Cut Languages in Rational Bases

Jiří Šíma and Petr Savický*

Institute of Computer Science The Czech Academy of Sciences P. O. Box 5, 18207 Prague 8, Czech Republic {sima,savicky}@cs.cas.cz

Abstract. We introduce a so-called cut language which contains the representations of numbers in a rational base that are less than a given threshold. The cut languages can be used to refine the analysis of neural net models between integer and rational weights. We prove a necessary and sufficient condition when a cut language is regular, which is based on the concept of a quasi-periodic power series. We achieve a dichotomy that a cut language is either regular or non-context-free while examples of regular and non-context-free cut languages are presented. We show that any cut language with a rational threshold is context-sensitive.

Keywords: grammars, quasi-periodic power series, cut language

1 Cut Languages

We study so-called cut languages which contain the representations of numbers in a rational base [1, 2, 5-7, 10, 12-15] that are less than a given threshold. Hereafter, let a be a rational number such that 0 < |a| < 1, which is the inverse of a base (radix) 1/a where |1/a| > 1, and let $B \subset \mathbb{Q}$ be a finite set of rational digits. We say that $L \subseteq \Sigma^*$ is a *cut language* over a finite alphabet $\Sigma \neq \emptyset$ if there is a bijection $b: \Sigma \longrightarrow B$ and a real threshold c such that

$$L = L_{(1)$$

The cut languages can be used to refine the analysis of computational power of neural network models [17, 23]. This analysis is satisfactorily fine-grained in terms of Kolmogorov complexity when changing from rational to arbitrary real weights [4, 18]. In contrast, there is still a gap between integer and rational weights, which results in a jump from regular to recursively enumerable languages in the Chomsky hierarchy. In particular, neural nets with *integer* weights, corresponding to binary-state networks, coincide with finite automata [3, 8, 9, 11, 16, 20, 25]. On the other hand, a neural network that contains *two* analog-state

^{*} Research was done with institutional support RVO: 67985807 and partially supported by the grant of the Czech Science Foundation No. P202/12/G061.

2 J. Šíma and P. Savický

units with *rational* weights, can implement two stacks of pushdown automata, a model equivalent to Turing machines [19]. A natural question arises: what is the computational power of binary-state networks including one extra analog unit with rational weights? Such a model is equivalent to finite automata with a register [21], which accept languages that can be represented by some cut languages combined in a certain way by usual operations (e.g. intersection with a regular language, concatenation, union); see [22] for the exact representation.

In this paper we prove a necessary and sufficient condition when a given cut language is regular (Section 3). For this purpose, we introduce and characterize an *a*-quasi-periodic number within B whose all representations in basis 1/a using the digits from B, are eventually quasi-periodic power series (Section 2). The concept of quasi-periodicity represents a natural generalization of periodicity, allowing for different quasi-repetends even of unbounded length. There are numbers with uncountably many representations, all of which are eventually quasiperiodic, although only countably many of them can be eventually periodic. We achieve a dichotomy that a cut language is either regular or non-context-free. In addition, we present examples of cut languages that are not context-free and we show that any cut language with a rational threshold is context-sensitive (Section 4). Finally, we summarize the results and present some open problems (Section 5).

2 Quasi-Periodic Power Series

In this section, we introduce and analyze a notion of *a*-quasi-periodic numbers within *B* which will be employed for characterizing the class of regular cut languages in Section 3. We say that a power series $\sum_{k=0}^{\infty} b_k a^k$ with coefficients $b_k \in B$ for all $k \geq 0$, is eventually quasi-periodic with period sum *P* if there is an increasing infinite sequence of its term indices $0 \leq k_1 < k_2 < \cdots$ such that for every $i \geq 1$,

$$\frac{\sum_{k=0}^{m_i-1} b_{k_i+k} a^k}{1-a^{m_i}} = P \tag{2}$$

where $m_i = k_{i+1} - k_i > 0$ is the length of quasi-repetend $b_{k_i}, \ldots, b_{k_{i+1}-1}$, while k_1 is the length of preperiodic part b_0, \ldots, b_{k_1-1} . For $k_1 = 0$, we call such a power series quasi-periodic. One can calculate the sum of any eventually quasi-periodic power series as

$$\sum_{k=0}^{\infty} b_k a^k = \sum_{k=0}^{k_1 - 1} b_k a^k + a^{k_1} P \tag{3}$$

since $\sum_{k=k_1}^{\infty} b_k a^k = \sum_{i=1}^{\infty} a^{k_i} \sum_{k=0}^{m_i-1} b_{k_i+k} a^k = P \cdot \sum_{i=1}^{\infty} a^{k_i} (1 - a^{m_i}) = P \cdot \sum_{i=1}^{\infty} (a^{k_i} - a^{k_{i+1}}) = a^{k_1} P$ is an absolutely convergent series. It follows that the sum (3) does not change if any quasi-repetend is removed from associated sequence $(b_k)_{k=0}^{\infty}$ or if it is inserted in between two other quasi-repetends, which means that the quasi-repetends can be permuted arbitrarily.

Example 1. A quasi-periodic power series can be composed of quasi-repetends having unbounded length. For example, for any rational period sum $P \neq 0$, we

define three rational digits as $\beta_1 = (1 - a^2)P$, $\beta_2 = a(1 - a)P$, and $\beta_3 = 0$, that is, $B = \{\beta_1, \beta_2, \beta_3\}$. Then $\beta_1, \beta_2^n, \beta_3$ where β_2^n means β_2 repeated *n* times, creates a quasi-repetend of length n + 2 for every integer $n \ge 0$, because $(\beta_1 + \sum_{k=1}^n \beta_2 a^k + \beta_3 a^{n+1})/(1 - a^{n+2}) = P$ whereas for any integer *r* such that $0 \le r < n$, it holds $(\beta_1 + \sum_{k=1}^r \beta_2 a^k)/(1 - a^{r+1}) \ne P$.

Furthermore, given a power series $\sum_{k=0}^{\infty} b_k a^k$, we define its *tail sequence* $(d_n)_{n=0}^{\infty}$ as $d_n = \sum_{k=0}^{\infty} b_{n+k} a^k$ for every $n \ge 0$. Denote by $D(\sum_{k=0}^{\infty} b_k a^k) = \{d_n \mid n \ge 0\}$ the set of tail values.

Lemma 2. A power series $\sum_{k=0}^{\infty} b_k a^k$ with $b_k \in B$ for all $k \ge 0$, is eventually quasi-periodic with period sum P iff its tail sequence $(d_n)_{n=0}^{\infty}$ contains a constant infinite subsequence $(d_{k_i})_{i=1}^{\infty}$ such that $d_{k_i} = P$ for every $i \ge 1$.

