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Abstract. We introduce a so-called cut language which contains the
representations of numbers in a rational base that are less than a given
threshold. The cut languages can be used to refine the analysis of neural
net models between integer and rational weights. We prove a necessary
and sufficient condition when a cut language is regular, which is based
on the concept of a quasi-periodic power series. We achieve a dichotomy
that a cut language is either regular or non-context-free while examples
of regular and non-context-free cut languages are presented. We show
that any cut language with a rational threshold is context-sensitive.
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1 Cut Languages

We study so-called cut languages which contain the representations of numbers in
a rational base [1, 2, 5–7, 10, 12–15] that are less than a given threshold. Hereafter,
let a be a rational number such that 0 < |a| < 1, which is the inverse of a base
(radix) 1/a where |1/a| > 1, and let B ⊂ Q be a finite set of rational digits.
We say that L ⊆ Σ∗ is a cut language over a finite alphabet Σ 6= ∅ if there is
a bijection b : Σ −→ B and a real threshold c such that

L = L<c =

{
x1 . . . xn ∈ Σ∗

∣∣∣∣∣
n−1∑
i=0

b(xn−i)a
i < c

}
. (1)

The cut languages can be used to refine the analysis of computational power
of neural network models [17, 23]. This analysis is satisfactorily fine-grained in
terms of Kolmogorov complexity when changing from rational to arbitrary real
weights [4, 18]. In contrast, there is still a gap between integer and rational
weights, which results in a jump from regular to recursively enumerable lan-
guages in the Chomsky hierarchy. In particular, neural nets with integer weights,
corresponding to binary-state networks, coincide with finite automata [3, 8, 9, 11,
16, 20, 25]. On the other hand, a neural network that contains two analog-state
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units with rational weights, can implement two stacks of pushdown automata,
a model equivalent to Turing machines [19]. A natural question arises: what is
the computational power of binary-state networks including one extra analog
unit with rational weights? Such a model is equivalent to finite automata with
a register [21], which accept languages that can be represented by some cut lan-
guages combined in a certain way by usual operations (e.g. intersection with
a regular language, concatenation, union); see [22] for the exact representation.

In this paper we prove a necessary and sufficient condition when a given cut
language is regular (Section 3). For this purpose, we introduce and characterize
an a-quasi-periodic number within B whose all representations in basis 1/a using
the digits from B, are eventually quasi-periodic power series (Section 2). The
concept of quasi-periodicity represents a natural generalization of periodicity,
allowing for different quasi-repetends even of unbounded length. There are num-
bers with uncountably many representations, all of which are eventually quasi-
periodic, although only countably many of them can be eventually periodic. We
achieve a dichotomy that a cut language is either regular or non-context-free.
In addition, we present examples of cut languages that are not context-free and
we show that any cut language with a rational threshold is context-sensitive
(Section 4). Finally, we summarize the results and present some open problems
(Section 5).

2 Quasi-Periodic Power Series

In this section, we introduce and analyze a notion of a-quasi-periodic numbers
within B which will be employed for characterizing the class of regular cut
languages in Section 3. We say that a power series

∑∞
k=0 bka

k with coefficients
bk ∈ B for all k ≥ 0, is eventually quasi-periodic with period sum P if there is
an increasing infinite sequence of its term indices 0 ≤ k1 < k2 < · · · such that
for every i ≥ 1, ∑mi−1

k=0 bki+k a
k

1− ami
= P (2)

where mi = ki+1 − ki > 0 is the length of quasi-repetend bki , . . . , bki+1−1, while
k1 is the length of preperiodic part b0, . . . , bk1−1. For k1 = 0, we call such a power
series quasi-periodic. One can calculate the sum of any eventually quasi-periodic
power series as

∞∑
k=0

bka
k =

k1−1∑
k=0

bka
k + ak1P (3)

since
∑∞
k=k1

bka
k =

∑∞
i=1 a

ki
∑mi−1
k=0 bki+k a

k = P ·
∑∞
i=1 a

ki(1 − ami) =

P ·
∑∞
i=1(aki − aki+1) = ak1P is an absolutely convergent series. It follows that

the sum (3) does not change if any quasi-repetend is removed from associated
sequence (bk)∞k=0 or if it is inserted in between two other quasi-repetends, which
means that the quasi-repetends can be permuted arbitrarily.

Example 1. A quasi-periodic power series can be composed of quasi-repetends
having unbounded length. For example, for any rational period sum P 6= 0, we
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define three rational digits as β1 = (1 − a2)P , β2 = a(1 − a)P , and β3 = 0,
that is, B = {β1, β2, β3}. Then β1, β

n
2 , β3 where βn2 means β2 repeated n times,

creates a quasi-repetend of length n + 2 for every integer n ≥ 0, because
(β1 +

∑n
k=1 β2a

k + β3a
n+1)/(1 − an+2) = P whereas for any integer r such

that 0 ≤ r < n, it holds (β1 +
∑r
k=1 β2a

k)/(1− ar+1) 6= P .

Furthermore, given a power series
∑∞
k=0 bka

k, we define its tail sequence
(dn)∞n=0 as dn =

∑∞
k=0 bn+k a

k for every n ≥ 0. Denote by D(
∑∞
k=0 bka

k) =
{dn |n ≥ 0} the set of tail values.

