Cut Languages in Rational Bases

Jiří Šíma and Petr Savický*
Institute of Computer Science The Czech Academy of Sciences
P. O. Box 5, 18207 Prague 8, Czech Republic
\{sima, savicky\}@cs.cas.cz

Abstract

We introduce a so-called cut language which contains the representations of numbers in a rational base that are less than a given threshold. The cut languages can be used to refine the analysis of neural net models between integer and rational weights. We prove a necessary and sufficient condition when a cut language is regular, which is based on the concept of a quasi-periodic power series. We achieve a dichotomy that a cut language is either regular or non-context-free while examples of regular and non-context-free cut languages are presented. We show that any cut language with a rational threshold is context-sensitive.

Keywords: grammars, quasi-periodic power series, cut language

1 Cut Languages

We study so-called cut languages which contain the representations of numbers in a rational base $[1,2,5-7,10,12-15]$ that are less than a given threshold. Hereafter, let a be a rational number such that $0<|a|<1$, which is the inverse of a base (radix) $1 / a$ where $|1 / a|>1$, and let $B \subset \mathbb{Q}$ be a finite set of rational digits. We say that $L \subseteq \Sigma^{*}$ is a cut language over a finite alphabet $\Sigma \neq \emptyset$ if there is a bijection $b: \Sigma \longrightarrow B$ and a real threshold c such that

$$
\begin{equation*}
L=L_{<c}=\left\{x_{1} \ldots x_{n} \in \Sigma^{*} \mid \sum_{i=0}^{n-1} b\left(x_{n-i}\right) a^{i}<c\right\} . \tag{1}
\end{equation*}
$$

The cut languages can be used to refine the analysis of computational power of neural network models [17, 23]. This analysis is satisfactorily fine-grained in terms of Kolmogorov complexity when changing from rational to arbitrary real weights $[4,18]$. In contrast, there is still a gap between integer and rational weights, which results in a jump from regular to recursively enumerable languages in the Chomsky hierarchy. In particular, neural nets with integer weights, corresponding to binary-state networks, coincide with finite automata $[3,8,9,11$, $16,20,25]$. On the other hand, a neural network that contains two analog-state

[^0]units with rational weights, can implement two stacks of pushdown automata, a model equivalent to Turing machines [19]. A natural question arises: what is the computational power of binary-state networks including one extra analog unit with rational weights? Such a model is equivalent to finite automata with a register [21], which accept languages that can be represented by some cut languages combined in a certain way by usual operations (e.g. intersection with a regular language, concatenation, union); see [22] for the exact representation.

In this paper we prove a necessary and sufficient condition when a given cut language is regular (Section 3). For this purpose, we introduce and characterize an a-quasi-periodic number within B whose all representations in basis $1 / a$ using the digits from B, are eventually quasi-periodic power series (Section 2). The concept of quasi-periodicity represents a natural generalization of periodicity, allowing for different quasi-repetends even of unbounded length. There are numbers with uncountably many representations, all of which are eventually quasiperiodic, although only countably many of them can be eventually periodic. We achieve a dichotomy that a cut language is either regular or non-context-free. In addition, we present examples of cut languages that are not context-free and we show that any cut language with a rational threshold is context-sensitive (Section 4). Finally, we summarize the results and present some open problems (Section 5).

2 Quasi-Periodic Power Series

In this section, we introduce and analyze a notion of a-quasi-periodic numbers within B which will be employed for characterizing the class of regular cut languages in Section 3. We say that a power series $\sum_{k=0}^{\infty} b_{k} a^{k}$ with coefficients $b_{k} \in B$ for all $k \geq 0$, is eventually quasi-periodic with period sum P if there is an increasing infinite sequence of its term indices $0 \leq k_{1}<k_{2}<\cdots$ such that for every $i \geq 1$,

$$
\begin{equation*}
\frac{\sum_{k=0}^{m_{i}-1} b_{k_{i}+k} a^{k}}{1-a^{m_{i}}}=P \tag{2}
\end{equation*}
$$

where $m_{i}=k_{i+1}-k_{i}>0$ is the length of quasi-repetend $b_{k_{i}}, \ldots, b_{k_{i+1}-1}$, while k_{1} is the length of preperiodic part $b_{0}, \ldots, b_{k_{1}-1}$. For $k_{1}=0$, we call such a power series quasi-periodic. One can calculate the sum of any eventually quasi-periodic power series as

$$
\begin{equation*}
\sum_{k=0}^{\infty} b_{k} a^{k}=\sum_{k=0}^{k_{1}-1} b_{k} a^{k}+a^{k_{1}} P \tag{3}
\end{equation*}
$$

since $\sum_{k=k_{1}}^{\infty} b_{k} a^{k}=\sum_{i=1}^{\infty} a^{k_{i}} \sum_{k=0}^{m_{i}-1} b_{k_{i}+k} a^{k}=P \cdot \sum_{i=1}^{\infty} a^{k_{i}}\left(1-a^{m_{i}}\right)=$ $P \cdot \sum_{i=1}^{\infty}\left(a^{k_{i}}-a^{k_{i+1}}\right)=a^{k_{1}} P$ is an absolutely convergent series. It follows that the sum (3) does not change if any quasi-repetend is removed from associated sequence $\left(b_{k}\right)_{k=0}^{\infty}$ or if it is inserted in between two other quasi-repetends, which means that the quasi-repetends can be permuted arbitrarily.

Example 1. A quasi-periodic power series can be composed of quasi-repetends having unbounded length. For example, for any rational period sum $P \neq 0$, we
define three rational digits as $\beta_{1}=\left(1-a^{2}\right) P, \beta_{2}=a(1-a) P$, and $\beta_{3}=0$, that is, $B=\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}$. Then $\beta_{1}, \beta_{2}^{n}, \beta_{3}$ where β_{2}^{n} means β_{2} repeated n times, creates a quasi-repetend of length $n+2$ for every integer $n \geq 0$, because $\left(\beta_{1}+\sum_{k=1}^{n} \beta_{2} a^{k}+\beta_{3} a^{n+1}\right) /\left(1-a^{n+2}\right)=P$ whereas for any integer r such that $0 \leq r<n$, it holds $\left(\beta_{1}+\sum_{k=1}^{r} \beta_{2} a^{k}\right) /\left(1-a^{r+1}\right) \neq P$.

Furthermore, given a power series $\sum_{k=0}^{\infty} b_{k} a^{k}$, we define its tail sequence $\left(d_{n}\right)_{n=0}^{\infty}$ as $d_{n}=\sum_{k=0}^{\infty} b_{n+k} a^{k}$ for every $n \geq 0$. Denote by $D\left(\sum_{k=0}^{\infty} b_{k} a^{k}\right)=$ $\left\{d_{n} \mid n \geq 0\right\}$ the set of tail values.
Lemma 2. A power series $\sum_{k=0}^{\infty} b_{k} a^{k}$ with $b_{k} \in B$ for all $k \geq 0$, is eventually quasi-periodic with period sum P iff its tail sequence $\left(d_{n}\right)_{n=0}^{\infty}$ contains a constant infinite subsequence $\left(d_{k_{i}}\right)_{i=1}^{\infty}$ such that $d_{k_{i}}=P$ for every $i \geq 1$.

Proof. Let $\sum_{k=0}^{\infty} b_{k} a^{k}$ be an eventually quasi-periodic power series with period sum P , which means there is an increasing infinite sequence of its term indices $0 \leq k_{1}<k_{2}<\cdots$ such that equation (2) holds for every $i \geq 1$. It follows that $a^{k_{i}} d_{k_{i}}=\sum_{k=k_{i}}^{\infty} b_{k} a^{k}=\sum_{j=i}^{\infty} a^{k_{j}} \sum_{k=0}^{m_{j}-1} b_{k_{j}+k} a^{k}=P \cdot \sum_{j=i}^{\infty} a^{k_{j}}\left(1-a^{m_{j}}\right)=$ $P \cdot \sum_{j=i}^{\infty}\left(a^{k_{j}}-a^{k_{j+1}}\right)=a^{k_{i}} P$, which implies $d_{k_{i}}=P$ for every $i \geq 1$.