Proof. Let $\sum_{k=0}^{\infty} b_k a^k$ be an eventually quasi-periodic power series with period sum P, which means there is an increasing infinite sequence of its term indices $0 \le k_1 < k_2 < \cdots$ such that equation (2) holds for every $i \ge 1$. It follows that $a^{k_i} d_{k_i} = \sum_{k=k_i}^{\infty} b_k a^k = \sum_{j=i}^{\infty} a^{k_j} \sum_{k=0}^{m_j-1} b_{k_j+k} a^k = P \cdot \sum_{j=i}^{\infty} a^{k_j} (1-a^{m_j}) =$ $P \cdot \sum_{j=i}^{\infty} (a^{k_j} - a^{k_{j+1}}) = a^{k_i} P$, which implies $d_{k_i} = P$ for every $i \ge 1$. Conversely, assume that $(d_n)_{n=0}^{\infty}$ contains a constant subsequence $(d_{k_i})_{i=1}^{\infty}$

Conversely, assume that $(d_n)_{n=0}^{\infty}$ contains a constant subsequence $(d_{k_i})_{i=1}^{\infty}$ such that $d_{k_i} = P$ for every $i \ge 1$. We have $\sum_{k=0}^{m_i-1} b_{k_i+k} a^k = d_{k_i} - a^{m_i} d_{k_{i+1}} = (1-a^{m_i}) P$ where $m_i = k_{i+1} - k_i > 0$, which implies (2) for every $i \ge 1$. \Box

Theorem 3. A power series $\sum_{k=0}^{\infty} b_k a^k$ with $b_k \in B$ for all $k \ge 0$, is eventually quasi-periodic iff the set of its tail values, $D = D(\sum_{k=0}^{\infty} b_k a^k)$, is finite.

Proof. Assume that D is a finite set, which means there must be a real number $P \in D$ such that $d_{k_i} = P$ for infinitely many indices $0 \leq k_1 < k_2 < \cdots$, that is, $(d_{k_i})_{i=1}^{\infty}$ creates a constant infinite subsequence of tail sequence $(d_n)_{n=0}^{\infty}$. According to Lemma 2, this ensures that $\sum_{k=0}^{\infty} b_k a^k$ is eventually quasi-periodic. Conversely, let $\sum_{k=0}^{\infty} b_k a^k$ with $b_k \in B$ for all $k \geq 0$, be an eventually quasi-

Conversely, let $\sum_{k=0}^{\infty} b_k a^k$ with $b_k \in B$ for all $k \ge 0$, be an eventually quasiperiodic power series with period sum P. Since $a \in \mathbb{Q}$ and $B \subset \mathbb{Q}$ is finite, Pis a rational number by (2) and there exists a natural number $\beta > 0$ such that $B' = \{\beta(b - (1 - a)P)/a \mid b \in B\} \subset \mathbb{Z}$ is a finite set of integers. According to Lemma 2, the tail sequence $(d_n)_{n=0}^{\infty}$ of $\sum_{k=0}^{\infty} b_k a^k$ contains a constant infinite subsequence $(d_{k_i})_{i=1}^{\infty}$ such that $d_{k_i} = P$ for every $i \ge 1$. Assume to the contrary that $D = \{d_n \mid n \ge 0\}$ is an infinite set.

We define a modified sequence $(d'_n)_{n=0}^{\infty}$ as $d'_n = \beta(d_{k_1+n} - P)$ for all $n \ge 0$, which satisfies $d'_{k'_i} = 0$ where $k'_i = k_i - k_1$, for every $i \ge 1$, and $D' = \{d'_n \mid n \ge 0\}$ is an infinite set. Furthermore, for each $n \ge 0$,

$$\frac{d'_n}{a} - d'_{n+1} = \frac{\beta(d_{k_1+n} - P)}{a} - \beta(d_{k_1+n+1} - P) = \beta \frac{b_{k_1+n} - (1-a)P}{a} \in B'$$
(4)

is an integer by the definition of B'. In addition, denote $1/a = \alpha/q \in \mathbb{Q}$ where natural number $\alpha > 0$ and integer $q \neq 0$ are coprime.

Lemma 4. For every $n \ge 0$, there exists an integer δ and a natural number $p \ge 0$ such that $d'_n = \delta/q^p$.

Proof. We proceed by induction on n. The assertion is obvious for n = 0 when $d'_0 = 0$. Assume that $d'_n = \delta/q^p$ for some $\delta \in \mathbb{Z}$ and $p \ge 0$. Then $d'_{n+1} = d'_n/a - b'$ for some integer $b' \in B' \subset \mathbb{Z}$ according to (4), which can be rewritten as $d'_{n+1} = (\alpha/q) \cdot (\delta/q^p) - b' = (\alpha\delta - b'q^{p+1})/q^{p+1} = \delta_1/q^{p+1}$ where $\delta_1 = \alpha\delta - b'q^{p+1} \in \mathbb{Z}$, completing the proof of Lemma 4.

Lemma 5. If $d'_{n+1} \in \mathbb{Z}$, then $d'_n \in \mathbb{Z}$.

Proof. Let $d'_{n+1} \in \mathbb{Z}$. By (4) there is $b' \in B' \subset \mathbb{Z}$ such that $d'_n/a = d'_{n+1} + b' \in \mathbb{Z}$. According to Lemma 4, $d'_n = \delta/q^p$ for some $\delta \in \mathbb{Z}$ and $p \ge 0$, which gives $d'_n/a = \alpha \delta/q^{p+1} \in \mathbb{Z}$. Since α and q are coprime, q^{p+1} must be a factor of δ , which means $\delta = \delta' q^{p+1}$ for some $\delta' \in \mathbb{Z}$, and hence $d'_n = \delta/q^p = \delta' q \in \mathbb{Z}$, completing the proof of Lemma 5.

We will show for each $n \ge 0$ that $d'_n \in \mathbb{Z}$. Let $i \ge 1$ be the least index such that $k'_i \ge n$ for which we know $d'_{k'_i} = 0 \in \mathbb{Z}$. By applying Lemma 5 $(k'_i - n)$ times we obtain $d'_{k'_i-1}, d'_{k'_i-2}, \ldots, d'_n \in \mathbb{Z}$.

Thus, $D' \subset \mathbb{Z}$ and since D' is infinite, there exists an index $m \geq 0$ such that $|d'_m| \geq (|a| \cdot M)/(1 - |a|) > 0$ where $M = \max_{b' \in B'} |b'|$. Note that M > 0 since for M = 0, we would have $B = \{(1 - a)P\}$ implying $D = \{P\}$ which contradicts that D is infinite. According to (4), $|d'_{m+1}| \geq |d'_m|/|a| - M$ which implies $|d'_{m+1}| - |d'_m| \geq (1/|a| - 1)|d'_m| - M \geq 0$ by the definition of m. Hence, $|d'_{m+1}| \geq |d'_m|$, and by induction we obtain $|d'_n| \geq (|a| \cdot M)/(1 - |a|) > 0$ for every $n \geq m$. On the other hand, we know that there is an index i such that $k'_i \geq m$ for which $d'_{k'_i} = 0$, which is a contradiction completing the proof of Theorem 3.

