
A Sufficient Condition for Sets Hitting the Class
of Read-Once Branching Programs of Width 3

(Extended Abstract)?

Jǐŕı Š́ıma and Stanislav Žák

Institute of Computer Science, Academy of Sciences of the Czech Republic,
P.O. Box 5, 18207 Prague 8, Czech Republic, sima|stan@cs.cas.cz

Abstract. We characterize the hitting sets for read-once branching pro-
grams of width 3 by a so-called richness condition which is independent
of a rather technical definition of branching programs. The richness prop-
erty proves to be (in certain sense) necessary and sufficient condition for
such hitting sets. In particular, we show that any rich set extended with
all strings within Hamming distance of 3 is a hitting set for width-3
read-once branching programs. Applying this result to an example of an
efficiently constructible rich set from our previous work we achieve an
explicit polynomial time construction of an ε-hitting set for read-once
branching programs of width 3 with acceptance probability ε > 11/12.

1 Introduction

An ε-hitting set for a class of Boolean functions of n variables is a set H ⊆ {0, 1}n

such that for every function f in the class, if a random input is accepted by f
with probability at least ε, then there is also an input in H that is accepted
by f . Looking for polynomial time constructions of hitting sets for functions of
polynomial complexity in different models such as circuits, formulas, branching
programs which would have consequences for the relationship between respective
deterministic and probabilistic computations belongs to the hardest problems in
computer science, and hence, restricted models are investigated. An efficiently
constructible sequence of hitting sets for increasing n is a straightforward gen-
eralization of the hitting set generator introduced in [9], which is a weaker (one-
sided error) version of pseudorandom generator [13].

We consider read-once branching (1-branching) programs of polynomial size,
which is a restricted model of space-bounded computations [17] for which pseu-
dorandom generators with seed length O(log2 n) have been known for a long time
through Nisan’s result [12]. Recently, considerable attention has been paid to im-
proving this to O(log n) in the constant-width case, which is a fundamental prob-
lem with many applications in circuit lower bounds and derandomization [11].
The problem has been resolved for width 2 but already for width 3 the issue was
reported to be widely open as the known techniques provably fail [3, 5, 6, 8, 11].
? This research was partially supported by projects GA ČR P202/10/1333, MŠMT ČR

1M0545, and AV0Z10300504.

In the case of width 3, we do not know of any significant improvement over
Nisan’s result except for severely restricted so-called regular or permutation
oblivious 1-branching programs. Recall that an oblivious branching program
queries the input variables in a fixed order, which represents a provably weaker
model [2]. For constant-width regular oblivious 1-branching programs which
have the in-degree of all nodes equal to 2 (or 0), pseudorandom generators have
recently been constructed with seed length O(log n(log log n + log(1/ε))) [4, 5]
which was further improved to O(log n log(1/ε)) [6], where ε is the error of gener-
ators. Moreover, for constant-width permutation oblivious 1-branching programs
which are regular programs with the two edges incoming to any node labeled 0
and 1, the same seed length was previously achieved [10].

In the constant-width regular 1-branching programs the fraction of inputs
that are queried at any node is always lower bounded by a positive constant,
which excludes the fundamental capability of general (non-regular) branching
programs to recognize the inputs that contain a given substring on a non-constant
number of selected positions. In our approach, we manage the analysis also for
this essential case by identifying two types of convergence of the number of inputs
along a computational path towards zero which implement read-once DNFs and
CNFs, respectively. Thus, we achieve the construction of a hitting set generator
for general width-3 1-branching programs which need not be regular nor oblivi-
ous. In our previous work [14], we constructed the hitting set for so-called simple
width-3 1-branching programs which exclude one specific pattern of level-to-level
transition in their normalized form and cover the width-3 regular case.