Conversely, assume that $\left(d_{n}\right)_{n=0}^{\infty}$ contains a constant subsequence $\left(d_{k_{i}}\right)_{i=1}^{\infty}$ such that $d_{k_{i}}=P$ for every $i \geq 1$. We have $\sum_{k=0}^{m_{i}-1} b_{k_{i}+k} a^{k}=d_{k_{i}}-a^{m_{i}} d_{k_{i+1}}=$ $\left(1-a^{m_{i}}\right) P$ where $m_{i}=k_{i+1}-k_{i}>0$, which implies (2) for every $i \geq 1$.

Theorem 3. A power series $\sum_{k=0}^{\infty} b_{k} a^{k}$ with $b_{k} \in B$ for all $k \geq 0$, is eventually quasi-periodic iff the set of its tail values, $D=D\left(\sum_{k=0}^{\infty} b_{k} a^{k}\right)$, is finite.

Proof. Assume that D is a finite set, which means there must be a real number $P \in D$ such that $d_{k_{i}}=P$ for infinitely many indices $0 \leq k_{1}<k_{2}<\cdots$, that is, $\left(d_{k_{i}}\right)_{i=1}^{\infty}$ creates a constant infinite subsequence of tail sequence $\left(d_{n}\right)_{n=0}^{\infty}$. According to Lemma 2, this ensures that $\sum_{k=0}^{\infty} b_{k} a^{k}$ is eventually quasi-periodic.

Conversely, let $\sum_{k=0}^{\infty} b_{k} a^{k}$ with $b_{k} \in B$ for all $k \geq 0$, be an eventually quasiperiodic power series with period sum P. Since $a \in \mathbb{Q}$ and $B \subset \mathbb{Q}$ is finite, P is a rational number by (2) and there exists a natural number $\beta>0$ such that $B^{\prime}=\{\beta(b-(1-a) P) / a \mid b \in B\} \subset \mathbb{Z}$ is a finite set of integers. According to Lemma 2, the tail sequence $\left(d_{n}\right)_{n=0}^{\infty}$ of $\sum_{k=0}^{\infty} b_{k} a^{k}$ contains a constant infinite subsequence $\left(d_{k_{i}}\right)_{i=1}^{\infty}$ such that $d_{k_{i}}=P$ for every $i \geq 1$. Assume to the contrary that $D=\left\{d_{n} \mid n \geq 0\right\}$ is an infinite set.

We define a modified sequence $\left(d_{n}^{\prime}\right)_{n=0}^{\infty}$ as $d_{n}^{\prime}=\beta\left(d_{k_{1}+n}-P\right)$ for all $n \geq 0$, which satisfies $d_{k^{\prime}}^{\prime}=0$ where $k_{i}^{\prime}=k_{i}-k_{1}$, for every $i \geq 1$, and $D^{\prime}=\left\{d_{n}^{\prime} \mid n \geq 0\right\}$ is an infinite set. Furthermore, for each $n \geq 0$,

$$
\begin{equation*}
\frac{d_{n}^{\prime}}{a}-d_{n+1}^{\prime}=\frac{\beta\left(d_{k_{1}+n}-P\right)}{a}-\beta\left(d_{k_{1}+n+1}-P\right)=\beta \frac{b_{k_{1}+n}-(1-a) P}{a} \in B^{\prime} \tag{4}
\end{equation*}
$$

is an integer by the definition of B^{\prime}. In addition, denote $1 / a=\alpha / q \in \mathbb{Q}$ where natural number $\alpha>0$ and integer $q \neq 0$ are coprime.

Lemma 4. For every $n \geq 0$, there exists an integer δ and a natural number $p \geq 0$ such that $d_{n}^{\prime}=\delta / q^{p}$.

Proof. We proceed by induction on n. The assertion is obvious for $n=0$ when $d_{0}^{\prime}=0$. Assume that $d_{n}^{\prime}=\delta / q^{p}$ for some $\delta \in \mathbb{Z}$ and $p \geq 0$. Then $d_{n+1}^{\prime}=d_{n}^{\prime} / a-b^{\prime}$ for some integer $b^{\prime} \in B^{\prime} \subset \mathbb{Z}$ according to (4), which can be rewritten as $d_{n+1}^{\prime}=$ $(\alpha / q) \cdot\left(\delta / q^{p}\right)-b^{\prime}=\left(\alpha \delta-b^{\prime} q^{p+1}\right) / q^{p+1}=\delta_{1} / q^{p+1}$ where $\delta_{1}=\alpha \delta-b^{\prime} q^{p+1} \in \mathbb{Z}$, completing the proof of Lemma 4.

Lemma 5. If $d_{n+1}^{\prime} \in \mathbb{Z}$, then $d_{n}^{\prime} \in \mathbb{Z}$.
Proof. Let $d_{n+1}^{\prime} \in \mathbb{Z}$. By (4) there is $b^{\prime} \in B^{\prime} \subset \mathbb{Z}$ such that $d_{n}^{\prime} / a=d_{n+1}^{\prime}+b^{\prime} \in \mathbb{Z}$. According to Lemma $4, d_{n}^{\prime}=\delta / q^{p}$ for some $\delta \in \mathbb{Z}$ and $p \geq 0$, which gives $d_{n}^{\prime} / a=\alpha \delta / q^{p+1} \in \mathbb{Z}$. Since α and q are coprime, q^{p+1} must be a factor of δ, which means $\delta=\delta^{\prime} q^{p+1}$ for some $\delta^{\prime} \in \mathbb{Z}$, and hence $d_{n}^{\prime}=\delta / q^{p}=\delta^{\prime} q \in \mathbb{Z}$, completing the proof of Lemma 5.

We will show for each $n \geq 0$ that $d_{n}^{\prime} \in \mathbb{Z}$. Let $i \geq 1$ be the least index such that $k_{i}^{\prime} \geq n$ for which we know $d_{k_{i}^{\prime}}^{\prime}=0 \in \mathbb{Z}$. By applying Lemma $5\left(k_{i}^{\prime}-n\right)$ times we obtain $d_{k_{i}^{\prime}-1}^{\prime}, d_{k_{i}^{\prime}-2}^{\prime}, \ldots, d_{n}^{\prime} \in \mathbb{Z}$.

Thus, $D^{\prime} \subset \mathbb{Z}$ and since D^{\prime} is infinite, there exists an index $m \geq 0$ such that $\left|d_{m}^{\prime}\right| \geq(|a| \cdot M) /(1-|a|)>0$ where $M=\max _{b^{\prime} \in B^{\prime}}\left|b^{\prime}\right|$. Note that $M>0$ since for $M=0$, we would have $B=\{(1-a) P\}$ implying $D=\{P\}$ which contradicts that D is infinite. According to (4), $\left|d_{m+1}^{\prime}\right| \geq\left|d_{m}^{\prime}\right| /|a|-M$ which implies $\left|d_{m+1}^{\prime}\right|-\left|d_{m}^{\prime}\right| \geq(1 /|a|-1)\left|d_{m}^{\prime}\right|-M \geq 0$ by the definition of m. Hence, $\left|d_{m+1}^{\prime}\right| \geq\left|d_{m}^{\prime}\right|$, and by induction we obtain $\left|d_{n}^{\prime}\right| \geq(|a| \cdot M) /(1-|a|)>0$ for every $n \geq m$. On the other hand, we know that there is an index i such that $k_{i}^{\prime} \geq m$ for which $d_{k_{i}^{\prime}}^{\prime}=0$, which is a contradiction completing the proof of Theorem 3.