We say that a real number c is *a-quasi-periodic within* B if any power series $\sum_{k=0}^{\infty} b_k a^k = c$ with $b_k \in B$ for all $k \ge 0$, is eventually quasi-periodic. Note that c that cannot not be written as a respective power series at all, or can, in addition, be expressed as a finite sum $\sum_{k=0}^{h} b_k a^k = c$ whereas $0 \notin B$, is also considered formally to be *a*-quasi-periodic. For example, the numbers from the complement of the Cantor set are formally (1/3)-quasi-periodic within $\{0, 2\}$.

Example 6. Example 1 can be extended to provide a nontrivial instance of an *a*-quasi-periodic number that has infinitely many different quasi-periodic representations composed of quasi-repetends of arbitrary length (greater than 1). This includes ordinarily periodic representations composed of one of these quasi-repetends and uncountably many non-periodic ones. Let $a \in \mathbb{Q}$ meet $0 < a < \frac{1}{2}$. We show that any positive rational number c is a-quasi-periodic within B where $B = \{\beta_1, \beta_2, \beta_3\}$ is defined in Example 1 so that P = c. Obviously, $\beta_1 > \beta_2 > \beta_3 = 0$. Assume that $c = \sum_{k=0}^{\infty} b_k a^k$ for some sequence $(b_k)_{k=0}^{\infty}$ where $b_k \in B$ for all $k \ge 0$. Observe first that it must be $b_0 = \beta_1$ since otherwise $c = \sum_{k=0}^{\infty} b_k a^k \le \beta_2 + \sum_{k=1}^{\infty} \beta_1 a^k = a(1-a)c + (1-a^2)c \cdot a/(1-a) = 2ac < c$ due to $a < \frac{1}{2}$. Moreover, for any $n \ge 0$ such that $b_k = \beta_2$ for every $k = 1, \ldots, n$, it holds $b_{n+1} \ne \beta_1$ since otherwise $c = \sum_{k=0}^{\infty} b_k a^k \ge \beta_1 + \sum_{k=1}^n \beta_2 a^k + \beta_1 a^{n+1} = b^2 a^{n+1} = b^$

 $\begin{array}{l} (1-a^2)c + a(1-a)c \cdot a(1-a^n)/(1-a) + (1-a^2)c \cdot a^{n+1} = c - a^{n+1}(a^2+a-1)c > c \\ \text{due to } a^2 + a - 1 < 0 \text{ for } 0 < a < \frac{1}{2} \,. \end{array}$

First consider the case when there is $r \geq 1$ such that $b_k = \beta_2$ for all $k \geq r$. Then b_0, \ldots, b_{r-1} is a preperiodic part and $b_k = \beta_2$ for $k \geq r$ represents a repetend of length $m_k = 1$, which proves $\sum_{k=0}^{\infty} b_k a^k$ to be eventually quasi-periodic. Further assume there is no such r, and thus $b_k = \beta_2$ for every $k = 1, \ldots, n_1$ and $b_{n_1+1} = \beta_3$, for some $n_1 \geq 0$. It follows that series $\sum_{k=0}^{\infty} b_k a^k = c$ starts with a quasi-repetend $\beta_1, \beta_2^{n_1}, \beta_3$ of length n_1+2 (cf. Example 1) which can be omitted as $\sum_{k=0}^{\infty} b_{n_1+2+k} a^k = (c - \sum_{k=0}^{n_1+1} b_k a^k)/a^{n_1+2} = c$ due to $\sum_{k=0}^{n_1+1} b_k a^k = c(1 - a^{n_1+2})$ by (2), and the argument can be repeated for its tail $\sum_{k=0}^{\infty} b_{n_1+2+k} a^k = c$ to reveal the next quasi-repetend $\beta_1, \beta_2^{n_2}, \beta_3$ for some $n_2 \geq 0$ etc. Hence, $\sum_{k=0}^{\infty} b_k a^k$ is quasi-periodic, which completes the proof that c is a-quasi-periodic within B.

Example 7. On the other hand, we present an example of an eventually quasiperiodic series $\sum_{k=0}^{\infty} b_k a^k = c$ with $b_k \in B$ for all $k \ge 0$, such that c is not *a*-quasi-periodic within B. Let $a = \frac{2}{3}$, $B = \{0, 1\}$, and define an eventually quasi-periodic series $\sum_{k=0}^{\infty} b_k a^k$ with a preperiodic part $b_0 = b_1 = 0$ and a repetend $b_{2+3k} = 0$, $b_{3+3k} = b_{4+3k} = 1$ for every $k \ge 0$, which sums to $c = ((\frac{2}{3})^3 + (\frac{2}{3})^4) \cdot \sum_{k=0}^{\infty} (\frac{2}{3})^{3k} = \frac{40}{57}$.

Furthermore, we employ a greedy approach to generate a series $\sum_{k=0}^{\infty} b'_k a^k = c$ with $b'_k \in \{0,1\}$ for all $k \ge 0$, which is not eventually quasi-periodic. In particular, find minimal $k_1 \ge 0$ such that $a^{k_1} < c$ which gives $b'_0 = \cdots = b'_{k_1-1} = 0$, $b'_{k_1} = 1$, and remainder $c_1 = c/a^{k_1} - 1$. For n > 1, let $b'_0, \ldots, b'_{k_{n-1}}$ be 0s except for $b'_{k_1} = b'_{k_2} = \cdots = b'_{k_{n-1}} = 1$. Then find minimal $k_n > k_{n-1}$ such that $a^{k_n-k_{n-1}} < c_{n-1}$ which produces $b'_{k_{n-1}+1} = \cdots = b'_{k_n-1} = 0$, $b'_{k_n} = 1$, and remainder $c_n = c_{n-1}/a^{k_n-k_{n-1}} - 1$. It follows that $c_n = \sum_{k=0}^{\infty} b'_{k_n+k}a^k - 1 = (c - \sum_{i=1}^n a^{k_i})/a^{k_n}$ for $n \ge 1$. By plugging $a = \frac{2}{3}$ and $c = \frac{40}{57}$ into this formula, for which $k_1 = 1$ and $k_2 = 9$, we obtain

$$c_n = \frac{20}{19} \left(\frac{3}{2}\right)^{k_n - 1} - \sum_{i=1}^n \left(\frac{3}{2}\right)^{k_n - k_i} = \frac{3^{k_n - 1} - 19 \cdot 2 \cdot \sum_{i=2}^n 2^{k_i - 2} \cdot 3^{k_n - k_i}}{19 \cdot 2^{k_n - 1}} \quad (5)$$

which is an irreducible fraction since both 19 and 2 are not factors of 3^{k_n-1} . Hence, for any natural n_1, n_2 such that $0 < n_1 < n_2$ we know $c_{n_1} \neq c_{n_2}$. It follows that the tail sequence $(d'_n)_{n=0}^{\infty}$ of $\sum_{k=0}^{\infty} b'_k a^k = c$ contains infinitely many different values $d'_{k_n} = c_n + 1$ for $n \ge 1$, which implies that $\sum_{k=0}^{\infty} b'_k a^k$ is not an eventually quasi-periodic series, according to Theorem 3.