In this extended abstract (for a full presentation see [15]), we formulate a so-
called richness condition (Section 2) which is independent of a rather technical
definition of branching programs. In fact, a rich set is a hitting set for read-
once conjunctions of a DNF and a CNF. Thus, a related line of study concerns
pseudorandom generators for read-once formulas, such as read-once DNFs [7].
We show that the richness property characterizes the hitting sets for width-3
1-branching programs. In particular, a weaker version of the richness condition
proves to be necessary for such hitting sets, while the sufficiency of richness
represents the main result of this paper. More precisely, we show that any rich
set extended with all strings within Hamming distance of 3 is a hitting set for
width-3 1-branching programs. The proof which is based on a detailed analysis
of structural properties of the width-3 1-branching programs that reject all the
inputs from the candidate hitting set is sketched in Sections 3–5.

The presented characterization of hitting sets by the richness property is of
independent interest since it opens the possibility of generalizing this condition to
more complicated read-once formulas in the constant-width case. In our (chrono-
logically later) related paper [16], we proved that any almost O(log n)-wise in-
dependent set, which can be constructed in polynomial time [1], is an example
of the rich set (i.e. the hitting set for read-once conjunctions of DNF and CNF).
Combining this example with the sufficiency of the richness condition we achieve
an explicit polynomial time construction of an ε-hitting set for 1-branching pro-
grams of width 3 with acceptance probability ε > 11/12 (Section 6).

We start with a brief review of basic formal definitions regarding branching
programs [17]. A branching program P on the set of input Boolean variables
Xn = {x1, . . . , xn} is a directed acyclic multi-graph G = (V, E) that has one
source s ∈ V of zero in-degree and, except for sinks of zero out-degree, all the
inner (non-sink) nodes have out-degree 2. In addition, the inner nodes get labels
from Xn and the sinks get labels from {0, 1}. For each inner node, one of the
outgoing edges gets the label 0 and the other one gets the label 1. The branch-
ing program P computes Boolean function P : {0, 1}n −→ {0, 1} as follows.
The computational path of P for an input a = (a1, . . . , an) ∈ {0, 1}n starts at
source s. At any inner node labeled by xi ∈ Xn, input variable xi is tested and
this path continues with the outgoing edge labeled by ai to the next node, which
is repeated until the path reaches the sink whose label gives the output value
P (a). Denote by P−1(a) = {a ∈ {0, 1}n |P (a) = a} the set of inputs for which
P outputs a ∈ {0, 1}. For inputs of arbitrary lengths, infinite families {Pn} of
branching programs, one Pn for each input length n ≥ 1, are used. A branching
program P is called read-once (or shortly 1-branching program) if every input
variable from Xn is tested at most once along each computational path. Here we
consider leveled branching programs in which each node belongs to a level, and
edges lead from level k ≥ 0 to the next level k+1 only. We assume that the source
of P creates level 0, whereas the last level is composed of all sinks. The number
of levels decreased by 1 equals the depth of P which is the length of its longest
path, and the maximum number of nodes on one level is called the width of P .

In the sequel, we confine ourselves to the 1-branching programs of width 3, for
which we define 3×3 transition matrix Tk on level k ≥ 1 such that t

(k)
ij ∈ {0, 1

2 , 1}
is the half of the number of edges leading from node v

(k−1)
j (1 ≤ j ≤ 3) on

level k − 1 to node v
(k)
i (1 ≤ i ≤ 3) on level k. For example, t

(k)
ij = 1 implies

there is a double edge from v
(k−1)
j to v

(k)
i . Denote by a column vector p(k) =

(p(k)
1 , p

(k)
2 , p

(k)
3)T the distribution of inputs among 3 nodes on level k of P , that

is, p
(k)
i equals the ratio of the number of inputs from M(v(k)

i) ⊆ {0, 1}n that are
tested at v

(k)
i to all 2n possible inputs. It follows M(v(k)

1)∪M(v(k)
2)∪M(v(k)

3) =
{0, 1}n and p

(k)
1 + p

(k)
2 + p

(k)
3 = 1 for every level k ≥ 0. Given the distribution

p(k−1) on level k − 1, the distribution on the subsequent level k can be com-
puted using transition matrix Tk as p(k) = Tk ·p(k−1). We say that a 1-branching
program P of width 3 is normalized if P has the minimum depth among the pro-
grams computing the same function and P satisfies 1 > p