We say that a real number c is a-quasi-periodic within B if any power series $\sum_{k=0}^{\infty} b_{k} a^{k}=c$ with $b_{k} \in B$ for all $k \geq 0$, is eventually quasi-periodic. Note that c that cannot not be written as a respective power series at all, or can, in addition, be expressed as a finite sum $\sum_{k=0}^{h} b_{k} a^{k}=c$ whereas $0 \notin B$, is also considered formally to be a-quasi-periodic. For example, the numbers from the complement of the Cantor set are formally (1/3)-quasi-periodic within $\{0,2\}$.

Example 6. Example 1 can be extended to provide a nontrivial instance of an a-quasi-periodic number that has infinitely many different quasi-periodic representations composed of quasi-repetends of arbitrary length (greater than 1). This includes ordinarily periodic representations composed of one of these quasirepetends and uncountably many non-periodic ones. Let $a \in \mathbb{Q}$ meet $0<a<\frac{1}{2}$. We show that any positive rational number c is a-quasi-periodic within B where $B=\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}$ is defined in Example 1 so that $P=c$. Obviously, $\beta_{1}>$ $\beta_{2}>\beta_{3}=0$. Assume that $c=\sum_{k=0}^{\infty} b_{k} a^{k}$ for some sequence $\left(b_{k}\right)_{k=0}^{\infty}$ where $b_{k} \in B$ for all $k \geq 0$. Observe first that it must be $b_{0}=\beta_{1}$ since otherwise $c=\sum_{k=0}^{\infty} b_{k} a^{k} \leq \beta_{2}+\sum_{k=1}^{\infty} \beta_{1} a^{k}=a(1-a) c+\left(1-a^{2}\right) c \cdot a /(1-a)=2 a c<c$ due to $a<\frac{1}{2}$. Moreover, for any $n \geq 0$ such that $b_{k}=\beta_{2}$ for every $k=1, \ldots, n$, it holds $b_{n+1} \neq \beta_{1}$ since otherwise $c=\sum_{k=0}^{\infty} b_{k} a^{k} \geq \beta_{1}+\sum_{k=1}^{n} \beta_{2} a^{k}+\beta_{1} a^{n+1}=$
$\left(1-a^{2}\right) c+a(1-a) c \cdot a\left(1-a^{n}\right) /(1-a)+\left(1-a^{2}\right) c \cdot a^{n+1}=c-a^{n+1}\left(a^{2}+a-1\right) c>c$ due to $a^{2}+a-1<0$ for $0<a<\frac{1}{2}$.

First consider the case when there is $r \geq 1$ such that $b_{k}=\beta_{2}$ for all $k \geq r$. Then b_{0}, \ldots, b_{r-1} is a preperiodic part and $b_{k}=\beta_{2}$ for $k \geq r$ represents a repetend of length $m_{k}=1$, which proves $\sum_{k=0}^{\infty} b_{k} a^{k}$ to be eventually quasi-periodic. Further assume there is no such r, and thus $b_{k}=\beta_{2}$ for every $k=1, \ldots, n_{1}$ and $b_{n_{1}+1}=\beta_{3}$, for some $n_{1} \geq 0$. It follows that series $\sum_{k=0}^{\infty} b_{k} a^{k}=c$ starts with a quasi-repetend $\beta_{1}, \beta_{2}^{n_{1}}, \beta_{3}$ of length $n_{1}+2$ (cf. Example 1) which can be omitted as $\sum_{k=0}^{\infty} b_{n_{1}+2+k} a^{k}=\left(c-\sum_{k=0}^{n_{1}+1} b_{k} a^{k}\right) / a^{n_{1}+2}=c$ due to $\sum_{k=0}^{n_{1}+1} b_{k} a^{k}=c\left(1-a^{n_{1}+2}\right)$ by (2), and the argument can be repeated for its tail $\sum_{k=0}^{\infty} b_{n_{1}+2+k} a^{k}=c$ to reveal the next quasi-repetend $\beta_{1}, \beta_{2}^{n_{2}}, \beta_{3}$ for some $n_{2} \geq 0$ etc. Hence, $\sum_{k=0}^{\infty} b_{k} a^{k}$ is quasi-periodic, which completes the proof that c is a-quasi-periodic within B.

Example 7. On the other hand, we present an example of an eventually quasiperiodic series $\sum_{k=0}^{\infty} b_{k} a^{k}=c$ with $b_{k} \in B$ for all $k \geq 0$, such that c is not a-quasi-periodic within B. Let $a=\frac{2}{3}, B=\{0,1\}$, and define an eventually quasi-periodic series $\sum_{k=0}^{\infty} b_{k} a^{k}$ with a preperiodic part $b_{0}=b_{1}=0$ and a repetend $b_{2+3 k}=0, b_{3+3 k}=b_{4+3 k}=1$ for every $k \geq 0$, which sums to $c=$ $\left(\left(\frac{2}{3}\right)^{3}+\left(\frac{2}{3}\right)^{4}\right) \cdot \sum_{k=0}^{\infty}\left(\frac{2}{3}\right)^{3 k}=\frac{40}{57}$.

Furthermore, we employ a greedy approach to generate a series $\sum_{k=0}^{\infty} b_{k}^{\prime} a^{k}=$ c with $b_{k}^{\prime} \in\{0,1\}$ for all $k \geq 0$, which is not eventually quasi-periodic. In particular, find minimal $k_{1} \geq 0$ such that $a^{k_{1}}<c$ which gives $b_{0}^{\prime}=\cdots=$ $b_{k_{1}-1}^{\prime}=0, b_{k_{1}}^{\prime}=1$, and remainder $c_{1}=c / a^{k_{1}}-1$. For $n>1$, let $b_{0}^{\prime}, \ldots, b_{k_{n-1}}^{\prime}$ be 0 s except for $b_{k_{1}}^{\prime}=b_{k_{2}}^{\prime}=\cdots=b_{k_{n-1}}^{\prime}=1$. Then find minimal $k_{n}>k_{n-1}$ such that $a^{k_{n}-k_{n-1}}<c_{n-1}$ which produces $b_{k_{n-1}+1}^{\prime}=\cdots=b_{k_{n}-1}^{\prime}=0, b_{k_{n}}^{\prime}=1$, and remainder $c_{n}=c_{n-1} / a^{k_{n}-k_{n-1}}-1$. It follows that $c_{n}=\sum_{k=0}^{\infty} b_{k_{n}+k}^{\prime} a^{k}-1=$ $\left(c-\sum_{i=1}^{n} a^{k_{i}}\right) / a^{k_{n}}$ for $n \geq 1$. By plugging $a=\frac{2}{3}$ and $c=\frac{40}{57}$ into this formula, for which $k_{1}=1$ and $k_{2}=9$, we obtain

$$
\begin{equation*}
c_{n}=\frac{20}{19}\left(\frac{3}{2}\right)^{k_{n}-1}-\sum_{i=1}^{n}\left(\frac{3}{2}\right)^{k_{n}-k_{i}}=\frac{3^{k_{n}-1}-19 \cdot 2 \cdot \sum_{i=2}^{n} 2^{k_{i}-2} \cdot 3^{k_{n}-k_{i}}}{19 \cdot 2^{k_{n}-1}} \tag{5}
\end{equation*}
$$

which is an irreducible fraction since both 19 and 2 are not factors of $3^{k_{n}-1}$. Hence, for any natural n_{1}, n_{2} such that $0<n_{1}<n_{2}$ we know $c_{n_{1}} \neq c_{n_{2}}$. It follows that the tail sequence $\left(d_{n}^{\prime}\right)_{n=0}^{\infty}$ of $\sum_{k=0}^{\infty} b_{k}^{\prime} a^{k}=c$ contains infinitely many different values $d_{k_{n}}^{\prime}=c_{n}+1$ for $n \geq 1$, which implies that $\sum_{k=0}^{\infty} b_{k}^{\prime} a^{k}$ is not an eventually quasi-periodic series, according to Theorem 3.