Theorem 8. A real number c is a-quasi-periodic within B iff the tail sequences of all the power series satisfying $\sum_{k=0}^{\infty} b_k a^k = c$ with $b_k \in B$ for all $k \ge 0$, contain altogether only finitely many values, that is,

$$\mathcal{D} = \bigcup_{\substack{\sum_{k=0}^{\infty} b_k a^k = c\\ \text{for all } k \ge 0, b_k \in B}} D\left(\sum_{k=0}^{\infty} b_k a^k\right)$$
(6)

is a finite set. In addition, if c is not a-quasi-periodic within B, then there exists a power series $\sum_{k=0}^{\infty} b_k a^k = c$ with $b_k \in B$ for all $k \ge 0$, whose tail sequence contains pair-wise different values.

Proof. Let \mathcal{D} be a finite set. Then the tail sequence of any power series $\sum_{k=0}^{\infty} b_k a^k = c$ with $b_k \in B$ for all $k \geq 0$, contains only finitely many values and thus includes a constant infinite subsequence. According to Lemma 2, this implies that any $\sum_{k=0}^{\infty} b_k a^k = c$ is eventually quasi-periodic, and hence, c is a-quasi-periodic within B.

Conversely, assume that \mathcal{D} is infinite. Consider a directed tree T = (V, E)with vertex set $V \subseteq B^*$ such that $b_0 \cdots b_{n-1} \in V$ if its tail meets $t(b_0 \cdots b_{n-1}) = (c - \sum_{k=0}^{n-1} b_k a^k)/a^n \in \mathcal{D}$, which includes the empty string ε as a root satisfying $t(\varepsilon) = c$. Define a set of directed edges as

$$E = \{ (b_0 \cdots b_{n-1}, b_0 \cdots b_{n-1} b_n) | b_0 \cdots b_{n-1}, b_0 \cdots b_{n-1} b_n \in V \} , \qquad (7)$$

which guarantees the outdegree of T is bounded by |B|. Let T' = (V', E') be a subtree of T with a maximal vertex subset $V' \subseteq V$ so that $\varepsilon \in V'$ and $t(v_1) \neq t(v_2)$ for any two different vertices $v_1, v_2 \in V'$.

We show that for any $d \in \mathcal{D}$ there is $v \in V'$ such that t(v) = d. On the contrary, suppose $b_0 \cdots b_{n-1} \in V \setminus V'$ is a vertex with minimal n, satisfying $t(v) \neq t(b_0 \cdots b_{n-1}) = d \in \mathcal{D}$ for every $v \in V'$. Clearly, $b_0 \cdots b_{n-2} \in V \setminus V'$ since otherwise vertex $b_0 \cdots b_{n-1}$ could be included into V' which contradicts the maximality of V'. By the minimality of n, we know there is $b'_0 \cdots b'_{m-1} \in V'$ such that $t(b'_0 \cdots b'_{m-1}) = t(b_0 \cdots b_{n-2})$. Thus, we have $t(b'_0 \cdots b'_{m-1}b_{n-1}) = d$ and the maximality of V' implies $b'_0 \cdots b'_{m-1}b_{n-1} \in V'$, which is in contradiction with the definition of $b_0 \cdots b_{n-1}$.

It follows that $\{t(v) | v \in V'\} = \mathcal{D}$ implying T' is infinite. According to König's lemma, there exists an infinite directed path in T' corresponding to a power series $\sum_{k=0}^{\infty} b_k a^k = c$ whose tail sequence contains pair-wise different values. By Lemma 2, this series is not eventually quasi-periodic and hence, c is not a-quasi-periodic within B.

3 Regular Cut Languages

In this section we formulate a necessary and sufficient condition for a cut language $L_{<c}$ to be regular (Theorem 11), which is based on *a*-quasi-periodic thresholds *c* within *B*. The following Lemma 9 provides a technical characterization of the regular cut languages, which is proven by Myhill-Nerode theorem, while subsequent Lemma 10 separates the cases when threshold *c* is represented by a finite sum or when *c* has no representation in base 1/a using the digits from *B*.

Lemma 9. Let Σ be a finite alphabet, $b: \Sigma \longrightarrow B$ be a bijection, and c be a real number. Then the cut language $L_{<c} = \{x_1 \cdots x_n \in \Sigma^* \mid \sum_{i=0}^{n-1} b(x_{n-i})a^i < c\}$ is regular iff the set

$$C = \left\{ c(b_0, \dots, b_{\kappa-1}) \; \middle| \; I_{\kappa} \le c - \sum_{k=0}^{\kappa-1} b_k a^k \le S_{\kappa} \; ; \; b_0, \dots, b_{\kappa-1} \in B \; ; \; \kappa \ge 0 \right\}$$
(8)

is finite, where

c

$$I_{\kappa} = \inf_{\substack{b_{\kappa},\dots,b_{h-1}\in B\\h\geq\kappa}} \sum_{k=\kappa}^{h-1} b_{k}a^{k}, \qquad S_{\kappa} = \sup_{\substack{b_{\kappa},\dots,b_{h-1}\in B\\h\geq\kappa}} \sum_{k=\kappa}^{h-1} b_{k}a^{k}, \qquad (9)$$

$$(b_0, \dots, b_{\kappa-1}) = \begin{cases} \inf C(b_0, \dots, b_{\kappa-1}) & \text{if } a^{\kappa} > 0\\ \sup C(b_0, \dots, b_{\kappa-1}) & \text{if } a^{\kappa} < 0 \,, \end{cases}$$
(10)

$$C(b_0, \dots, b_{\kappa-1}) = \left\{ \sum_{k=0}^{h-\kappa-1} b_{\kappa+k} a^k \; \left| \; \sum_{k=0}^{h-1} b_k a^k \ge c \; ; \; b_{\kappa}, \dots, b_{h-1} \in B \; ; \; h \ge \kappa \right\}.$$
(11)