Lemma 2. A power series
∑∞
k=0 bka

k with bk ∈ B for all k ≥ 0, is eventually
quasi-periodic with period sum P iff its tail sequence (dn)∞n=0 contains a constant
infinite subsequence (dki)

∞
i=1 such that dki = P for every i ≥ 1.

Proof. Let
∑∞
k=0 bka

k be an eventually quasi-periodic power series with period
sum P, which means there is an increasing infinite sequence of its term indices
0 ≤ k1 < k2 < · · · such that equation (2) holds for every i ≥ 1. It follows that

aki dki =
∑∞
k=ki

bk a
k =

∑∞
j=i a

kj
∑mj−1
k=0 bkj+k a

k = P ·
∑∞
j=i a

kj (1 − amj ) =

P ·
∑∞
j=i(a

kj − akj+1) = akiP , which implies dki = P for every i ≥ 1.
Conversely, assume that (dn)∞n=0 contains a constant subsequence (dki)

∞
i=1

such that dki = P for every i ≥ 1. We have
∑mi−1
k=0 bki+k a

k = dki − amidki+1 =
(1− ami)P where mi = ki+1 − ki > 0 , which implies (2) for every i ≥ 1. ut

Theorem 3. A power series
∑∞
k=0 bka

k with bk ∈ B for all k ≥ 0, is eventually
quasi-periodic iff the set of its tail values, D = D(

∑∞
k=0 bka

k), is finite.

Proof. Assume that D is a finite set, which means there must be a real number
P ∈ D such that dki = P for infinitely many indices 0 ≤ k1 < k2 < · · · ,
that is, (dki)

∞
i=1 creates a constant infinite subsequence of tail sequence (dn)∞n=0 .

According to Lemma 2, this ensures that
∑∞
k=0 bka

k is eventually quasi-periodic.
Conversely, let

∑∞
k=0 bka

k with bk ∈ B for all k ≥ 0, be an eventually quasi-
periodic power series with period sum P . Since a ∈ Q and B ⊂ Q is finite, P
is a rational number by (2) and there exists a natural number β > 0 such that
B′ = {β(b − (1 − a)P )/a | b ∈ B} ⊂ Z is a finite set of integers. According to
Lemma 2, the tail sequence (dn)∞n=0 of

∑∞
k=0 bka

k contains a constant infinite
subsequence (dki)

∞
i=1 such that dki = P for every i ≥ 1. Assume to the contrary

that D = {dn |n ≥ 0} is an infinite set.
We define a modified sequence (d′n)∞n=0 as d′n = β(dk1+n − P ) for all n ≥ 0,

which satisfies d′k′i
= 0 where k′i = ki−k1, for every i ≥ 1, and D′ = {d′n |n ≥ 0}

is an infinite set. Furthermore, for each n ≥ 0,

d′n
a
− d′n+1 =

β(dk1+n − P )

a
− β(dk1+n+1 − P ) = β

bk1+n − (1− a)P

a
∈ B′ (4)

is an integer by the definition of B′. In addition, denote 1/a = α/q ∈ Q where
natural number α > 0 and integer q 6= 0 are coprime.

Lemma 4. For every n ≥ 0, there exists an integer δ and a natural number
p ≥ 0 such that d′n = δ/qp.
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Proof. We proceed by induction on n. The assertion is obvious for n = 0 when
d′0 = 0. Assume that d′n = δ/qp for some δ ∈ Z and p ≥ 0. Then d′n+1 = d′n/a−b′
for some integer b′ ∈ B′ ⊂ Z according to (4), which can be rewritten as d′n+1 =
(α/q) · (δ/qp)− b′ = (αδ − b′qp+1)/qp+1 = δ1/q

p+1 where δ1 = αδ − b′qp+1 ∈ Z,
completing the proof of Lemma 4. ut

Lemma 5. If d′n+1 ∈ Z, then d′n ∈ Z.

Proof. Let d′n+1 ∈ Z . By (4) there is b′ ∈ B′ ⊂ Z such that d′n/a = d′n+1+b′ ∈ Z.
According to Lemma 4, d′n = δ/qp for some δ ∈ Z and p ≥ 0, which gives
d′n/a = αδ/qp+1 ∈ Z. Since α and q are coprime, qp+1 must be a factor of δ,
which means δ = δ′qp+1 for some δ′ ∈ Z, and hence d′n = δ/qp = δ′q ∈ Z,
completing the proof of Lemma 5. ut

We will show for each n ≥ 0 that d′n ∈ Z. Let i ≥ 1 be the least index such that
k′i ≥ n for which we know d′k′i

= 0 ∈ Z. By applying Lemma 5 (k′i − n) times we

obtain d′k′i−1
, d′k′i−2

, . . . , d′n ∈ Z.