(k)
1 ≥ p

(k)
2 ≥ p

(k)
3 > 0

for every k ≥ 2. Any width-3 1-branching program can be normalized by permut-
ing its nodes at each level [14]. Obviously, any normalized P satisfies p

(k)
1 > 1

3 ,
p
(k)
2 < 1

2 , and p
(k)
3 < 1

3 for every level 2 ≤ k ≤ d where d ≤ n is the depth of P .

2 The Richness Condition

Let P be the class of read-once branching programs of width 3 and ε > 0 be a real
constant. A set of input strings H ⊆ {0, 1}∗ is called an ε-hitting set for class P

if for sufficiently large n, for every branching program P ∈ P with n inputs
∣∣P−1(1)

∣∣ /2n ≥ ε implies (∃a ∈ H ∩ {0, 1}n)P (a) = 1 . (1)

We say that a set A ⊆ {0, 1}∗ is weakly ε-rich if for sufficiently large n, for any
index set I ⊆ {1, . . . , n}, and for any partition {Q1, . . . , Qq, R1, . . . , Rr} of I, if

(
1−∏q

j=1

(
1− 1/2|Qj |

))
×∏r

j=1

(
1− 1/2|Rj |

)
≥ ε , (2)

then for any c ∈ {0, 1}n there exists a ∈ A ∩ {0, 1}n that meets

(∃ j ∈ {1, . . . , q})(∀ i ∈ Qj) ai = ci & (∀ j ∈ {1, . . . , r}) (∃ i ∈ Rj) ai 6= ci . (3)

Note that the product on the left-hand side of inequality (2) expresses the prob-
ability that a random string a ∈ {0, 1}n (not necessarily in A) satisfies condi-
tion (3). Moreover, formula (3) can be interpreted as a read-once conjunction of
a DNF and a CNF (each variable occurs at most once)

q∨

j=1

∧

i∈Qj

`(xi) ∧
r∧

j=1

∨

i∈Rj

¬`(xi) , where `(xi) =
{

xi for ci = 1
¬xi for ci = 0 (4)

which accepts a random input with probability at least ε according to (2). Hence,
a weakly rich set A is a hitting set for read-once conjunctions of DNF and CNF.
The following theorem shows that the weak richness is necessary for any set to
be a hitting set for width-3 1-branching programs.
Theorem 1 ([15]). Every ε-hitting set for the class of read-once branching pro-
grams of width 3 is weakly ε-rich.

Furthermore, a set A ⊆ {0, 1}∗ is ε-rich if for sufficiently large n, for any
index set I ⊆ {1, . . . , n}, for any partition {R1, . . . , Rr} of I (r ≥ 0) satisfying

∏r
j=1

(
1− 1/2|Rj |

)
≥ ε , (5)

and for any Q ⊆ {1, . . . , n} \ I such that |Q| ≤ log n, for any c ∈ {0, 1}n there
exists a ∈ A ∩ {0, 1}n that meets

(∀ i ∈ Q) ai = ci and (∀ j ∈ {1, . . . , r}) (∃ i ∈ Rj) ai 6= ci . (6)

One can observe that any ε-rich set is weakly ε-rich since condition (2) implies
that there is j ∈ {1, . . . , q} such that |Qj | ≤ log n. We have proved [16] that any
almost O(log n)-wise independent set is an example of the rich set (see Section 6).
The following theorem shows that the richness condition is, in certain sense,
sufficient for a set to be a hitting set for P. In particular, for an input a ∈ {0, 1}n

and an integer constant c ≥ 0, denote by Ωc(a) = {a′ ∈ {0, 1}n |h(a,a′) ≤ c} the
set of so-called h-neighbors of a, where h(a,a′) is the Hamming distance between
a and a′. We also define Ωc(A) =

⋃
a∈A Ωc(a) for a given set A ⊆ {0, 1}∗.