Proof. Let $C = \{c_1, \ldots, c_p\}$ in (8) be a finite set such that $c_1 < c_2 < \cdots < c_p$. We introduce an equivalence relation \sim on Σ^* as follows. For any $x, y \in \Sigma^*$ of length $n_x = |x|$ and $n_y = |y|$, respectively, we define $x \sim y$ iff both $z_x = \sum_{i=0}^{n_x-1} b(x_{n_x-i})a^i$ and $z_y = \sum_{i=0}^{n_y-1} b(y_{n_x-i})a^i$ belong either to one of the p+1 open intervals $(-\infty, c_1), (c_1, c_2), \ldots, (c_{p-1}, c_p), (c_p, \infty)$, or to one of the p singletons $\{c_1\}, \{c_2\}, \ldots, \{c_p\}$. Obviously, we have 2p+1 equivalence classes. In order to prove that language $L_{<c}$ is regular we employ Myhill-Nerode theorem by showing that for any $x, y \in \Sigma^*$, if $x \sim y$, then for every $w \in \Sigma^*, xw \in L_{<c}$ iff $yw \in L_{<c}$. Thus, consider $x, y \in \Sigma^*$ such that $x \sim y$, and on the contrary, suppose there is $w \in \Sigma^*$ of length $\kappa = |w|$ with $z_w = \sum_{i=0}^{\kappa-1} b(w_{\kappa-i})a^i$, such that $xw \in L_{<c}$ and $yw \notin L_{<c}$. This means $z_w + I_{\kappa} \leq z_w + a^{\kappa} z_x < c \leq z_w + a^{\kappa} z_y \leq z_w + S_{\kappa}$ by (9), implying $I_{\kappa} < c - z_w \leq S_{\kappa}$ which ensures $c_j = c(b(w_{\kappa}), \ldots, b(w_1)) \in C$ for some $j \in \{1, \ldots, p\}$, according to (8). It follows from (10) and (11) that $z_w + a^{\kappa} z_x < c \leq z_w + a^{\kappa} c_j \leq z_w + a^{\kappa} z_y$ which gives $a^{\kappa} z_x < a^{\kappa} c_j \leq a^{\kappa} z_y$ contradicting $x \sim y$.

Conversely, let $L_{<c}$ be a regular languages. According to Myhill-Nerode theorem, there is an equivalence relation \sim on Σ^* with a finite number p of equivalence classes such that for any $x, y \in \Sigma^*$, if $x \sim y$, then for every $w \in \Sigma^*$, $xw \in L_{<c}$ iff $yw \in L_{<c}$. Assume to the contrary that C in (8) is infinite. Choose $c_0, c_1, \ldots, c_{2p+2} \in C$ so that $c_0 < c_1 < \cdots < c_{2p+2}$, and for each $j \in \{0, \ldots, 2p+2\}$, let $c_j = c(b_{j0}, \ldots, b_{j,\kappa_j-1})$ for some $b_{j0}, \ldots, b_{j,\kappa_j-1} \in B$ and $\kappa_j \geq 0$, according to (8). Definition (10) and (11) ensures that for each odd $j \in \{1, 3, \ldots, 2p+1\}$, there exists $h_j \geq \kappa_j$ and $b_{j,\kappa_j}, \ldots, b_{j,h_j-1} \in B$ such that $c'_j = \sum_{k=0}^{h_j - \kappa_j - 1} b_{j\kappa_j + k} a^k$ is sufficiently close to c_j so that $c_{j-1} < c'_j <$ c_{j+1} . Since there are only p equivalence classes, there must be two odd indices $jx, jy \in \{1, 3, \ldots, 2p+1\}$, say $j_x < j_y$, determining $x, y \in \Sigma^*$ of length $n_x =$ $|x| = h_{j_x} - \kappa_{j_x}$ and $n_y = |y| = h_{j_y} - \kappa_{j_y}$, respectively, by $b(x_{n_x-i}) = b_{j_x,\kappa_{j_x}+i}$ for $i = 0, \ldots, n_x - 1$ and $b(y_{n_y-i}) = b_{j_y,\kappa_{j_y}+i}$ for $i = 0, \ldots, n_y - 1$, such that $x \sim y$. Thus, $c'_{j_x} = \sum_{i=0}^{n_x-1} b(x_{n_x-i})a^i$ and $c'_{j_y} = \sum_{i=0}^{n_y-1} b(y_{n_y-i})a^i$. For $a^{\kappa} > 0$, choose $w \in \Sigma^*$ of length $\kappa = |w| = \kappa_{j_x+1}$ so that $c_{j_x+1} < c'_{j_y}$. It follows that $z_w + a^{\kappa}c'_{j_x} < c \leq z_w + a^{\kappa}c_{j_x+1} < z_w + a^{\kappa}c'_{j_y}$ since $z_w + a^{\kappa}c'_{j_x} \geq c$ would contradict that c_{j_x+1} is the infimum according to (10) and (11). Hence, $xw \in L_{<c}$ and $yw \notin L_{<c}$, which gives the contradiction. Similarly for $a^{\kappa} < 0$, choose $w \in \Sigma^*$ so that $c_{j_y-1} = c(b(w_{\kappa}), \ldots, b(w_1))$, which gives $z_w + a^{\kappa}c'_{j_y} < c \leq z_w + a^{\kappa}c_{j_y-1} < z_w + a^{\kappa}c'_{j_x}$, leading to the contradiction $xw \notin L_{<c}$ and $yw \in L_{<c}$.

Lemma 10. Assume the notation as in Lemma 9. Then the two subsets of C, $C_1 = \{c(b_0, \ldots, b_{\kappa-1}) \in C \mid \sum_{k=0}^{\kappa-1} b_k a^k + a^{\kappa} c(b_0, \ldots, b_{\kappa-1}) > c\}$ and $C_2 = \{c(b_0, \ldots, b_{\kappa-1}) \in C \mid (\exists b_{\kappa}, \ldots, b_{h-1} \in B, h \ge \kappa) \sum_{k=0}^{h-1} b_k a^k = c \& (\forall b \in B) c(b_0, \ldots, b_{h-1}, b) \in C_1\}$ are finite.

Proof. We define a directed rooted tree T = (V, E) with vertex set $V = \{b_0 \cdots b_{k-1} \in B^* \mid (\exists b_k, \ldots, b_{\kappa-1} \in B) c(b_0, \ldots, b_{k-1}, b_k \ldots, b_{\kappa-1}) \in C_1\}$, including an empty string as a root, and a set of directed edges (7). Clearly, T covers all the directed paths starting at the root and leading to $b_0 \cdots b_{\kappa-1} \in V$ such that $c(b_0, \ldots, b_{\kappa-1}) \in C_1$. This also guarantees that T includes all $b_0 \cdots b_{\kappa-1} \in V$ such that $c(b_0, \ldots, b_{\kappa-1}) \in C_2$, by the definition of C_2 . For each vertex $b_0 \cdots b_{k-1} \in V$ we define a closed interval $I(b_0, \ldots, b_{k-1}) = [\sum_{i=0}^{k-1} b_i a^i + I_k, \sum_{i=0}^{k-1} b_i a^i + S_k]$ by using (9). Obviously, $I(b_0, \ldots, b_{k-1}, b_k) \subset I(b_0, \ldots, b_{k-1})$ for any edge $(b_0 \cdots b_{k-1}, b_0 \cdots b_{k-1} b_k) \in E$. Hence, $c \in I(b_0, \ldots, b_{k-1})$ for every vertex $b_0 \cdots b_{k-1} \in V$ since $b_0 \cdots b_{\kappa-1} \in V$ such that $c(b_0, \ldots, b_{\kappa-1}) \in C_1$ satisfies $c \in I(b_0, \ldots, b_{\kappa-1}) \subset I(b_0, \ldots, b_{k-1})$ according to (8).