Theorem 8. A real number c is a-quasi-periodic within B iff the tail sequences of all the power series satisfying $\sum_{k=0}^{\infty} b_{k} a^{k}=c$ with $b_{k} \in B$ for all $k \geq 0$, contain altogether only finitely many values, that is,

$$
\begin{equation*}
\mathcal{D}=\bigcup_{\substack{\sum_{\begin{subarray}{c}{k=0 \\
k \\
\text { for all } \\
k \geq 0, b_{k}=c \\
k \geq 0, b_{k} \in B} }}^{\infty}}\end{subarray}} D\left(\sum_{k=0}^{\infty} b_{k} a^{k}\right) \tag{6}
\end{equation*}
$$

is a finite set. In addition, if c is not a-quasi-periodic within B, then there exists a power series $\sum_{k=0}^{\infty} b_{k} a^{k}=c$ with $b_{k} \in B$ for all $k \geq 0$, whose tail sequence contains pair-wise different values.
Proof. Let \mathcal{D} be a finite set. Then the tail sequence of any power series $\sum_{k=0}^{\infty} b_{k} a^{k}$ $=c$ with $b_{k} \in B$ for all $k \geq 0$, contains only finitely many values and thus includes a constant infinite subsequence. According to Lemma 2, this implies that any $\sum_{k=0}^{\infty} b_{k} a^{k}=c$ is eventually quasi-periodic, and hence, c is a-quasi-periodic within B.

Conversely, assume that \mathcal{D} is infinite. Consider a directed tree $T=(V, E)$ with vertex set $V \subseteq B^{*}$ such that $b_{0} \cdots b_{n-1} \in V$ if its tail meets $t\left(b_{0} \cdots b_{n-1}\right)=$ $\left(c-\sum_{k=0}^{n-1} b_{k} a^{k}\right) / a^{n} \in \mathcal{D}$, which includes the empty string ε as a root satisfying $t(\varepsilon)=c$. Define a set of directed edges as

$$
\begin{equation*}
E=\left\{\left(b_{0} \cdots b_{n-1}, b_{0} \cdots b_{n-1} b_{n}\right) \mid b_{0} \cdots b_{n-1}, b_{0} \cdots b_{n-1} b_{n} \in V\right\} \tag{7}
\end{equation*}
$$

which guarantees the outdegree of T is bounded by $|B|$. Let $T^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be a subtree of T with a maximal vertex subset $V^{\prime} \subseteq V$ so that $\varepsilon \in V^{\prime}$ and $t\left(v_{1}\right) \neq t\left(v_{2}\right)$ for any two different vertices $v_{1}, v_{2} \in V^{\prime}$.

We show that for any $d \in \mathcal{D}$ there is $v \in V^{\prime}$ such that $t(v)=d$. On the contrary, suppose $b_{0} \cdots b_{n-1} \in V \backslash V^{\prime}$ is a vertex with minimal n, satisfying $t(v) \neq t\left(b_{0} \cdots b_{n-1}\right)=d \in \mathcal{D}$ for every $v \in V^{\prime}$. Clearly, $b_{0} \cdots b_{n-2} \in V \backslash V^{\prime}$ since otherwise vertex $b_{0} \cdots b_{n-1}$ could be included into V^{\prime} which contradicts the maximality of V^{\prime}. By the minimality of n, we know there is $b_{0}^{\prime} \cdots b_{m-1}^{\prime} \in V^{\prime}$ such that $t\left(b_{0}^{\prime} \cdots b_{m-1}^{\prime}\right)=t\left(b_{0} \cdots b_{n-2}\right)$. Thus, we have $t\left(b_{0}^{\prime} \cdots b_{m-1}^{\prime} b_{n-1}\right)=d$ and the maximality of V^{\prime} implies $b_{0}^{\prime} \cdots b_{m-1}^{\prime} b_{n-1} \in V^{\prime}$, which is in contradiction with the definition of $b_{0} \cdots b_{n-1}$.

It follows that $\left\{t(v) \mid v \in V^{\prime}\right\}=\mathcal{D}$ implying T^{\prime} is infinite. According to König's lemma, there exists an infinite directed path in T^{\prime} corresponding to a power series $\sum_{k=0}^{\infty} b_{k} a^{k}=c$ whose tail sequence contains pair-wise different values. By Lemma 2, this series is not eventually quasi-periodic and hence, c is not a-quasi-periodic within B.

3 Regular Cut Languages

In this section we formulate a necessary and sufficient condition for a cut language $L_{<c}$ to be regular (Theorem 11), which is based on a-quasi-periodic thresholds c within B. The following Lemma 9 provides a technical characterization of the regular cut languages, which is proven by Myhill-Nerode theorem, while subsequent Lemma 10 separates the cases when threshold c is represented by a finite sum or when c has no representation in base $1 / a$ using the digits from B.
Lemma 9. Let Σ be a finite alphabet, $b: \Sigma \longrightarrow B$ be a bijection, and c be a real number. Then the cut language $L_{<c}=\left\{x_{1} \cdots x_{n} \in \Sigma^{*} \mid \sum_{i=0}^{n-1} b\left(x_{n-i}\right) a^{i}<c\right\}$ is regular iff the set

$$
\begin{equation*}
C=\left\{c\left(b_{0}, \ldots, b_{\kappa-1}\right) \mid I_{\kappa} \leq c-\sum_{k=0}^{\kappa-1} b_{k} a^{k} \leq S_{\kappa} ; b_{0}, \ldots, b_{\kappa-1} \in B ; \kappa \geq 0\right\} \tag{8}
\end{equation*}
$$

is finite, where

$$
\begin{gather*}
I_{\kappa}=\inf _{\substack{b_{\kappa}, \ldots, b_{h-1} \in B \\
h \geq \kappa}} \sum_{k=\kappa}^{h-1} b_{k} a^{k}, \quad S_{\kappa}=\sup _{\substack{b_{\kappa}, \ldots, b_{h-1} \in B \\
h \geq \kappa}} \sum_{k=\kappa}^{h-1} b_{k} a^{k}, \tag{9}\\
c\left(b_{0}, \ldots, b_{\kappa-1}\right)= \begin{cases}\inf C\left(b_{0}, \ldots, b_{\kappa-1}\right) & \text { if } a^{\kappa}>0 \\
\sup C\left(b_{0}, \ldots, b_{\kappa-1}\right) & \text { if } a^{\kappa}<0,\end{cases} \tag{10}\\
C\left(b_{0}, \ldots, b_{\kappa-1}\right)=\left\{\begin{array}{l}
\left.\sum_{k=0}^{h-\kappa-1} b_{\kappa+k} a^{k} \mid \sum_{k=0}^{h-1} b_{k} a^{k} \geq c ; b_{\kappa}, \ldots, b_{h-1} \in B ; h \geq \kappa\right\} .
\end{array} .\right. \tag{11}
\end{gather*}
$$

