q} \left(1 - \frac{1}{2^{|Q_j|}}\right)\right) \times \prod_{j=1}^{r} \left(1 - \frac{1}{2^{|R_j|}}\right) \ge \varepsilon, \qquad (1)$$

for any $c \in \{0,1\}^n$ there exists $a \in A$ that meets

$$\exists j \in \{1, \dots, q\}) (\forall i \in Q_j) a_i = c_i \text{ and} (\forall j \in \{1, \dots, r\}) (\exists i \in R_j) a_i \neq c_i.$$

$$(2)$$

Observation:

Condition (1) implies that there is $j \in \{1, \ldots, q\}$ such that $|Q_j| \le \log n$.

 \rightarrow The (Full) Richness Condition:

Replace Q_1, \ldots, Q_q by Q such that $|Q| \le \log n$ and remove the blue text from the definition above.

The Richness Condition

A set $A \subseteq \{0,1\}^n$ is ε -rich if for any index set $I \subseteq \{1,\ldots,n\}$, for any subset $Q \subseteq I$ and partition $\{R_1,\ldots,R_r\}$ of $I \setminus Q$ $(r \ge 0)$ satisfying $|Q| \le \log n$ and

$$\prod_{j=1}^{r} \left(1 - \frac{1}{2^{|R_j|}} \right) \ge \varepsilon , \qquad (3)$$

for any $c \in \{0, 1\}^n$ there exists $a \in A$ that meets

$$(\forall i \in Q) a_i = c_i \quad \text{and} \quad (\forall j \in \{1, \dots, r\}) (\exists i \in R_j) a_i \neq c_i.$$
(4)

Comments:

- Any ε -rich set is weakly ε -rich.
- Condition (4) can be interpreted as a read-once CNF with $O(\log n)$ single literals and clauses whose sizes satisfy (3):

$$\bigwedge_{i \in Q} \ell(x_i) \wedge \bigwedge_{j=1}^r \bigvee_{i \in R_j} \neg \ell(x_i) \quad \text{where} \quad \ell(x_i) = \begin{cases} x_i & \text{for } c_i = 1 \\ \neg x_i & \text{for } c_i = 0 \end{cases}.$$

Almost $O(\log n)$ -Wise Independent Sets Are ε -Rich

 $A \subseteq \{0,1\}^n$ is (k,β) -wise independent set if for any index set $S \subseteq \{1,\ldots,n\}$ of size $|S| \leq k$, the probability distribution on the bit locations from S is almost uniform, i.e. for any $c \in \{0,1\}^n$

$$\frac{\left|A^{S}(c)\right|}{\left|A\right|} - \frac{1}{2^{\left|S\right|}} \le \beta$$

where $A^{S}(c) = \{a \in A \mid (\forall i \in S) \ a_{i} = c_{i}\}.$

Alon, Goldreich, Håstad, Peralta, 1992: for any $\beta > 0$ and $k = O(\log n)$, (k, β) -wise independent set A can be constructed in time polynomial in $\frac{n}{\beta}$

Theorem 2 (Šíma, Žák, CSR 2011) Let $\varepsilon > 0$, C be the least odd integer greater than $(\frac{2}{\varepsilon} \ln \frac{1}{\varepsilon})^2$, and $0 < \beta < \frac{1}{n^{C+3}}$. Then any $(\lceil (C+2) \log n \rceil, \beta)$ -wise independent set is ε -rich.

Corollary 1 Almost $O(\log n)$ -wise independent sets are hitting sets for the conjunctions of DNF and CNF.

previously known for DNFs resp. CNFs (De, Etesami, Trevisan, Tulsiani, RANDOM 2010)

Intuition behind the Proof

Let A be a $(\lceil (C+2)\log n \rceil, \beta)$ -wise independent set. We will show A is ε -rich: Assume subset $Q \subseteq I \subseteq \{1, \ldots, n\}$ and partition $\{R_1, \ldots, R_r\}$ of $I \setminus Q$ satisfy $|Q| \leq \log n$ and $\prod_{j=1}^r (1 - 1/2^{|R_j|}) \geq \varepsilon$.