On the contrary, suppose that tree T whose outdegree is bounded by |B|, is infinite. According to König's lemma, there exists an infinite directed path corresponding to an infinite sequence $(b_k^*)_{k=0}^{\infty}$ with $b_k^* \in B$ for all $k \ge 0$, which contains infinitely many vertices $b_0^* \cdots b_{\kappa-1}^* \in V$ such that $c(b_0^*, \ldots, b_{\kappa-1}^*) \in C_1$. On the other hand, interval $I(b_0^*, \ldots, b_{k-1}^*)$ is a nonempty compact set satisfying $c \in I(b_0^*, \ldots, b_{k-1}^*) \supset I(b_0^*, \ldots, b_k^*)$ for every $k \ge 1$, which yields $c \in$ $\bigcap_{k\ge 0} I(b_0^*, \ldots, b_{k-1}^*) \neq \emptyset$ by Cantor's intersection theorem. Hence, $\sum_{k=0}^{\infty} b_k^* a^k =$ c which implies $\sum_{k=0}^{\kappa-1} b_k^* a^k + a^{\kappa} c(b_0^*, \ldots, b_{\kappa-1}^*) = c$ for any $b_0^* \cdots b_{\kappa-1}^* \in V$ such that $c(b_0^*, \ldots, b_{\kappa-1}^*) \in C_1$, according to (10) and (11), which contradicts the definition of C_1 . It follows that T is finite which implies that C_1, C_2 are finite. \Box

Theorem 11. A cut language $L_{<c}$ is regular iff c is a-quasi-periodic within B.

Proof. According to Lemma 9, language $L_{<c}$ is regular iff set C is finite which is equivalent to the condition that $C \setminus (C_1 \cup C_2)$ is finite, by Lemma 10. It follows from (8)–(11) that for any $b_0, \ldots, b_{\kappa-1} \in B$ and $\kappa \ge 0, c(b_0, \ldots, b_{\kappa-1}) \in$ $C \setminus (C_1 \cup C_2)$ iff there exists sequence $(b_k)_{k=\kappa}^{\infty}$ with $b_k \in B$ for all $k \ge 0$, such that $\sum_{k=0}^{\kappa-1} b_k a^k + a^{\kappa} c(b_0, \ldots, b_{\kappa-1}) = c \ (c(b_0, \ldots, b_{\kappa-1}) \notin C_1)$ and $\sum_{k=0}^{\infty} b_k a^k = c \ (c(b_0, \ldots, b_{\kappa-1}) \notin C_2)$, which yields $c(b_0, \ldots, b_{\kappa-1}) = \sum_{k=0}^{\infty} b_{\kappa+k} a^k$. It follows that $C \setminus (C_1 \cup C_2) = \mathcal{D}$ by the definition of \mathcal{D} , which is finite iff c is a-quasiperiodic within B, according to Theorem 8.

4 Non-Context-Free Cut Languages

In this section we show in Theorem 13 that a cut language $L_{<c}$ is not context-free if threshold c is not a-quasi-periodic within B, which is proven by a pumping technique introduced in Lemma 12. According to Theorem 11, we thus achieve a dichotomy that, a cut language is either regular or non-context-free. We present explicit instances of rational numbers with no eventually quasi-periodic representations in Example 14. On the other hand, the cut languages with rational thresholds are shown to be context-sensitive in Theorem 15.

We say that an infinite word $x \in \Sigma^{\omega}$ is *approximable* in a language $L \subseteq \Sigma^*$, if for every finite prefix $u \in \Sigma^*$ of x, there is $y \in \Sigma^*$ such that $uy \in L$.

Lemma 12. Let $x \in \Sigma^{\omega}$ be approximable in a context-free language $L \subseteq \Sigma^*$. Then there is a decomposition x = uvw where $u, v \in \Sigma^*$ and $w \in \Sigma^{\omega}$, such that |v| > 0 is even and for every integer $i \ge 0$, word $uv^i w$ is approximable in L.

Proof. Consider a context-free grammar G for L in Greibach normal form such that for every nonterminal A of G, there is a derivation of a terminal word from A. Since x is approximable in L = L(G), there is a left derivation $S \Rightarrow \ldots \Rightarrow u_n \alpha_n$ for every n, such that $u_n \in \Sigma^*$ is the prefix of x of length n, and α_n is a sequence of nonterminal symbols. These derivations form an infinite directed rooted tree with the root S, whose vertices are the left sentential forms $u\alpha$ such that u is a prefix of x, and the edges outcoming from $u\alpha$ correspond to an application of one production rule to the left-most nonterminal in α . The degree of each vertex is bounded by the number of production rules. According to König's lemma, there is an infinite left derivation $S \Rightarrow \ldots \Rightarrow u_n \alpha_n \Rightarrow \ldots$ such that for every n, u_n is the prefix of x of length n, and α_n is a non-empty sequence of nonterminal symbols.

Let us call an occurrence of a nonterminal in α_n temporary, if it is substituted by a production rule of G in some of the following steps, and stable otherwise. We prove that for every n, there is $m \ge n$ such that α_m contains exactly one temporary nonterminal. We know the left-most nonterminal A_1 in $\alpha_n = A_1 \dots A_i \dots A_k$ is temporary, and let A_i be the right-most temporary nonterminal in α_n . If i = 1, then choose m = n. For $i \ge 2$, there is an index m, such that all the temporary nonterminals A_1, \dots, A_{i-1} in α_n are transformed into terminal words in u_m . If m is the smallest such index, then A_i is the first and the only temporary nonterminal of α_m . It follows that there is an infinite number of indices n such that α_n contains exactly one temporary nonterminal.