Thus, D′ ⊂ Z and since D′ is infinite, there exists an index m ≥ 0 such
that |d′m| ≥ (|a| ·M)/(1 − |a|) > 0 where M = maxb′∈B′ |b′| . Note that M > 0
since for M = 0, we would have B = {(1 − a)P} implying D = {P} which
contradicts that D is infinite. According to (4), |d′m+1| ≥ |d′m|/|a| −M which
implies |d′m+1| − |d′m| ≥ (1/|a| − 1)|d′m| −M ≥ 0 by the definition of m. Hence,
|d′m+1| ≥ |d′m| , and by induction we obtain |d′n| ≥ (|a| ·M)/(1 − |a|) > 0 for
every n ≥ m . On the other hand, we know that there is an index i such that
k′i ≥ m for which d′k′i

= 0, which is a contradiction completing the proof of

Theorem 3. ut

We say that a real number c is a-quasi-periodic within B if any power series∑∞
k=0 bka

k = c with bk ∈ B for all k ≥ 0, is eventually quasi-periodic. Note
that c that cannot not be written as a respective power series at all, or can, in
addition, be expressed as a finite sum

∑h
k=0 bka

k = c whereas 0 /∈ B, is also
considered formally to be a-quasi-periodic. For example, the numbers from the
complement of the Cantor set are formally (1/3)-quasi-periodic within {0, 2}.

Example 6. Example 1 can be extended to provide a nontrivial instance of an
a-quasi-periodic number that has infinitely many different quasi-periodic rep-
resentations composed of quasi-repetends of arbitrary length (greater than 1).
This includes ordinarily periodic representations composed of one of these quasi-
repetends and uncountably many non-periodic ones. Let a ∈ Q meet 0 < a < 1

2 .
We show that any positive rational number c is a-quasi-periodic within B where
B = {β1, β2, β3} is defined in Example 1 so that P = c. Obviously, β1 >
β2 > β3 = 0. Assume that c =

∑∞
k=0 bka

k for some sequence (bk)∞k=0 where
bk ∈ B for all k ≥ 0. Observe first that it must be b0 = β1 since otherwise
c =

∑∞
k=0 bka

k ≤ β2 +
∑∞
k=1 β1a

k = a(1− a)c+ (1− a2)c · a/(1− a) = 2ac < c
due to a < 1

2 . Moreover, for any n ≥ 0 such that bk = β2 for every k = 1, . . . , n,
it holds bn+1 6= β1 since otherwise c =

∑∞
k=0 bka

k ≥ β1 +
∑n
k=1 β2a

k+β1a
n+1 =
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(1−a2)c+a(1−a)c ·a(1−an)/(1−a)+(1−a2)c ·an+1 = c−an+1(a2+a−1)c > c
due to a2 + a− 1 < 0 for 0 < a < 1

2 .
First consider the case when there is r ≥ 1 such that bk = β2 for all

k ≥ r. Then b0, . . . , br−1 is a preperiodic part and bk = β2 for k ≥ r repre-
sents a repetend of length mk = 1, which proves

∑∞
k=0 bka

k to be eventually
quasi-periodic. Further assume there is no such r, and thus bk = β2 for ev-
ery k = 1, . . . , n1 and bn1+1 = β3, for some n1 ≥ 0. It follows that series∑∞
k=0 bka

k = c starts with a quasi-repetend β1, β
n1
2 , β3 of length n1+2 (cf. Exam-

ple 1) which can be omitted as
∑∞
k=0 bn1+2+ka

k = (c−
∑n1+1
k=0 bka

k)/an1+2 = c

due to
∑n1+1
k=0 bka

k = c(1 − an1+2) by (2), and the argument can be repeated
for its tail

∑∞
k=0 bn1+2+ka

k = c to reveal the next quasi-repetend β1, β
n2
2 , β3 for

some n2 ≥ 0 etc. Hence,
∑∞
k=0 bka

k is quasi-periodic, which completes the proof
that c is a-quasi-periodic within B.

Example 7. On the other hand, we present an example of an eventually quasi-
periodic series

∑∞
k=0 bka

k = c with bk ∈ B for all k ≥ 0, such that c is not
a-quasi-periodic within B. Let a = 2

3 , B = {0, 1}, and define an eventually
quasi-periodic series

∑∞
k=0 bka

k with a preperiodic part b0 = b1 = 0 and a
repetend b2+3k = 0, b3+3k = b4+3k = 1 for every k ≥ 0, which sums to c =
(( 2

3 )3 + ( 2
3 )4) ·

∑∞
k=0( 2

3 )3k = 40
57 .

Furthermore, we employ a greedy approach to generate a series
∑∞
k=0 b

′
ka
k =

c with b′k ∈ {0, 1} for all k ≥ 0, which is not eventually quasi-periodic. In
particular, find minimal k1 ≥ 0 such that ak1 < c which gives b′0 = · · · =
b′k1−1 = 0, b′k1 = 1, and remainder c1 = c/ak1 − 1. For n > 1, let b′0, . . . , b

′
kn−1

be

0s except for b′k1 = b′k2 = · · · = b′kn−1
= 1. Then find minimal kn > kn−1 such

that akn−kn−1 < cn−1 which produces b′kn−1+1 = · · · = b′kn−1 = 0, b′kn = 1, and

remainder cn = cn−1/a
kn−kn−1 − 1. It follows that cn =

∑∞
k=0 b

′
kn+k

ak − 1 =

(c −
∑n
i=1 a

ki)/akn for n ≥ 1. By plugging a = 2
3 and c = 40

57 into this formula,
for which k1 = 1 and k2 = 9, we obtain

cn =
20

19

(
3

2

)kn−1
−

n∑
i=1

(
3

2

)kn−ki
=

3kn−1 − 19 · 2 ·
∑n
i=2 2ki−2 · 3kn−ki

19 · 2kn−1
(5)

which is an irreducible fraction since both 19 and 2 are not factors of 3kn−1.
Hence, for any natural n1, n2 such that 0 < n1 < n2 we know cn1

6= cn2
. It

follows that the tail sequence (d′n)∞n=0 of
∑∞
k=0 b

′
ka
k = c contains infinitely many

different values d′kn = cn + 1 for n ≥ 1, which implies that
∑∞
k=0 b

′
ka
k is not an

eventually quasi-periodic series, according to Theorem 3.