Theorem 2. Let ε > 11
12 . If A is ε′11-rich for some ε′ < ε then H = Ω3(A) is

an ε-hitting set for the class of read-once branching programs of width 3.

Proof. (sketch) Suppose a normalized read-once branching program P of width
3 with sufficiently many input variables n meets |P−1(1)|/2n ≥ ε > 11

12 . We will
prove that there exists a ∈ H such that P (a) = 1. On the contrary, we assume

that P (a) = 0 for every a ∈ H. The main idea of the proof lies in using this
assumption first for constraining the structure of branching program P so that
the richness of A can eventually be employed to disprove this assumption.

The Plan of the Proof. We start the underlying analysis of the structure of P
from its last level d containing the sinks and we go backwards block after block
to lower levels. In particular, we inspect the structure of a block whose last level
m satisfies the following four so-called m-conditions which can, without loss of
generality [15], be met for m = d at the beginning:

1. t
(m)
11 = t

(m)
21 = 1

2 , 2. t
(m)
32 > 0, 3. p

(m)
3 < 1

12 ,

4. there is a(m) ∈ A such that if we put a(m) at node v
(m)
1 or v

(m)
2 , then its

onward computational path arrives to the sink labeled with 1.
The block starts at level m′ which is defined in Section 4. A typical block from
m′ through m is schematically depicted in Figure 1. Using the knowledge of
this block structure, we define the partition class R associated with this block
which includes all the indices of the variables that are queried on the compu-
tational path which is indicated in boldface on the top in Figure 1 (Section 3).
The edge labels on this path define relevant bits of c ∈ {0, 1}n so that any
input passing through this path that differs from c on the bit locations from
R reaches a double-edge path in the first column, which implements one CNF
clause from (4). Similarly, sets Q1, . . . , Qq (candidates for Q) associated with
this block are defined so that any input that agrees with c on the bit locations
from Qj reaches the first column, which implements DNF monomials from (4).

The partition classes associated with the blocks that have been analyzed so
far are employed in the richness condition (6) first for Q = ∅ provided that
the partition satisfies (5). The richness is used to prove that the m′-conditions
are also met for the first level m′ of the block (Section 4). In particular, the
richness condition (6) for the partition class R associated with the underlying
block ensures that an input a(m) ∈ A that is put at node v

(m′)
1 or v

(m′)
2 arrives

to the first column (see Figure 1) which implies m′-condition 4 by induction (the
recursive step in Section 5). Then the block analysis including the definition of
associated partition class and sets Qj is applied recursively for m replaced with
m′ etc. If, on the other hand, the underlying partition does not satisfy (5), then
one can prove that there is a set Q among Qj associated with the blocks that
have been analyzed so far such that |Q| ≤ log n, and the recursive analysis ends
(the last paragraph of Section 5). In this case, the richness condition (6) for this
Q implies that there is a ∈ H whose computational path traverses v

(m)
1 or v

(m)
2

of the block defining Q (cf. Figure 1) and m-condition 4 then guarantees this
path eventually arrives to the sink labeled with 1 providing P (a) = 1 for a ∈ H.

The inspection of the block structure has the form of a rather tedious case
analysis including various parameters denoting specific levels in the block whose
definitions are indicated in boldface. Figure 1 summarizes these definitions hav-
ing the form of “a ≤ b ↑ ≤ c : C(b)” which means b is the greatest level such
that a ≤ b ≤ c and condition C(b) is satisfied (similarly, ↓ denotes the least such
level). Due to the lack of space, the proofs of lemmas are omitted and we will

Fig. 1. The structure of a typical block

present the analysis only for a ‘general’ case excluding plenty of degenerated
cases which occur when some of the level parameters coincide. In order to focus
on this general case illustrating the main idea of the proof we make simplify-
ing assumptions concerning the relations among these levels which will always
be introduced in the bold square brackets below. The full presentation for all
combinations of parameters is available in a preliminary technical report [15].
A Technical Lemma. The following lemma represents a technical tool which
will be used for the analysis of the block from level µ through m where 2 ≤ µ <

m denotes the least level of P such that t
(`)
11 = 1 for every ` = µ + 1, . . . , m− 1.