Since there are only finitely many nonterminals in G, there exist three indices m_1, m_2, m_3 such that $m_1 < m_2 < m_3$ and $u_{m_1} \alpha_{m_1} = u_1 A \beta'_1, u_{m_2} \alpha_{m_2} = u_1 v_1 A \beta'_2 \beta'_1, u_{m_3} \alpha_{m_3} = u_1 v_1 v_2 A \beta'_3 \beta'_2 \beta'_1$ for some nonterminal A, where $u_1, v_1, v_2 \in \Sigma^*$, $|v_1| > 0$, $|v_2| > 0$, and $\beta'_1, \beta'_2, \beta'_3$ consist of stable nonterminals in all $\alpha_{m_1}, \alpha_{m_2}, \alpha_{m_3}$. If $|v_1|$ is even, then define $n_1 = m_1, n_2 = m_2, u = u_1, v = v_1, \beta_1 = \beta'_1, \text{ and } \beta_2 = \beta'_2$, otherwise, if $|v_2|$ is even, then $n_1 = m_2, n_2 = m_3, u = u_1 v_1, v = v_2, \beta_1 = \beta'_2 \beta'_1, \text{ and } \beta_2 = \beta'_3$. On the other hand, if $|v_1|$ and $|v_2|$ are both odd, then $|v_1 v_2|$ is even and define $n_1 = m_1, n_2 = m_3, u = u_1, v = v_1 v_2, \beta_1 = \beta'_1, \text{ and } \beta_2 = \beta'_3 \beta'_2$. Thus, there are two words $u, v \in \Sigma^*$ such that $u_{n_1}\alpha_{n_1} = uA\beta_1, u_{n_2}\alpha_{n_2} = uvA\beta_2\beta_1, \text{ and } |v| > 0$ is even, where $A \stackrel{*}{\Rightarrow} vA\beta_2$. For every $m \ge n_2$, we have $u_m \alpha_m = uv\gamma_m \beta_2 \beta_1$ where γ_m is such that $A \stackrel{*}{\Rightarrow} \gamma_m$. Hence, an infinite word $w \in \Sigma^{\omega}$ is produced from A, such that x = uvw. Clearly, every finite prefix of w is the terminal part of γ_m for some $m \ge n_2$.

10 J. Šíma and P. Savický

For every $i \geq 0$, we can construct an infinite left derivation whose sentential forms contain arbitrarily long prefixes of the sequence $uv^i w$ by combining the above derivations similarly as in the proof of the pumping lemma. The derivation starts as the original derivation until $u_{n_1}\alpha_{n_1} = uA\beta_1$. Then, the derivation $A \stackrel{*}{\Rightarrow} vA\beta_2$ is used *i* times. Finally, the derivations $A \stackrel{*}{\Rightarrow} \gamma_m$ are used in an infinite sequence for all $m > n_2$. Altogether, we obtain

$$S \stackrel{*}{\Rightarrow} uA\beta_1 \stackrel{*}{\Rightarrow} uv^i A\beta_2^i \beta_1 \Rightarrow \ldots \Rightarrow uv^i \gamma_m \beta_2^i \beta_1 \Rightarrow \ldots \quad \text{for all } m > n_2 \,. \tag{12}$$

We show that for every $i \geq 0$, the infinite sequence $uv^i w$ is approximable in L. For any prefix $u' \in \Sigma^*$ of $uv^i w$, we employ the derivation (12) until u' is derived. Then, we include any finite derivation of a terminal word from each of the remaining nonterminals. We obtain a word in L = L(G) with prefix u'. \Box

Theorem 13. Assume that Σ is a finite alphabet and $b : \Sigma \longrightarrow B$ is a bijection. If c is not a-quasi-periodic within B (see Examples 7 and 14 for instances of such $c \in \mathbb{Q}$), then the cut language $L_{\leq c}$ over Σ is not context-free.

Proof. For any string $x = x_1 \dots x_n \in \Sigma^*$ of length n = |x|, denote $z_x = \sum_{k=0}^{n-1} b(x_{k+1})a^k$, whereas $z_x = \sum_{k=0}^{\infty} b(x_{k+1})a^k$ for an infinite word $x \in \Sigma^{\omega}$. Assume for a contradiction that $L_{<c}$ is a context-free language, and hence the same holds for its reversal $L = L_{<c}^R = \{x \in \Sigma^* | z_x < c\}$. Since c is not eventually a-quasi-periodic within B, Theorem 8 provides an infinite word $x \in \Sigma^{\omega}$ such that the tail sequence of a power series $z_x = \sum_{k=0}^{\infty} b(x_{k+1})a^k = c$ is composed of pair-wise different values.

On the contrary, suppose that x is not approximable in L. This means there is a prefix $u \in \Sigma^*$ of x such that for every $y \in \Sigma^*$ it holds $uy \notin L$, that is, $z_{uy} \ge c = z_x$. On the other hand, we know $z_x = \lim_{n \to \infty} z_{uy_n}$ where for every $n, y_n \in \Sigma^*$ is a string of length $n = |y_n|$ such that uy_n is a prefix of x, which implies $z_x = \inf_{y \in \Sigma^*} z_{uy}$. For a > 0, this ensures $b(x_k) = \min B$ for every k > |u|, whereas for a < 0, it must be $b(x_{2k}) = \max B$ and $b(x_{2k+1}) = \min B$ for every k > |u|/2, which contradicts the fact that the tail values of series z_x are pair-wise different.

It follows that x is approximable in L. Let x = uvw where |v| > 0 is even, be a decomposition guaranteed by Lemma 12. In particular, uw and uvvw are also approximable in L. We know the tails z_w and z_{vw} are different. If $a^{|u|}z_w > a^{|u|}z_{vw}$, then define y = uw which meets $z_y = z_{uw} = z_u + a^{|u|}z_w > z_u + a^{|u|}z_{vw} = z_{uvw} = z_x = c$. On the other hand, if $a^{|u|}z_{vw} > a^{|u|}z_w$, then define y = uvvwwhich satisfies $z_y = z_{uvvw} = z_{uv} + a^{|uv|}z_{vw} > z_{uv} + a^{|uv|}z_w = z_{uvw} = z_x = c$, due to $a^{|v|} > 0$. Thus, we have $y \in \Sigma^{\omega}$ which is approximable in L and $z_y > c$. This means that for every integer $n \ge 0$, there is $y_n \in L$ implying $z_{y_n} < c$, such that y and y_n share the same prefix of length at least n. Hence, $|z_y - z_{y_n}| \le \beta a^n/(1-a)$ where $\beta = \max\{|b_1 - b_2|; b_1 \in B, b_2 \in B \cup \{0\}\}$. It follows that z_{y_n} converges to z_y as n tends to infinity, which contradicts $z_{y_n} < c < z_y$.

Example 14. We generalize Example 7 to provide instances of rational numbers c such that any power series $\sum_{k=0}^{\infty} b'_k a^k = c$ with $b'_k \in B$ for all $k \ge 0$, is not

eventually quasi-periodic. Let $B = \{0, 1\}$ and $a = \alpha_1/\alpha_2$, $c = \gamma_1/\gamma_2 \in \mathbb{Q}$ be irreducible fractions where $\alpha_1, \gamma_1 \in \mathbb{Z}$ and $\alpha_2, \gamma_2 \in \mathbb{N}$, such that $\alpha_1\gamma_2$ and $\alpha_2\gamma_1$ are coprime. Denote by $0 < k_1 < k_2 < \cdots$ all the indices of a (not necessarily greedy) representation of $c = \sum_{k=0}^{\infty} b'_k a^k$ such that $b'_{k_i} = 1$ for $i \geq 1$. Then formula (5) can be rewritten as

$$c_n = \frac{\gamma_1 \alpha_2^{k_n} - \gamma_2 \alpha_1 \sum_{i=1}^n \alpha_1^{k_i - 1} \alpha_2^{k_n - k_i}}{\gamma_2 \alpha_1^{k_n}}$$
(13)

which is still an irreducible fraction.