Theorem 8. A real number c is a-quasi-periodic within B iff the tail sequences
of all the power series satisfying

∑∞
k=0 bka

k = c with bk ∈ B for all k ≥ 0,
contain altogether only finitely many values, that is,

D =
⋃

∑∞
k=0 bka

k=c
for all k≥0, bk∈B

D

( ∞∑
k=0

bka
k

)
(6)
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is a finite set. In addition, if c is not a-quasi-periodic within B, then there exists
a power series

∑∞
k=0 bka

k = c with bk ∈ B for all k ≥ 0, whose tail sequence
contains pair-wise different values.

Proof. LetD be a finite set. Then the tail sequence of any power series
∑∞
k=0 bka

k

= c with bk ∈ B for all k ≥ 0, contains only finitely many values and thus includes
a constant infinite subsequence. According to Lemma 2, this implies that any∑∞
k=0 bka

k = c is eventually quasi-periodic, and hence, c is a-quasi-periodic
within B.

Conversely, assume that D is infinite. Consider a directed tree T = (V,E)
with vertex set V ⊆ B∗ such that b0 · · · bn−1 ∈ V if its tail meets t(b0 · · · bn−1) =

(c−
∑n−1
k=0 bka

k)/an ∈ D, which includes the empty string ε as a root satisfying
t(ε) = c. Define a set of directed edges as

E = {(b0 · · · bn−1, b0 · · · bn−1bn) | b0 · · · bn−1, b0 · · · bn−1bn ∈ V } , (7)

which guarantees the outdegree of T is bounded by |B|. Let T ′ = (V ′, E′) be
a subtree of T with a maximal vertex subset V ′ ⊆ V so that ε ∈ V ′ and
t(v1) 6= t(v2) for any two different vertices v1, v2 ∈ V ′.

We show that for any d ∈ D there is v ∈ V ′ such that t(v) = d. On the
contrary, suppose b0 · · · bn−1 ∈ V \ V ′ is a vertex with minimal n, satisfying
t(v) 6= t(b0 · · · bn−1) = d ∈ D for every v ∈ V ′. Clearly, b0 · · · bn−2 ∈ V \ V ′
since otherwise vertex b0 · · · bn−1 could be included into V ′ which contradicts
the maximality of V ′. By the minimality of n, we know there is b′0 · · · b′m−1 ∈ V ′
such that t(b′0 · · · b′m−1) = t(b0 · · · bn−2). Thus, we have t(b′0 · · · b′m−1bn−1) = d
and the maximality of V ′ implies b′0 · · · b′m−1bn−1 ∈ V ′, which is in contradiction
with the definition of b0 · · · bn−1.

It follows that {t(v) | v ∈ V ′} = D implying T ′ is infinite. According to
König’s lemma, there exists an infinite directed path in T ′ corresponding to
a power series

∑∞
k=0 bka

k = c whose tail sequence contains pair-wise different
values. By Lemma 2, this series is not eventually quasi-periodic and hence, c is
not a-quasi-periodic within B. ut

3 Regular Cut Languages

In this section we formulate a necessary and sufficient condition for a cut lan-
guage L<c to be regular (Theorem 11), which is based on a-quasi-periodic thresh-
olds c within B. The following Lemma 9 provides a technical characterization
of the regular cut languages, which is proven by Myhill-Nerode theorem, while
subsequent Lemma 10 separates the cases when threshold c is represented by a
finite sum or when c has no representation in base 1/a using the digits from B.

Lemma 9. Let Σ be a finite alphabet, b : Σ −→ B be a bijection, and c be a real
number. Then the cut language L<c = {x1 · · ·xn ∈ Σ∗ |

∑n−1
i=0 b(xn−i)a

i < c} is
regular iff the set

C =

{
c(b0, . . . , bκ−1)

∣∣∣∣∣ Iκ ≤ c−
κ−1∑
k=0

bka
k ≤ Sκ ; b0, . . . , bκ−1 ∈ B ; κ ≥ 0

}
(8)
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is finite, where

Iκ = inf
bκ,...,bh−1∈B

h≥κ

h−1∑
k=κ

bka
k , Sκ = sup

bκ,...,bh−1∈B
h≥κ

h−1∑
k=κ

bka
k , (9)

c(b0, . . . , bκ−1) =

{
inf C(b0, . . . , bκ−1) if aκ > 0
supC(b0, . . . , bκ−1) if aκ < 0 ,

(10)

C(b0, . . . , bκ−1) =

{
h−κ−1∑
k=0

bκ+ka
k

∣∣∣∣∣
h−1∑
k=0

bka
k ≥ c ; bκ, . . . , bh−1 ∈ B ; h ≥ κ

}
.