For this purpose, define a switching path starting from v ∈ {v(k)
2 , v

(k)
3 } at level

µ ≤ k < m to be a computational path of length at most 3 edges leading from
v to v

(`)
1 for some k < ` ≤ min(k + 3,m) or to v

(m)
2 for m ≤ k + 3.

Lemma 1.
(i) 3 < µ < m− 1.
(ii) There are no two simultaneous switching paths starting from v

(k)
2 and from

v
(k)
3 , respectively, at any level µ ≤ k < m.

(iii) If t
(k+1)
12 > 0 for some µ ≤ k < m, then t

(`)
11 = t

(`)
33 = 1, t

(`)
12 = t

(`)
22 = 1

2 for
every ` = µ + 1, . . . , k, and t

(k+1)
12 = 1

2 .
(iv) If t

(k+1)
13 > 0 for some µ < k < m, then one of the four cases occurs:

1. t
(k)
11 = t

(k)
23 = 1 and t

(k)
12 = t

(k)
32 = 1

2 , 2. t
(k)
11 = t

(k)
23 = 1 and t

(k)
22 = t

(k)
32 = 1

2 ,
3. t

(k)
11 = t

(k)
22 = 1 and t

(k)
13 = t

(k)
33 = 1

2 , 4. t
(k)
11 = t

(k)
22 = 1 and t

(k)
23 = t

(k)
33 = 1

2 .
In addition, if t

(k)
23 = 1 (case 1 or 2), then t

(`)
11 = t

(`)
33 = 1 and t

(`)
12 = t

(`)
22 = 1

2 for
every ` = µ + 1, . . . , k − 1.

3 Definition of Partition Class

The Block Structure from µ to ν (Definition of R). In the following
corollary, we summarize the block structure from level µ through level ν by
using Lemma 1, where µ ≤ ν ≤ m is the greatest level such that t

(`)
12 +t

(`)
13 > 0 for

every ` = µ+1, . . . , ν, and level γ is the greatest level such that µ ≤ γ ≤ ν and
t
(γ)
12 > 0 (for γ > µ). For simplicity we will further assume [µ < γ < ν < m].

Corollary 1
1. t

(`)
11 = t

(`)
33 = 1 and t

(`)
12 = t

(`)
22 = 1

2 for ` = µ + 1, . . . , γ − 1 (Lemma 1.iii),
2. t

(γ)
11 = t

(γ)
23 = 1 and t

(γ)
12 = t

(γ)
32 = 1

2 (case 1 of Lemma 1.iv),
3. t

(`)
11 = t

(`)
22 = 1 and t

(`)
13 = t

(`)
33 = 1

2 for ` = γ + 1, . . . , ν − 1 (case 3 of
Lemma 1.iv),
4. t

(ν)
13 = 1

2 (similarly to Lemma 1.iii),
5. t

(`)
12 = 0 for ` = ν, . . . , m (Lemma 1.iii).

Now we can define the partition class R associated with the underlying block
to be a set of indices of the variables that are tested on the single-edge compu-
tational path v

(µ)
2 , v

(µ+1)
2 , . . . , v

(γ−1)
2 , v

(γ)
3 , v

(γ+1)
3 , . . . , v

(ν−1)
3 , which is illustrated

in Figure 1. For the future use of condition (6) we also define relevant bits of
string c ∈ {0, 1}n. Thus, let cR

i be the corresponding labels of the edges creating
this computational path (indicated by a bold line in Figure 1) including the edge
outgoing from the last node v

(ν−1)
3 that leads to v

(ν)
2 or to v

(ν)
3 .