Proof. Let $C=\left\{c_{1}, \ldots, c_{p}\right\}$ in (8) be a finite set such that $c_{1}<c_{2}<\cdots<$ c_{p}. We introduce an equivalence relation \sim on Σ^{*} as follows. For any $x, y \in$ Σ^{*} of length $n_{x}=|x|$ and $n_{y}=|y|$, respectively, we define $x \sim y$ iff both $z_{x}=\sum_{i=0}^{n_{x}-1} b\left(x_{n_{x}-i}\right) a^{i}$ and $z_{y}=\sum_{i=0}^{n_{y}-1} b\left(y_{n_{x}-i}\right) a^{i}$ belong either to one of the $p+1$ open intervals $\left(-\infty, c_{1}\right),\left(c_{1}, c_{2}\right), \ldots,\left(c_{p-1}, c_{p}\right),\left(c_{p}, \infty\right)$, or to one of the p singletons $\left\{c_{1}\right\},\left\{c_{2}\right\}, \ldots,\left\{c_{p}\right\}$. Obviously, we have $2 p+1$ equivalence classes. In order to prove that language $L_{<c}$ is regular we employ Myhill-Nerode theorem by showing that for any $x, y \in \Sigma^{*}$, if $x \sim y$, then for every $w \in \Sigma^{*}, x w \in L_{<c}$ iff $y w \in L_{<c}$. Thus, consider $x, y \in \Sigma^{*}$ such that $x \sim y$, and on the contrary, suppose there is $w \in \Sigma^{*}$ of length $\kappa=|w|$ with $z_{w}=\sum_{i=0}^{\kappa-1} b\left(w_{\kappa-i}\right) a^{i}$, such that $x w \in L_{<c}$ and $y w \notin L_{<c}$. This means $z_{w}+I_{\kappa} \leq z_{w}+a^{\kappa} z_{x}<c \leq z_{w}+a^{\kappa} z_{y} \leq z_{w}+$ S_{κ} by (9), implying $I_{\kappa}<c-z_{w} \leq S_{\kappa}$ which ensures $c_{j}=c\left(b\left(w_{\kappa}\right), \ldots, b\left(w_{1}\right)\right) \in C$ for some $j \in\{1, \ldots, p\}$, according to (8). It follows from (10) and (11) that $z_{w}+a^{\kappa} z_{x}<c \leq z_{w}+a^{\kappa} c_{j} \leq z_{w}+a^{\kappa} z_{y}$ which gives $a^{\kappa} z_{x}<a^{\kappa} c_{j} \leq a^{\kappa} z_{y}$ contradicting $x \sim y$.

Conversely, let $L_{<c}$ be a regular languages. According to Myhill-Nerode theorem, there is an equivalence relation \sim on Σ^{*} with a finite number p of equivalence classes such that for any $x, y \in \Sigma^{*}$, if $x \sim y$, then for every $w \in \Sigma^{*}$, $x w \in L_{<c}$ iff $y w \in L_{<c}$. Assume to the contrary that C in (8) is infinite. Choose $c_{0}, c_{1}, \ldots, c_{2 p+2} \in C$ so that $c_{0}<c_{1}<\cdots<c_{2 p+2}$, and for each $j \in\{0, \ldots, 2 p+2\}$, let $c_{j}=c\left(b_{j 0}, \ldots, b_{j, \kappa_{j}-1}\right)$ for some $b_{j 0}, \ldots, b_{j, \kappa_{j}-1} \in B$ and $\kappa_{j} \geq 0$, according to (8). Definition (10) and (11) ensures that for each odd $j \in\{1,3, \ldots, 2 p+1\}$, there exists $h_{j} \geq \kappa_{j}$ and $b_{j, \kappa_{j}}, \ldots, b_{j, h_{j}-1} \in B$ such that $c_{j}^{\prime}=\sum_{k=0}^{h_{j}-\kappa_{j}-1} b_{j \kappa_{j}+k} a^{k}$ is sufficiently close to c_{j} so that $c_{j-1}<c_{j}^{\prime}<$ c_{j+1}. Since there are only p equivalence classes, there must be two odd indices $j_{x}, j_{y} \in\{1,3, \ldots, 2 p+1\}$, say $j_{x}<j_{y}$, determining $x, y \in \Sigma^{*}$ of length $n_{x}=$ $|x|=h_{j_{x}}-\kappa_{j_{x}}$ and $n_{y}=|y|=h_{j_{y}}-\kappa_{j_{y}}$, respectively, by $b\left(x_{n_{x}-i}\right)=b_{j_{x}, \kappa_{j_{x}}+i}$ for $i=0, \ldots, n_{x}-1$ and $b\left(y_{n_{y}-i}\right)=b_{j_{y}, \kappa_{j_{y}}+i}$ for $i=0, \ldots, n_{y}-1$, such that $x \sim y$. Thus, $c_{j_{x}}^{\prime}=\sum_{i=0}^{n_{x}-1} b\left(x_{n_{x}-i}\right) a^{i}$ and $c_{j_{y}}^{\prime}=\sum_{i=0}^{n_{y}-1} b\left(y_{n_{y}-i}\right) a^{i}$. For $a^{\kappa}>0$, choose $w \in \Sigma^{*}$ of length $\kappa=|w|=\kappa_{j_{x}+1}$ so that $c_{j_{x}+1}=c\left(b\left(w_{\kappa}\right), \ldots, b\left(w_{1}\right)\right)$, and denote $z_{w}=\sum_{i=0}^{\kappa-1} b\left(w_{\kappa-i}\right) a^{i}$. We know $c_{j_{x}}^{\prime}<c_{j_{x}+1}<c_{j_{y}}^{\prime}$. It follows that $z_{w}+a^{\kappa} c_{j_{x}}^{\prime}<c \leq z_{w}+a^{\kappa} c_{j_{x}+1}<z_{w}+a^{\kappa} c_{j_{y}}^{\prime}$ since $z_{w}+a^{\kappa} c_{j_{x}}^{\prime} \geq c$ would contradict that $c_{j_{x}+1}$ is the infimum according to (10) and (11). Hence, $x w \in L_{<c}$ and
$y w \notin L_{<c}$, which gives the contradiction. Similarly for $a^{\kappa}<0$, choose $w \in \Sigma^{*}$ so that $c_{j_{y}-1}=c\left(b\left(w_{\kappa}\right), \ldots, b\left(w_{1}\right)\right)$, which gives $z_{w}+a^{\kappa} c_{j_{y}}^{\prime}<c \leq z_{w}+a^{\kappa} c_{j_{y}-1}<$ $z_{w}+a^{\kappa} c_{j_{x}}^{\prime}$, leading to the contradiction $x w \notin L_{<c}$ and $y w \in L_{<c}$.

Lemma 10. Assume the notation as in Lemma 9. Then the two subsets of C, $C_{1}=\left\{c\left(b_{0}, \ldots, b_{\kappa-1}\right) \in C \mid \sum_{k=0}^{\kappa-1} b_{k} a^{k}+a^{\kappa} c\left(b_{0}, \ldots, b_{\kappa-1}\right)>c\right\}$ and $C_{2}=$ $\left\{c\left(b_{0}, \ldots, b_{\kappa-1}\right) \in C \mid\left(\exists b_{\kappa}, \ldots, b_{h-1} \in B, h \geq \kappa\right) \sum_{k=0}^{h-1} b_{k} a^{k}=c \&(\forall b \in B)\right.$ $\left.c\left(b_{0}, \ldots, b_{h-1}, b\right) \in C_{1}\right\}$ are finite.

Proof. We define a directed rooted tree $T=(V, E)$ with vertex set $V=$ $\left\{b_{0} \cdots b_{k-1} \in B^{*} \mid\left(\exists b_{k}, \ldots, b_{\kappa-1} \in B\right) c\left(b_{0}, \ldots, b_{k-1}, b_{k} \ldots, b_{\kappa-1}\right) \in C_{1}\right\}$, including an empty string as a root, and a set of directed edges (7). Clearly, T covers all the directed paths starting at the root and leading to $b_{0} \cdots b_{\kappa-1} \in V$ such that $c\left(b_{0}, \ldots, b_{\kappa-1}\right) \in C_{1}$. This also guarantees that T includes all $b_{0} \cdots b_{\kappa-1} \in$ V such that $c\left(b_{0}, \ldots, b_{\kappa-1}\right) \in C_{2}$, by the definition of C_{2}. For each vertex $b_{0} \cdots b_{k-1} \in V$ we define a closed interval $I\left(b_{0}, \ldots, b_{k-1}\right)=\left[\sum_{i=0}^{k-1} b_{i} a^{i}+I_{k}\right.$, $\left.\sum_{i=0}^{k-1} b_{i} a^{i}+S_{k}\right]$ by using (9). Obviously, $I\left(b_{0}, \ldots, b_{k-1}, b_{k}\right) \subset I\left(b_{0}, \ldots, b_{k-1}\right)$ for any edge $\left(b_{0} \cdots b_{k-1}, b_{0} \cdots b_{k-1} b_{k}\right) \in E$. Hence, $c \in I\left(b_{0}, \ldots, b_{k-1}\right)$ for every vertex $b_{0} \cdots b_{k-1} \in V$ since $b_{0} \cdots b_{k-1} \cdots b_{\kappa-1} \in V$ such that $c\left(b_{0}, \ldots, b_{\kappa-1}\right) \in C_{1}$ satisfies $c \in I\left(b_{0}, \ldots, b_{\kappa-1}\right) \subset I\left(b_{0}, \ldots, b_{k-1}\right)$ according to (8).