(11)

Proof. Let C = {c1, . . . , cp} in (8) be a finite set such that c1 < c2 < · · · <
cp. We introduce an equivalence relation ∼ on Σ∗ as follows. For any x, y ∈
Σ∗ of length nx = |x| and ny = |y|, respectively, we define x ∼ y iff both

zx =
∑nx−1
i=0 b(xnx−i)a

i and zy =
∑ny−1
i=0 b(ynx−i)a

i belong either to one of the
p + 1 open intervals (−∞, c1), (c1, c2), . . . , (cp−1, cp), (cp,∞), or to one of the p
singletons {c1}, {c2}, . . . , {cp} . Obviously, we have 2p+ 1 equivalence classes. In
order to prove that language L<c is regular we employ Myhill-Nerode theorem
by showing that for any x, y ∈ Σ∗, if x ∼ y, then for every w ∈ Σ∗, xw ∈ L<c
iff yw ∈ L<c . Thus, consider x, y ∈ Σ∗ such that x ∼ y, and on the contrary,
suppose there is w ∈ Σ∗ of length κ = |w| with zw =

∑κ−1
i=0 b(wκ−i)a

i, such that
xw ∈ L<c and yw /∈ L<c. This means zw+Iκ ≤ zw+aκzx < c ≤ zw+aκzy ≤ zw+
Sκ by (9), implying Iκ < c−zw ≤ Sκ which ensures cj = c(b(wκ), . . . , b(w1)) ∈ C
for some j ∈ {1, . . . , p}, according to (8). It follows from (10) and (11) that
zw + aκzx < c ≤ zw + aκcj ≤ zw + aκzy which gives aκzx < aκcj ≤ aκzy
contradicting x ∼ y.

Conversely, let L<c be a regular languages. According to Myhill-Nerode the-
orem, there is an equivalence relation ∼ on Σ∗ with a finite number p of equiv-
alence classes such that for any x, y ∈ Σ∗, if x ∼ y, then for every w ∈ Σ∗,
xw ∈ L<c iff yw ∈ L<c . Assume to the contrary that C in (8) is infinite.
Choose c0, c1, . . . , c2p+2 ∈ C so that c0 < c1 < · · · < c2p+2, and for each
j ∈ {0, . . . , 2p+ 2}, let cj = c(bj0, . . . , bj,κj−1) for some bj0, . . . , bj,κj−1 ∈ B
and κj ≥ 0, according to (8). Definition (10) and (11) ensures that for each
odd j ∈ {1, 3, . . . , 2p + 1}, there exists hj ≥ κj and bj,κj , . . . , bj,hj−1 ∈ B such

that c′j =
∑hj−κj−1
k=0 bjκj+ka

k is sufficiently close to cj so that cj−1 < c′j <
cj+1 . Since there are only p equivalence classes, there must be two odd indices
jx, jy ∈ {1, 3, . . . , 2p + 1}, say jx < jy, determining x, y ∈ Σ∗ of length nx =
|x| = hjx − κjx and ny = |y| = hjy − κjy , respectively, by b(xnx−i) = bjx,κjx+i
for i = 0, . . . , nx − 1 and b(yny−i) = bjy,κjy+i for i = 0, . . . , ny − 1, such that

x ∼ y. Thus, c′jx =
∑nx−1
i=0 b(xnx−i)a

i and c′jy =
∑ny−1
i=0 b(yny−i)a

i. For aκ > 0,

choose w ∈ Σ∗ of length κ = |w| = κjx+1 so that cjx+1 = c(b(wκ), . . . , b(w1)),

and denote zw =
∑κ−1
i=0 b(wκ−i)a

i. We know c′jx < cjx+1 < c′jy . It follows that

zw + aκc′jx < c ≤ zw + aκcjx+1 < zw + aκc′jy since zw + aκc′jx ≥ c would contra-

dict that cjx+1 is the infimum according to (10) and (11). Hence, xw ∈ L<c and
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yw /∈ L<c, which gives the contradiction. Similarly for aκ < 0, choose w ∈ Σ∗ so
that cjy−1 = c(b(wκ), . . . , b(w1)), which gives zw + aκc′jy < c ≤ zw + aκcjy−1 <

zw + aκc′jx , leading to the contradiction xw /∈ L<c and yw ∈ L<c . ut

Lemma 10. Assume the notation as in Lemma 9. Then the two subsets of C,
C1 = {c(b0, . . . , bκ−1) ∈ C |

∑κ−1
k=0 bka

k + aκc(b0, . . . , bκ−1) > c} and C2 =

{c(b0, . . . , bκ−1) ∈ C | (∃ bκ, . . . , bh−1 ∈ B , h ≥ κ)
∑h−1
k=0 bka

k = c & (∀ b ∈ B)
c(b0, . . . , bh−1, b) ∈ C1} are finite.