Theorem 15. Every cut language $L_{\leq c}$ with threshold $c \in \mathbb{Q}$ is context-sensitive.

Proof. A corresponding (deterministic) linear bounded automaton M that accepts a given cut language $L_{<c} = L(M)$, evaluates (and stores) the sum $s_n = \sum_{i=0}^{n-1} b(x_{n-i})a^i$ step by step when reading an input word $x_1 \ldots x_n \in \Sigma^*$ from left to right. In particular, M starts with $s_0 = 0$ which updates to $s_i = as_{i-1} + b(x_i)$ every time after M reads the next input symbol $x_i \in \Sigma$, for $i = 1, \ldots, n$. As the numbers $a, b(x_1), \ldots, b(x_n), c \in \mathbb{Q}$ can be represented within constant space, M needs only linear space in terms of input length n, for computing s_n and testing whether $s_n < c$.

5 Conclusion

In this paper we have introduced the cut languages in rational bases and classified them within the Chomsky hierarchy, among others, by using the quasi-periodic power series. A natural direction for future research is to generalize the results to arbitrary real bases.

We have already strengthened Theorem 8 whose proof is now based on Lemma 2 which does not require rational bases as opposed to stronger Theorem 3 that was used for the proof in a preliminary version [24]. As a consequence of this improvement, the characterization of regular cut languages in Theorem 11 remains valid for arbitrary real bases. For example, for the only real root $a \approx 0.6823278$ of algebraic equation $a^3 + a - 1 = 0$, which is the inverse of a Pisot number, the number c = 1 (similarly for c = 1/a) is *a*quasi-periodic within $B = \{0, 1\}$ and has uncountably many different quasiperiodic representations (including the non-periodic ones) whose tail values form $\mathcal{D} = \{0, a, 1, 1/a, 1 + a, a/(1 - a), (1 + a)/a, 1/(1 - a)\}$ (cf. Theorem 8). It is an open question of whether the inverse of the minimal Pisot number (i.e. the inverse of the plastic constant), $a \approx 0.7548777$ which is the unique real solution of the cubic equation $a^3 + a^2 - 1 = 0$, is the greatest such a.

Nevertheless, the generalization of Theorem 3 to arbitrary real bases is still an open problem which can be formulated elementarily as follows. Let a be a real number such that 0 < |a| < 1, and $(d_n)_{n=0}^{\infty}$ be a sequence of real numbers, containing a constant infinite subsequence (cf. Lemma 2), such that $B = \{d_n - ad_{n+1} | n \ge 0\}$ is finite. Is $D = \{d_n | n \ge 0\}$ a finite set?

References

- 1. Adamczewski, B., Frougny, C., Siegel, A., Steiner, W.: Rational numbers with purely periodic β -expansion. Bulletin of The London Mathematical Society 42(3), 538–552 (2010)
- Allouche, J.P., Clarke, M., Sidorov, N.: Periodic unique beta-expansions: The Sharkovskiĭ ordering. Ergodic Theory and Dynamical Systems 29(4), 1055–1074 (2009)
- Alon, N., Dewdney, A.K., Ott, T.J.: Efficient simulation of finite automata by neural nets. Journal of the ACM 38(2), 495–514 (1991)
- Balcázar, J.L., Gavaldà, R., Siegelmann, H.T.: Computational power of neural networks: A characterization in terms of Kolmogorov complexity. IEEE Transactions on Information Theory 43(4), 1175–1183 (1997)
- Chunarom, D., Laohakosol, V.: Expansions of real numbers in non-integer bases. Journal of the Korean Mathematical Society 47(4), 861–877 (2010)
- Glendinning, P., Sidorov, N.: Unique representations of real numbers in non-integer bases. Mathematical Research Letters 8(4), 535–543 (2001)
- Hare, K.G.: Beta-expansions of Pisot and Salem numbers. In: Proceedings of the Waterloo Workshop in Computer Algebra 2006: Latest Advances in Symbolic Algorithms. pp. 67–84. World Scientific (2007)
- 8. Horne, B.G., Hush, D.R.: Bounds on the complexity of recurrent neural network implementations of finite state machines. Neural Networks 9(2), 243–252 (1996)
- Indyk, P.: Optimal simulation of automata by neural nets. In: Proceedings of the STACS 1995 Twelfth Annual Symposium on Theoretical Aspects of Computer Science. LNCS, vol. 900, pp. 337–348 (1995)
- Komornik, V., Loreti, P.: Subexpansions, superexpansions and uniqueness properties in non-integer bases. Periodica Mathematica Hungarica 44(2), 197–218 (2002)
- 11. Minsky, M.: Computations: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)
- 12. Parry, W.: On the β -expansions of real numbers. Acta Mathematica Hungarica 11(3), 401–416 (1960)
- Rényi, A.: Representations for real numbers and their ergodic properties. Acta Mathematica Academiae Scientiarum Hungaricae 8(3-4), 477–493 (1957)
- Schmidt, K.: On periodic expansions of Pisot numbers and Salem numbers. Bulletin of the London Mathematical Society 12(4), 269–278 (1980)
- Sidorov, N.: Expansions in non-integer bases: Lower, middle and top orders. Journal of Number Theory 129(4), 741–754 (2009)
- Siegelmann, H.T.: Recurrent neural networks and finite automata. Journal of Computational Intelligence 12(4), 567–574 (1996)
- Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing Limit. Birkhäuser, Boston (1999)
- Siegelmann, H.T., Sontag, E.D.: Analog computation via neural networks. Theoretical Computer Science 131(2), 331–360 (1994)
- 19. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. Journal of Computer System Science 50(1), 132–150 (1995)
- Šíma, J.: Energy complexity of recurrent neural networks. Neural Computation 26(5), 953–973 (2014)
- Šíma, J.: The power of extra analog neuron. In: Proceedings of the TPNC 2014 Third International Conference on the Theory and Practice of Natural Computing. LNCS, vol. 8890, pp. 243–254 (2014)

- 22. Šíma, J.: Neural networks between integer and rational weights. Tech. Rep. V-1237, Institute of Computer Science, The Czech Academy of Sciences, Prague (2016)
- Šíma, J., Orponen, P.: General-purpose computation with neural networks: A survey of complexity theoretic results. Neural Computation 15(12), 2727–2778 (2003)
- 24. Šíma, J., Savický, P.: Cut languages in rational bases. Tech. Rep. V-1236, Institute of Computer Science, The Czech Academy of Sciences, Prague (2016)
- Šíma, J., Wiedermann, J.: Theory of neuromata. Journal of the ACM 45(1), 155– 178 (1998)