The Block Structure from ω to m (Definition of Q1, . . . , Qq). We define
level ω to be the greatest level such that µ < ν − 1 ≤ ω ≤ m and the double-
edge path from Corollary 1 leading v

(µ)
3 to v

(ν−1)
2 (see Figure 1) further continues

up to level ω containing only nodes v` ∈ {v(`)
2 , v

(`)
3 } for every ` = µ, . . . , ω. For

simplicity we will further assume [ω < m]. We know t
(m)
12 = 0 from Corollary 1.5.

We assume t
(m)
13 > 0 without loss of generality [15], which implies t

(m)
32 = 1

according to Lemma 1.iii. Then Lemma 1.iv can be employed for k = m − 1
where only case 3 and 4 may occur due to ω < m. In case 3, t

(m−1)
13 > 0 and

Lemma 1.iv can again be applied recursively to k = m− 2 etc.
In general, starting with level σ1 = m that meets t

(σj)
13 > 0 for j = 1,

we proceed to lower levels and inspect recursively the structure of subblocks
indexed as j from level λj through σj where λj is the least level such that
µ < ω ≤ λj < σj − 1 and the transitions from case 3 or 4 of Lemma 1.iv, i.e.
t
(`)
11 = t

(`)
22 = 1 and t

(`)
33 = 1

2 , occur for all levels ` = λj +1, . . . , σj −1, as depicted
in Figure 1. We will observe that case 4 from Lemma 1.iv occurs at level λj + 1,
that is t

(λj+1)
23 = 1

2 . On the contrary, suppose that t
(λj+1)
13 = 1

2 (case 3). For
λj > ω, this means case 1 or 2 occurs at level λj < µ by the definition of λj ,
which would be in contradiction to ω ≤ λj according to Lemma 1.iv. For λj = ω,
on the other hand, t

(ω+1)
13 = 1

2 contradicts the definition of ω by Lemma 1.iv.
This completes the argument for t

(λj+1)
23 = 1

2 .
Furthermore, let level κj be the least level such that λj + 1 < κj ≤ σj and

t
(κj)
13 > 0, which exists since at least t

(σj)
13 > 0. Now we can define the correspond-

ing Qj (a candidate for Q in the richness condition (6)) to be a set of indices of the
variables that are tested on the computational path v

(λj)
3 , v

(λj+1)
3 , . . . , v

(κj−1)
3 ,

and let c
Qj

i be the corresponding labels of the edges creating this path including
the edge from v

(κj−1)
3 to v

(κj)
1 (indicated by a bold line in Figure 1). This extends

the definition of c ∈ {0, 1}n associated with R and Qk for 1 ≤ k < j, which are
usually pairwise disjoint due to P is read-once. Nevertheless, the definition of c
may not be unique for indices from their nonempty intersections in some very
special cases (including those corresponding to neighbor blocks) but the rich-
ness condition will only be used for provably disjoint sets (Section 5). Finally,
define next level σj+1 to be the greatest level such that ω + 1 < σj+1 ≤ λj

and t
(σj+1)
13 > 0, if such σj+1 exists, and continue in the recursive definition of

λj+1, κj+1, Qj+1 with j replaced by j + 1 etc. If such σj+1 does not exist, then
set q = j and the definition of sets Q1, . . . , Qq associated with the underlying
block is complete.

The following lemma gives an upper bound on p
(m)
1 +p

(m)
2 in terms of p

(ω+1)
1 .

Lemma 2.

p
(m)
1 + p

(m)
2 ≤ 1−

(
1− p

(ω+1)
1

) q∏

j=1

(
1− 1

2|Qj |

)
. (7)

4 The Block Structure below µ Provided That p
(µ)
3 < 1

12

The Block Structure from m′ to µ (m′-Conditions 1–3). Throughout this
Section 4, we will assume

p
(µ)
3 <

1
12

. (8)

Based on this assumption, we will further analyze the block structure below level
µ in the following lemmas (see Figure 1) in order to satisfy the m′-conditions 1–4
also for the first block level m′ so that the underlying analysis can be applied
recursively when inequality (8) holds (Section 5). In particular, define the first
level m′ of the underlying block to be the greatest level such that 2 ≤ m′ ≤ µ

and t
(m′)
32 > 0 (m′-condition 2), which exists since at least t

(2)
32 > 0.