For a given $c \in \{0,1\}^n$ we want to show that there is $a \in A$ that meets

 $(\forall i \in Q) a_i = c_i \text{ and } (\forall j \in \{1, \ldots, r\}) (\exists i \in R_j) a_i \neq c_i.$

We will prove that the probability

$$p(A) = \frac{\left|A^Q(c) \setminus \bigcup_{j=1}^r A^{R_j}(c)\right|}{|A|} > 0.$$

By using the assumption that A is almost $O(\log n)$ -wise independent one can approximate

$$p(A) \sim p(\{0,1\}^n) = \frac{1}{2^{|Q|}} \prod_{j=1}^r \left(1 - \frac{1}{2^{|R_j|}}\right) \ge \frac{\varepsilon}{n} > 0.$$

The Main Result: The Richness Condition Is 'Sufficient'

Theorem 3 Let $\varepsilon > \frac{5}{6}$. If A is ε'^{11} -rich for some $\varepsilon' < \varepsilon$, then $H = \Omega_3(A)$ which contains all the vectors within the Hamming distance of 3 from any $a \in A$, is an ε -hitting set for the class of 1-BPs of width 3.

Corollary: Any almost $O(\log n)$ -wise independent set extended with all the vectors within the Hamming distance of 3 is a polynomial-time constructible ε -hitting set for 1-BPs of width 3 with acceptance probability $\varepsilon > 5/6$.

The richness condition expresses an essential property of hitting sets for 1-BPs of width 3 while being independent of a rather technical formalism of BPs.

Idea of Proof

Let P be a normalized 1-BP of width 3 such that $\frac{\left|P^{-1}(1)\right|}{2^n} \geq \varepsilon > \frac{5}{6}$.

On the contrary assume that P(a) = 0 for every $a \in H = \Omega_3(A)$, which constrains the structure of P:

A Simple Example: There are no three paths of length at most 3 starting in the three different nodes at one level and leading to 1-sinks at level d (= depth).

Starting from the last level d, the structure of P is analyzed inductively block after block to lower levels (very complex case analysis).

A Block-Like Structure of BP ${\it P}$

 R_b (resp. Q_{b1}, \ldots, Q_{bq_b}) contains the indices of the variables that are queried on the corresponding 'boldface' computational path whose edge labels define relevant bits $c_i \in \{0,1\}$ ($i \in R_b$) so that any input passing through this path that differs from c (resp. agrees with c) reaches the double-edge path in the first column

$$\prod_{b=1}^{r} \left(1 - \frac{1}{2^{|R_b|}} \right) \ge \varepsilon$$

$$\rightarrow \quad (\forall b \in \{1, \dots, r\}) \ (\exists i \in R_b) \ a_i \neq c_i$$

Recursive Step:

1. Either $\prod_{b=1}^{r+1} \left(1 - \frac{1}{2^{|R_b|}}\right) \ge \varepsilon$ \longrightarrow continue in the analysis with block r+1, 2. or there is Q such that $|Q| \le \log n$ among $Q_{11}, \ldots, Q_{1q_1}, \ldots, Q_{r+1,1}, \ldots, Q_{r+1,q_{r+1}}$ $\longrightarrow (\forall i \in Q) a_i = c_i$

Conclusion & Open Problems

- the explicit polynomial-time construction of a hitting set for 1-BPs of width 3
- a breakthrough in the effort to construct HSGs for 1-BPs of bounded width (De, CCC 2011)

 \times

Such constructions were known only for width 2 or for oblivious regular/permutation 1-BPs of bounded width.

- Can the result be achieved for any acceptance probability $\varepsilon > 0$? (× our result holds for $\varepsilon > 5/6$)
- Can the technique be extended to width 4 or to bounded width ?