On the contrary, suppose that tree T whose outdegree is bounded by $|B|$, is infinite. According to König's lemma, there exists an infinite directed path corresponding to an infinite sequence $\left(b_{k}^{*}\right)_{k=0}^{\infty}$ with $b_{k}^{*} \in B$ for all $k \geq 0$, which contains infinitely many vertices $b_{0}^{*} \cdots b_{\kappa-1}^{*} \in V$ such that $c\left(b_{0}^{*}, \ldots, b_{\kappa-1}^{*}\right) \in C_{1}$. On the other hand, interval $I\left(b_{0}^{*}, \ldots, b_{k-1}^{*}\right)$ is a nonempty compact set satisfying $c \in I\left(b_{0}^{*}, \ldots, b_{k-1}^{*}\right) \supset I\left(b_{0}^{*}, \ldots, b_{k}^{*}\right)$ for every $k \geq 1$, which yields $c \in$ $\bigcap_{k \geq 0} I\left(b_{0}^{*}, \ldots, b_{k-1}^{*}\right) \neq \emptyset$ by Cantor's intersection theorem. Hence, $\sum_{k=0}^{\infty} b_{k}^{*} a^{k}=$ c which implies $\sum_{k=0}^{\kappa-1} b_{k}^{*} a^{k}+a^{\kappa} c\left(b_{0}^{*}, \ldots, b_{\kappa-1}^{*}\right)=c$ for any $b_{0}^{*} \cdots b_{\kappa-1}^{*} \in V$ such that $c\left(b_{0}^{*}, \ldots, b_{\kappa-1}^{*}\right) \in C_{1}$, according to (10) and (11), which contradicts the definition of C_{1}. It follows that T is finite which implies that C_{1}, C_{2} are finite.

Theorem 11. A cut language $L_{<c}$ is regular iff c is a-quasi-periodic within B.
Proof. According to Lemma 9, language $L_{<c}$ is regular iff set C is finite which is equivalent to the condition that $C \backslash\left(C_{1} \cup C_{2}\right)$ is finite, by Lemma 10. It follows from (8)-(11) that for any $b_{0}, \ldots, b_{\kappa-1} \in B$ and $\kappa \geq 0, c\left(b_{0}, \ldots, b_{\kappa-1}\right) \in$ $C \backslash\left(C_{1} \cup C_{2}\right)$ iff there exists sequence $\left(b_{k}\right)_{k=\kappa}^{\infty}$ with $b_{k} \in B$ for all $k \geq 0$, such that $\sum_{k=0}^{\kappa-1} b_{k} a^{k}+a^{\kappa} c\left(b_{0}, \ldots, b_{\kappa-1}\right)=c\left(c\left(b_{0}, \ldots, b_{\kappa-1}\right) \notin C_{1}\right)$ and $\sum_{k=0}^{\infty} b_{k} a^{k}=c$ $\left(c\left(b_{0}, \ldots, b_{\kappa-1}\right) \notin C_{2}\right)$, which yields $c\left(b_{0}, \ldots, b_{\kappa-1}\right)=\sum_{k=0}^{\infty} b_{\kappa+k} a^{k}$. It follows that $C \backslash\left(C_{1} \cup C_{2}\right)=\mathcal{D}$ by the definition of \mathcal{D}, which is finite iff c is a-quasiperiodic within B, according to Theorem 8 .

4 Non-Context-Free Cut Languages

In this section we show in Theorem 13 that a cut language $L_{<c}$ is not context-free if threshold c is not a-quasi-periodic within B, which is proven by a pumping
technique introduced in Lemma 12. According to Theorem 11, we thus achieve a dichotomy that, a cut language is either regular or non-context-free. We present explicit instances of rational numbers with no eventually quasi-periodic representations in Example 14. On the other hand, the cut languages with rational thresholds are shown to be context-sensitive in Theorem 15.

We say that an infinite word $x \in \Sigma^{\omega}$ is approximable in a language $L \subseteq \Sigma^{*}$, if for every finite prefix $u \in \Sigma^{*}$ of x, there is $y \in \Sigma^{*}$ such that $u y \in L$.
Lemma 12. Let $x \in \Sigma^{\omega}$ be approximable in a context-free language $L \subseteq \Sigma^{*}$. Then there is a decomposition $x=u v w$ where $u, v \in \Sigma^{*}$ and $w \in \Sigma^{\omega}$, such that $|v|>0$ is even and for every integer $i \geq 0$, word $u v^{i} w$ is approximable in L.
Proof. Consider a context-free grammar G for L in Greibach normal form such that for every nonterminal A of G, there is a derivation of a terminal word from A. Since x is approximable in $L=L(G)$, there is a left derivation $S \Rightarrow \ldots \Rightarrow u_{n} \alpha_{n}$ for every n, such that $u_{n} \in \Sigma^{*}$ is the prefix of x of length n, and α_{n} is a sequence of nonterminal symbols. These derivations form an infinite directed rooted tree with the root S, whose vertices are the left sentential forms $u \alpha$ such that u is a prefix of x, and the edges outcoming from $u \alpha$ correspond to an application of one production rule to the left-most nonterminal in α. The degree of each vertex is bounded by the number of production rules. According to König's lemma, there is an infinite left derivation $S \Rightarrow \ldots \Rightarrow u_{n} \alpha_{n} \Rightarrow \ldots$ such that for every n, u_{n} is the prefix of x of length n, and α_{n} is a non-empty sequence of nonterminal symbols.

Let us call an occurrence of a nonterminal in α_{n} temporary, if it is substituted by a production rule of G in some of the following steps, and stable otherwise. We prove that for every n, there is $m \geq n$ such that α_{m} contains exactly one temporary nonterminal. We know the left-most nonterminal A_{1} in $\alpha_{n}=A_{1} \ldots A_{i} \ldots A_{k}$ is temporary, and let A_{i} be the right-most temporary nonterminal in α_{n}. If $i=1$, then choose $m=n$. For $i \geq 2$, there is an index m, such that all the temporary nonterminals A_{1}, \ldots, A_{i-1} in α_{n} are transformed into terminal words in u_{m}. If m is the smallest such index, then A_{i} is the first and the only temporary nonterminal of α_{m}. It follows that there is an infinite number of indices n such that α_{n} contains exactly one temporary nonterminal.