Proof. We define a directed rooted tree T = (V,E) with vertex set V =
{b0 · · · bk−1 ∈ B∗ | (∃ bk, . . . , bκ−1 ∈ B) c(b0, . . . , bk−1, bk . . . , bκ−1) ∈ C1}, includ-
ing an empty string as a root, and a set of directed edges (7). Clearly, T covers
all the directed paths starting at the root and leading to b0 · · · bκ−1 ∈ V such
that c(b0, . . . , bκ−1) ∈ C1. This also guarantees that T includes all b0 · · · bκ−1 ∈
V such that c(b0, . . . , bκ−1) ∈ C2, by the definition of C2. For each vertex

b0 · · · bk−1 ∈ V we define a closed interval I(b0, . . . , bk−1) = [
∑k−1
i=0 bia

i + Ik ,∑k−1
i=0 bia

i +Sk] by using (9). Obviously, I(b0, . . . , bk−1, bk) ⊂ I(b0, . . . , bk−1) for
any edge (b0 · · · bk−1, b0 · · · bk−1bk) ∈ E. Hence, c ∈ I(b0, . . . , bk−1) for every ver-
tex b0 · · · bk−1 ∈ V since b0 · · · bk−1 · · · bκ−1 ∈ V such that c(b0, . . . , bκ−1) ∈ C1

satisfies c ∈ I(b0, . . . , bκ−1) ⊂ I(b0, . . . , bk−1) according to (8).
On the contrary, suppose that tree T whose outdegree is bounded by |B|,

is infinite. According to König’s lemma, there exists an infinite directed path
corresponding to an infinite sequence (b∗k)∞k=0 with b∗k ∈ B for all k ≥ 0, which
contains infinitely many vertices b∗0 · · · b∗κ−1 ∈ V such that c(b∗0, . . . , b

∗
κ−1) ∈ C1.

On the other hand, interval I(b∗0, . . . , b
∗
k−1) is a nonempty compact set satis-

fying c ∈ I(b∗0, . . . , b
∗
k−1) ⊃ I(b∗0, . . . , b

∗
k) for every k ≥ 1, which yields c ∈⋂

k≥0 I(b∗0, . . . , b
∗
k−1) 6= ∅ by Cantor’s intersection theorem. Hence,

∑∞
k=0 b

∗
ka
k =

c which implies
∑κ−1
k=0 b

∗
ka
k + aκc(b∗0, . . . , b

∗
κ−1) = c for any b∗0 · · · b∗κ−1 ∈ V such

that c(b∗0, . . . , b
∗
κ−1) ∈ C1, according to (10) and (11), which contradicts the def-

inition of C1. It follows that T is finite which implies that C1, C2 are finite. ut

Theorem 11. A cut language L<c is regular iff c is a-quasi-periodic within B.

Proof. According to Lemma 9, language L<c is regular iff set C is finite which
is equivalent to the condition that C \ (C1 ∪ C2) is finite, by Lemma 10. It
follows from (8)–(11) that for any b0, . . . , bκ−1 ∈ B and κ ≥ 0, c(b0, . . . , bκ−1) ∈
C \(C1∪C2) iff there exists sequence (bk)∞k=κ with bk ∈ B for all k ≥ 0, such that∑κ−1
k=0 bka

k + aκc(b0, . . . , bκ−1) = c (c(b0, . . . , bκ−1) /∈ C1) and
∑∞
k=0 bka

k = c
(c(b0, . . . , bκ−1) /∈ C2), which yields c(b0, . . . , bκ−1) =

∑∞
k=0 bκ+ka

k . It follows
that C \ (C1 ∪ C2) = D by the definition of D, which is finite iff c is a-quasi-
periodic within B, according to Theorem 8. ut

4 Non-Context-Free Cut Languages

In this section we show in Theorem 13 that a cut language L<c is not context-free
if threshold c is not a-quasi-periodic within B, which is proven by a pumping
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technique introduced in Lemma 12. According to Theorem 11, we thus achieve a
dichotomy that, a cut language is either regular or non-context-free. We present
explicit instances of rational numbers with no eventually quasi-periodic repre-
sentations in Example 14. On the other hand, the cut languages with rational
thresholds are shown to be context-sensitive in Theorem 15.

We say that an infinite word x ∈ Σω is approximable in a language L ⊆ Σ∗,
if for every finite prefix u ∈ Σ∗ of x, there is y ∈ Σ∗ such that uy ∈ L.

Lemma 12. Let x ∈ Σω be approximable in a context-free language L ⊆ Σ∗.
Then there is a decomposition x = uvw where u, v ∈ Σ∗ and w ∈ Σω, such that
|v| > 0 is even and for every integer i ≥ 0, word uviw is approximable in L.

Proof. Consider a context-free grammar G for L in Greibach normal form such
that for every nonterminalA ofG, there is a derivation of a terminal word fromA.
Since x is approximable in L = L(G), there is a left derivation S ⇒ . . .⇒ unαn
for every n, such that un ∈ Σ∗ is the prefix of x of length n, and αn is a sequence
of nonterminal symbols. These derivations form an infinite directed rooted tree
with the root S, whose vertices are the left sentential forms uα such that u is
a prefix of x, and the edges outcoming from uα correspond to an application of
one production rule to the left-most nonterminal in α. The degree of each vertex
is bounded by the number of production rules. According to König’s lemma,
there is an infinite left derivation S ⇒ . . .⇒ unαn ⇒ . . . such that for every n,
un is the prefix of x of length n, and αn is a non-empty sequence of nonterminal
symbols.