Since there are only finitely many nonterminals in G, there exist three indices m_{1}, m_{2}, m_{3} such that $m_{1}<m_{2}<m_{3}$ and $u_{m_{1}} \alpha_{m_{1}}=u_{1} A \beta_{1}^{\prime}, u_{m_{2}} \alpha_{m_{2}}=$ $u_{1} v_{1} A \beta_{2}^{\prime} \beta_{1}^{\prime}, u_{m_{3}} \alpha_{m_{3}}=u_{1} v_{1} v_{2} A \beta_{3}^{\prime} \beta_{2}^{\prime} \beta_{1}^{\prime}$ for some nonterminal A, where u_{1}, v_{1}, $v_{2} \in \Sigma^{*},\left|v_{1}\right|>0,\left|v_{2}\right|>0$, and $\beta_{1}^{\prime}, \beta_{2}^{\prime}, \beta_{3}^{\prime}$ consist of stable nonterminals in all $\alpha_{m_{1}}, \alpha_{m_{2}}, \alpha_{m_{3}}$. If $\left|v_{1}\right|$ is even, then define $n_{1}=m_{1}, n_{2}=m_{2}, u=u_{1}, v=v_{1}$, $\beta_{1}=\beta_{1}^{\prime}$, and $\beta_{2}=\beta_{2}^{\prime}$, otherwise, if $\left|v_{2}\right|$ is even, then $n_{1}=m_{2}, n_{2}=m_{3}$, $u=u_{1} v_{1}, v=v_{2}, \beta_{1}=\beta_{2}^{\prime} \beta_{1}^{\prime}$, and $\beta_{2}=\beta_{3}^{\prime}$. On the other hand, if $\left|v_{1}\right|$ and $\left|v_{2}\right|$ are both odd, then $\left|v_{1} v_{2}\right|$ is even and define $n_{1}=m_{1}, n_{2}=m_{3}, u=u_{1}$, $v=v_{1} v_{2}, \beta_{1}=\beta_{1}^{\prime}$, and $\beta_{2}=\beta_{3}^{\prime} \beta_{2}^{\prime}$. Thus, there are two words $u, v \in \Sigma^{*}$ such that $u_{n_{1}} \alpha_{n_{1}}=u A \beta_{1}, u_{n_{2}} \alpha_{n_{2}}=u v A \beta_{2} \beta_{1}$, and $|v|>0$ is even, where $A \stackrel{*}{\Rightarrow} v A \beta_{2}$. For every $m \geq n_{2}$, we have $u_{m} \alpha_{m}=u v \gamma_{m} \beta_{2} \beta_{1}$ where γ_{m} is such that $A \stackrel{*}{\Rightarrow} \gamma_{m}$. Hence, an infinite word $w \in \Sigma^{\omega}$ is produced from A, such that $x=u v w$. Clearly, every finite prefix of w is the terminal part of γ_{m} for some $m \geq n_{2}$.

For every $i \geq 0$, we can construct an infinite left derivation whose sentential forms contain arbitrarily long prefixes of the sequence $u v^{i} w$ by combining the above derivations similarly as in the proof of the pumping lemma. The derivation starts as the original derivation until $u_{n_{1}} \alpha_{n_{1}}=u A \beta_{1}$. Then, the derivation $A \stackrel{*}{\Rightarrow} v A \beta_{2}$ is used i times. Finally, the derivations $A \stackrel{*}{\Rightarrow} \gamma_{m}$ are used in an infinite sequence for all $m>n_{2}$. Altogether, we obtain

$$
\begin{equation*}
S \stackrel{*}{\Rightarrow} u A \beta_{1} \stackrel{*}{\Rightarrow} u v^{i} A \beta_{2}^{i} \beta_{1} \Rightarrow \ldots \Rightarrow u v^{i} \gamma_{m} \beta_{2}^{i} \beta_{1} \Rightarrow \ldots \quad \text { for all } m>n_{2} \tag{12}
\end{equation*}
$$

We show that for every $i \geq 0$, the infinite sequence $u v^{i} w$ is approximable in L. For any prefix $u^{\prime} \in \Sigma^{*}$ of $u v^{i} w$, we employ the derivation (12) until u^{\prime} is derived. Then, we include any finite derivation of a terminal word from each of the remaining nonterminals. We obtain a word in $L=L(G)$ with prefix u^{\prime}.

Theorem 13. Assume that Σ is a finite alphabet and $b: \Sigma \longrightarrow B$ is a bijection. If c is not a-quasi-periodic within B (see Examples 7 and 14 for instances of such $c \in \mathbb{Q}$), then the cut language $L_{<c}$ over Σ is not context-free.

Proof. For any string $x=x_{1} \ldots x_{n} \in \Sigma^{*}$ of length $n=|x|$, denote $z_{x}=$ $\sum_{k=0}^{n-1} b\left(x_{k+1}\right) a^{k}$, whereas $z_{x}=\sum_{k=0}^{\infty} b\left(x_{k+1}\right) a^{k}$ for an infinite word $x \in \Sigma^{\omega}$. Assume for a contradiction that $L_{<c}$ is a context-free language, and hence the same holds for its reversal $L=L_{<c}^{R}=\left\{x \in \Sigma^{*} \mid z_{x}<c\right\}$. Since c is not eventually a-quasi-periodic within B, Theorem 8 provides an infinite word $x \in \Sigma^{\omega}$ such that the tail sequence of a power series $z_{x}=\sum_{k=0}^{\infty} b\left(x_{k+1}\right) a^{k}=c$ is composed of pair-wise different values.

On the contrary, suppose that x is not approximable in L. This means there is a prefix $u \in \Sigma^{*}$ of x such that for every $y \in \Sigma^{*}$ it holds $u y \notin L$, that is, $z_{u y} \geq c=z_{x}$. On the other hand, we know $z_{x}=\lim _{n \rightarrow \infty} z_{u y_{n}}$ where for every $n, y_{n} \in \Sigma^{*}$ is a string of length $n=\left|y_{n}\right|$ such that $u y_{n}$ is a prefix of x, which implies $z_{x}=\inf _{y \in \Sigma^{*}} z_{u y}$. For $a>0$, this ensures $b\left(x_{k}\right)=\min B$ for every $k>|u|$, whereas for $a<0$, it must be $b\left(x_{2 k}\right)=\max B$ and $b\left(x_{2 k+1}\right)=\min B$ for every $k>|u| / 2$, which contradicts the fact that the tail values of series z_{x} are pair-wise different.

It follows that x is approximable in L. Let $x=u v w$ where $|v|>0$ is even, be a decomposition guaranteed by Lemma 12. In particular, $u w$ and $u v v w$ are also approximable in L. We know the tails z_{w} and $z_{v w}$ are different. If $a^{|u|} z_{w}>$ $a^{|u|} z_{v w}$, then define $y=u w$ which meets $z_{y}=z_{u w}=z_{u}+a^{|u|} z_{w}>z_{u}+a^{|u|} z_{v w}=$ $z_{u v w}=z_{x}=c$. On the other hand, if $a^{|u|} z_{v w}>a^{|u|} z_{w}$, then define $y=u v v w$ which satisfies $z_{y}=z_{u v v w}=z_{u v}+a^{|u v|} z_{v w}>z_{u v}+a^{|u v|} z_{w}=z_{u v w}=z_{x}=c$, due to $a^{|v|}>0$. Thus, we have $y \in \Sigma^{\omega}$ which is approximable in L and $z_{y}>c$. This means that for every integer $n \geq 0$, there is $y_{n} \in L$ implying $z_{y_{n}}<c$, such that y and y_{n} share the same prefix of length at least n. Hence, $\left|z_{y}-z_{y_{n}}\right| \leq \beta a^{n} /(1-a)$ where $\beta=\max \left\{\left|b_{1}-b_{2}\right| ; b_{1} \in B, b_{2} \in B \cup\{0\}\right\}$. It follows that $z_{y_{n}}$ converges to z_{y} as n tends to infinity, which contradicts $z_{y_{n}}<c<z_{y}$.