Let us call an occurrence of a nonterminal in αn temporary, if it is sub-
stituted by a production rule of G in some of the following steps, and stable
otherwise. We prove that for every n, there is m ≥ n such that αm contains
exactly one temporary nonterminal. We know the left-most nonterminal A1 in
αn = A1 . . . Ai . . . Ak is temporary, and let Ai be the right-most temporary non-
terminal in αn. If i = 1, then choose m = n. For i ≥ 2, there is an index m,
such that all the temporary nonterminals A1, . . . , Ai−1 in αn are transformed
into terminal words in um. If m is the smallest such index, then Ai is the first
and the only temporary nonterminal of αm. It follows that there is an infinite
number of indices n such that αn contains exactly one temporary nonterminal.

Since there are only finitely many nonterminals in G, there exist three in-
dices m1,m2,m3 such that m1 < m2 < m3 and um1

αm1
= u1Aβ

′
1, um2

αm2
=

u1v1Aβ
′
2β
′
1, um3

αm3
= u1v1v2Aβ

′
3β
′
2β
′
1 for some nonterminal A, where u1, v1,

v2 ∈ Σ∗, |v1| > 0, |v2| > 0, and β′1, β
′
2, β
′
3 consist of stable nonterminals in all

αm1 , αm2 , αm3 . If |v1| is even, then define n1 = m1, n2 = m2, u = u1, v = v1,
β1 = β′1, and β2 = β′2, otherwise, if |v2| is even, then n1 = m2, n2 = m3,
u = u1v1, v = v2, β1 = β′2β

′
1, and β2 = β′3. On the other hand, if |v1| and

|v2| are both odd, then |v1v2| is even and define n1 = m1, n2 = m3, u = u1,
v = v1v2, β1 = β′1, and β2 = β′3β

′
2. Thus, there are two words u, v ∈ Σ∗ such

that un1
αn1

= uAβ1, un2
αn2

= uvAβ2β1, and |v| > 0 is even, where A
∗⇒ vAβ2.

For every m ≥ n2, we have umαm = uvγmβ2β1 where γm is such that A
∗⇒ γm.

Hence, an infinite word w ∈ Σω is produced from A, such that x = uvw. Clearly,
every finite prefix of w is the terminal part of γm for some m ≥ n2.



10 J. Š́ıma and P. Savický

For every i ≥ 0, we can construct an infinite left derivation whose sentential
forms contain arbitrarily long prefixes of the sequence uviw by combining the
above derivations similarly as in the proof of the pumping lemma. The derivation
starts as the original derivation until un1

αn1
= uAβ1. Then, the derivation

A
∗⇒ vAβ2 is used i times. Finally, the derivations A

∗⇒ γm are used in an
infinite sequence for all m > n2. Altogether, we obtain

S
∗⇒ uAβ1

∗⇒ uviAβi2β1 ⇒ . . .⇒ uviγmβ
i
2β1 ⇒ . . . for all m > n2 . (12)

We show that for every i ≥ 0, the infinite sequence uviw is approximable
in L. For any prefix u′ ∈ Σ∗ of uviw, we employ the derivation (12) until u′ is
derived. Then, we include any finite derivation of a terminal word from each of
the remaining nonterminals. We obtain a word in L = L(G) with prefix u′. ut

Theorem 13. Assume that Σ is a finite alphabet and b : Σ −→ B is a bijection.
If c is not a-quasi-periodic within B (see Examples 7 and 14 for instances of such
c ∈ Q), then the cut language L<c over Σ is not context-free.

Proof. For any string x = x1 . . . xn ∈ Σ∗ of length n = |x|, denote zx =∑n−1
k=0 b(xk+1)ak, whereas zx =

∑∞
k=0 b(xk+1)ak for an infinite word x ∈ Σω.

Assume for a contradiction that L<c is a context-free language, and hence the
same holds for its reversal L = LR<c = {x ∈ Σ∗ | zx < c}. Since c is not eventu-
ally a-quasi-periodic within B, Theorem 8 provides an infinite word x ∈ Σω such
that the tail sequence of a power series zx =

∑∞
k=0 b(xk+1)ak = c is composed

of pair-wise different values.
On the contrary, suppose that x is not approximable in L. This means there

is a prefix u ∈ Σ∗ of x such that for every y ∈ Σ∗ it holds uy /∈ L, that
is, zuy ≥ c = zx. On the other hand, we know zx = limn→∞ zuyn where for
every n, yn ∈ Σ∗ is a string of length n = |yn| such that uyn is a prefix of x,
which implies zx = infy∈Σ∗ zuy. For a > 0, this ensures b(xk) = minB for every
k > |u|, whereas for a < 0, it must be b(x2k) = maxB and b(x2k+1) = minB for
every k > |u|/2, which contradicts the fact that the tail values of series zx are
pair-wise different.

It follows that x is approximable in L. Let x = uvw where |v| > 0 is even,
be a decomposition guaranteed by Lemma 12. In particular, uw and uvvw are
also approximable in L. We know the tails zw and zvw are different. If a|u|zw >
a|u|zvw, then define y = uw which meets zy = zuw = zu+a|u|zw > zu+a|u|zvw =
zuvw = zx = c. On the other hand, if a|u|zvw > a|u|zw, then define y = uvvw
which satisfies zy = zuvvw = zuv+a|uv|zvw > zuv+a|uv|zw = zuvw = zx = c, due
to a|v| > 0. Thus, we have y ∈ Σω which is approximable in L and zy > c. This
means that for every integer n ≥ 0, there is yn ∈ L implying zyn < c, such that y
and yn share the same prefix of length at least n. Hence, |zy−zyn | ≤ βan/(1−a)
where β = max{|b1 − b2| ; b1 ∈ B, b2 ∈ B ∪ {0}}. It follows that zyn converges
to zy as n tends to infinity, which contradicts zyn < c < zy. ut

Example 14. We generalize Example 7 to provide instances of rational numbers c
such that any power series

∑∞
k=0 b

′
ka
k = c with b′k ∈ B for all k ≥ 0, is not
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eventually quasi-periodic. Let B = {0, 1} and a = α1/α2, c = γ1/γ2 ∈ Q be
irreducible fractions where α1, γ1 ∈ Z and α2, γ2 ∈ N, such that α1γ2 and α2γ1
are coprime. Denote by 0 < k1 < k2 < · · · all the indices of a (not necessarily
greedy) representation of c =

∑∞
k=0 b

′
ka
k such that b′ki = 1 for i ≥ 1. Then

formula (5) can be rewritten as

cn =
γ1α

kn
2 − γ2α1

∑n
i=1 α

ki−1
1 αkn−ki2

γ2α
kn
1

(13)

which is still an irreducible fraction.

Theorem 15. Every cut language L<c with threshold c ∈ Q is context-sensitive.

Proof. A corresponding (deterministic) linear bounded automaton M that ac-
cepts a given cut language L<c = L(M), evaluates (and stores) the sum sn =∑n−1
i=0 b(xn−i)a

i step by step when reading an input word x1 . . . xn ∈ Σ∗ from left
to right. In particular, M starts with s0 = 0 which updates to si = asi−1 + b(xi)
every time after M reads the next input symbol xi ∈ Σ, for i = 1, . . . , n. As
the numbers a, b(x1), . . . , b(xn), c ∈ Q can be represented within constant space,
M needs only linear space in terms of input length n, for computing sn and
testing whether sn < c. ut

5 Conclusion

In this paper we have introduced the cut languages in rational bases and classified
them within the Chomsky hierarchy, among others, by using the quasi-periodic
power series. A natural direction for future research is to generalize the results
to arbitrary real bases.

We have already strengthened Theorem 8 whose proof is now based on
Lemma 2 which does not require rational bases as opposed to stronger The-
orem 3 that was used for the proof in a preliminary version [24]. As a conse-
quence of this improvement, the characterization of regular cut languages in
Theorem 11 remains valid for arbitrary real bases. For example, for the only
real root a ≈ 0.6823278 of algebraic equation a3 + a − 1 = 0, which is the
inverse of a Pisot number, the number c = 1 (similarly for c = 1/a) is a-
quasi-periodic within B = {0, 1} and has uncountably many different quasi-
periodic representations (including the non-periodic ones) whose tail values form
D = {0, a, 1, 1/a, 1 + a, a/(1− a), (1 + a)/a, 1/(1− a)} (cf. Theorem 8). It is an
open question of whether the inverse of the minimal Pisot number (i.e. the in-
verse of the plastic constant), a ≈ 0.7548777 which is the unique real solution of
the cubic equation a3 + a2 − 1 = 0, is the greatest such a.

Nevertheless, the generalization of Theorem 3 to arbitrary real bases is still
an open problem which can be formulated elementarily as follows. Let a be
a real number such that 0 < |a| < 1, and (dn)∞n=0 be a sequence of real
numbers, containing a constant infinite subsequence (cf. Lemma 2), such that
B = {dn − adn+1 |n ≥ 0} is finite. Is D = {dn |n ≥ 0} a finite set?
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4. Balcázar, J.L., Gavaldà, R., Siegelmann, H.T.: Computational power of neural net-
works: A characterization in terms of Kolmogorov complexity. IEEE Transactions
on Information Theory 43(4), 1175–1183 (1997)

5. Chunarom, D., Laohakosol, V.: Expansions of real numbers in non-integer bases.
Journal of the Korean Mathematical Society 47(4), 861–877 (2010)

6. Glendinning, P., Sidorov, N.: Unique representations of real numbers in non-integer
bases. Mathematical Research Letters 8(4), 535–543 (2001)

7. Hare, K.G.: Beta-expansions of Pisot and Salem numbers. In: Proceedings of the
Waterloo Workshop in Computer Algebra 2006: Latest Advances in Symbolic Al-
gorithms. pp. 67–84. World Scientific (2007)

8. Horne, B.G., Hush, D.R.: Bounds on the complexity of recurrent neural network
implementations of finite state machines. Neural Networks 9(2), 243–252 (1996)

9. Indyk, P.: Optimal simulation of automata by neural nets. In: Proceedings of the
STACS 1995 Twelfth Annual Symposium on Theoretical Aspects of Computer
Science. LNCS, vol. 900, pp. 337–348 (1995)

10. Komornik, V., Loreti, P.: Subexpansions, superexpansions and uniqueness proper-
ties in non-integer bases. Periodica Mathematica Hungarica 44(2), 197–218 (2002)

11. Minsky, M.: Computations: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs (1967)

12. Parry, W.: On the β-expansions of real numbers. Acta Mathematica Hungarica
11(3), 401–416 (1960)
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24. Š́ıma, J., Savický, P.: Cut languages in rational bases. Tech. Rep. V-1236, Institute
of Computer Science, The Czech Academy of Sciences, Prague (2016)
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