Example 14. We generalize Example 7 to provide instances of rational numbers c such that any power series $\sum_{k=0}^{\infty} b_{k}^{\prime} a^{k}=c$ with $b_{k}^{\prime} \in B$ for all $k \geq 0$, is not
eventually quasi-periodic. Let $B=\{0,1\}$ and $a=\alpha_{1} / \alpha_{2}, c=\gamma_{1} / \gamma_{2} \in \mathbb{Q}$ be irreducible fractions where $\alpha_{1}, \gamma_{1} \in \mathbb{Z}$ and $\alpha_{2}, \gamma_{2} \in \mathbb{N}$, such that $\alpha_{1} \gamma_{2}$ and $\alpha_{2} \gamma_{1}$ are coprime. Denote by $0<k_{1}<k_{2}<\cdots$ all the indices of a (not necessarily greedy) representation of $c=\sum_{k=0}^{\infty} b_{k}^{\prime} a^{k}$ such that $b_{k_{i}}^{\prime}=1$ for $i \geq 1$. Then formula (5) can be rewritten as

$$
\begin{equation*}
c_{n}=\frac{\gamma_{1} \alpha_{2}^{k_{n}}-\gamma_{2} \alpha_{1} \sum_{i=1}^{n} \alpha_{1}^{k_{i}-1} \alpha_{2}^{k_{n}-k_{i}}}{\gamma_{2} \alpha_{1}^{k_{n}}} \tag{13}
\end{equation*}
$$

which is still an irreducible fraction.
Theorem 15. Every cut language $L_{<c}$ with threshold $c \in \mathbb{Q}$ is context-sensitive.
Proof. A corresponding (deterministic) linear bounded automaton M that accepts a given cut language $L_{<c}=L(M)$, evaluates (and stores) the sum $s_{n}=$ $\sum_{i=0}^{n-1} b\left(x_{n-i}\right) a^{i}$ step by step when reading an input word $x_{1} \ldots x_{n} \in \Sigma^{*}$ from left to right. In particular, M starts with $s_{0}=0$ which updates to $s_{i}=a s_{i-1}+b\left(x_{i}\right)$ every time after M reads the next input symbol $x_{i} \in \Sigma$, for $i=1, \ldots, n$. As the numbers $a, b\left(x_{1}\right), \ldots, b\left(x_{n}\right), c \in \mathbb{Q}$ can be represented within constant space, M needs only linear space in terms of input length n, for computing s_{n} and testing whether $s_{n}<c$.

5 Conclusion

In this paper we have introduced the cut languages in rational bases and classified them within the Chomsky hierarchy, among others, by using the quasi-periodic power series. A natural direction for future research is to generalize the results to arbitrary real bases.

We have already strengthened Theorem 8 whose proof is now based on Lemma 2 which does not require rational bases as opposed to stronger Theorem 3 that was used for the proof in a preliminary version [24]. As a consequence of this improvement, the characterization of regular cut languages in Theorem 11 remains valid for arbitrary real bases. For example, for the only real root $a \approx 0.6823278$ of algebraic equation $a^{3}+a-1=0$, which is the inverse of a Pisot number, the number $c=1$ (similarly for $c=1 / a$) is a -quasi-periodic within $B=\{0,1\}$ and has uncountably many different quasiperiodic representations (including the non-periodic ones) whose tail values form $\mathcal{D}=\{0, a, 1,1 / a, 1+a, a /(1-a),(1+a) / a, 1 /(1-a)\}$ (cf. Theorem 8). It is an open question of whether the inverse of the minimal Pisot number (i.e. the inverse of the plastic constant), $a \approx 0.7548777$ which is the unique real solution of the cubic equation $a^{3}+a^{2}-1=0$, is the greatest such a.

Nevertheless, the generalization of Theorem 3 to arbitrary real bases is still an open problem which can be formulated elementarily as follows. Let a be a real number such that $0<|a|<1$, and $\left(d_{n}\right)_{n=0}^{\infty}$ be a sequence of real numbers, containing a constant infinite subsequence (cf. Lemma 2), such that $B=\left\{d_{n}-a d_{n+1} \mid n \geq 0\right\}$ is finite. Is $D=\left\{d_{n} \mid n \geq 0\right\}$ a finite set?

References

1. Adamczewski, B., Frougny, C., Siegel, A., Steiner, W.: Rational numbers with purely periodic β-expansion. Bulletin of The London Mathematical Society 42(3), 538-552 (2010)
2. Allouche, J.P., Clarke, M., Sidorov, N.: Periodic unique beta-expansions: The Sharkovskiŭ ordering. Ergodic Theory and Dynamical Systems 29(4), 1055-1074 (2009)
3. Alon, N., Dewdney, A.K., Ott, T.J.: Efficient simulation of finite automata by neural nets. Journal of the ACM 38(2), 495-514 (1991)
4. Balcázar, J.L., Gavaldà, R., Siegelmann, H.T.: Computational power of neural networks: A characterization in terms of Kolmogorov complexity. IEEE Transactions on Information Theory 43(4), 1175-1183 (1997)
5. Chunarom, D., Laohakosol, V.: Expansions of real numbers in non-integer bases. Journal of the Korean Mathematical Society 47(4), 861-877 (2010)
6. Glendinning, P., Sidorov, N.: Unique representations of real numbers in non-integer bases. Mathematical Research Letters 8(4), 535-543 (2001)
7. Hare, K.G.: Beta-expansions of Pisot and Salem numbers. In: Proceedings of the Waterloo Workshop in Computer Algebra 2006: Latest Advances in Symbolic Algorithms. pp. 67-84. World Scientific (2007)
8. Horne, B.G., Hush, D.R.: Bounds on the complexity of recurrent neural network implementations of finite state machines. Neural Networks 9(2), 243-252 (1996)
9. Indyk, P.: Optimal simulation of automata by neural nets. In: Proceedings of the STACS 1995 Twelfth Annual Symposium on Theoretical Aspects of Computer Science. LNCS, vol. 900, pp. 337-348 (1995)
10. Komornik, V., Loreti, P.: Subexpansions, superexpansions and uniqueness properties in non-integer bases. Periodica Mathematica Hungarica 44(2), 197-218 (2002)
11. Minsky, M.: Computations: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)
12. Parry, W.: On the β-expansions of real numbers. Acta Mathematica Hungarica 11(3), 401-416 (1960)
13. Rényi, A.: Representations for real numbers and their ergodic properties. Acta Mathematica Academiae Scientiarum Hungaricae 8(3-4), 477-493 (1957)
14. Schmidt, K.: On periodic expansions of Pisot numbers and Salem numbers. Bulletin of the London Mathematical Society 12(4), 269-278 (1980)
15. Sidorov, N.: Expansions in non-integer bases: Lower, middle and top orders. Journal of Number Theory 129(4), 741-754 (2009)
16. Siegelmann, H.T.: Recurrent neural networks and finite automata. Journal of Computational Intelligence $12(4), 567-574$ (1996)
17. Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing Limit. Birkhäuser, Boston (1999)
18. Siegelmann, H.T., Sontag, E.D.: Analog computation via neural networks. Theoretical Computer Science 131(2), 331-360 (1994)
19. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. Journal of Computer System Science 50(1), 132-150 (1995)
20. Šíma, J.: Energy complexity of recurrent neural networks. Neural Computation 26(5), 953-973 (2014)
21. Šíma, J.: The power of extra analog neuron. In: Proceedings of the TPNC 2014 Third International Conference on the Theory and Practice of Natural Computing. LNCS, vol. 8890, pp. 243-254 (2014)
22. Šíma, J.: Neural networks between integer and rational weights. Tech. Rep. V-1237, Institute of Computer Science, The Czech Academy of Sciences, Prague (2016)
23. Šíma, J., Orponen, P.: General-purpose computation with neural networks: A survey of complexity theoretic results. Neural Computation 15(12), 2727-2778 (2003)
24. Síma, J., Savický, P.: Cut languages in rational bases. Tech. Rep. V-1236, Institute of Computer Science, The Czech Academy of Sciences, Prague (2016)
25. Šíma, J., Wiedermann, J.: Theory of neuromata. Journal of the ACM 45(1), 155178 (1998)

[^0]: * Research was done with institutional support RVO: 67985807 and partially supported by the grant of the Czech Science Foundation No. P202/12/G061.