Lemma 3. t
(k)
31 = t

(k)
32 = 0 and t

(k)
33 = 1 for k = m′ + 1, . . . , µ.

Lemma 3 together with assumption (8) verifies m′-condition 3 for the first block
level m′, that is p

(m′)
3 = p

(µ)
3 < 1/12, which gives m′ ≥ 4 since p

(3)
3 ≥ 1/23.

Lemma 4. t
(m′)
11 = t

(m′)
21 = 1

2 (m′-condition 1).

In the following lemma, we will extend an upper bound on p
(m)
1 + p

(m)
2

achieved in Lemma 2 (in terms of p
(ω+1)
1) in order to derive a recursive for-

mula for an upper bound on p
(m)
1 + p

(m)
2 in terms of p

(m′)
1 + p

(m′)
2 which will be

used in Section 5 for verifying condition (5).

Lemma 5.

p
(m)
1 + p

(m)
2 ≤ 1−

(
1−

(
p
(m′)
1 + p

(m′)
2

)(
1− 1

2|R|+3

)) q∏

j=1

(
1− 1

2|Qj |

)
. (9)

5 The Recursion

In the previous Sections 2–4, we have analyzed the structure of the block of P
from level m′ through m (see Figure 1). We will now employ this block analysis
recursively so that m = mr is replaced by m′ = mr+1. For this purpose, we
introduce additional index b = 1, . . . , r to the underlying objects in order to dif-
ferentiate among respective blocks. For example, the sets R,Q1, . . . , Qq, defined
in Section 3, corresponding to the bth block are denoted as Rb, Qb1, . . . , Qbqb

,
respectively. Since we, for simplicity, assume νb > mb−1 for b = 1, . . . , r, sets
R1, . . . , Rr create a partition due to P is read-once.

Inductive Assumptions. We will proceed by induction on r, starting with
r = 0 and m0 = d. In the induction step for r + 1, we assume that the four
mr-conditions are met for the last block level mr, and let assumption (8) be
satisfied for the previous blocks, that is,

p
(µb)
3 < 1/12 (10)

for every b = 1, . . . , r. In addition, assume

1−Πr < δ = min(ε− ε′, (12ε− 11)/13) < 1/13 (11)

where ε > 11/12 and ε′ < ε are the parameters of Theorem 2, and denote Πk =∏k
b=1 πb with πb =

∏qb

j=1(1− 1/2|Qbj |), %k =
∏k

b=1 αb with αb = (1− 1/2|Rb|+3),
for k = 1, . . . , r, and %0 = Π0 = 1. Hence, we can employ recursive inequality (9)
from Section 4, which is rewritten as pb−1 ≤ 1− (1− pbαb)πb = 1− πb + pbαbπb

for b = 1, . . . , r where notation pb = p
(mb)
1 + p

(mb)
2 is introduced. Starting with

p0 = p
(d)
1 + p

(d)
2 ≥ ε, this recurrence can be solved as

ε ≤ ∑r
k=1(1− πk)

∏k−1
b=1 αbπb + pr

∏r
b=1αbπb

<
∑r

k=1(1− πk)Πk−1 + pr%rΠr = 1−Πr + pr%rΠr . (12)

In addition, it follows from (12) and (11) that

%r > pr%rΠr > ε− δ ≥ ε′ . (13)

Recursive Step. Throughout this paragraph, we will consider the case when
1−Πr+1 < δ (cf. (11)), while the complementary case concludes the induction
and will be resolved in the next paragraph. We know pr ≤ 1 − (p(ωr+1+1)

2 +
p
(ωr+1+1)
3)πr+1 according to Lemma 2, and p

(ωr+1+1)
2 + p

(ωr+1+1)
3 ≥ p

(µr+1)
3 by

the definition of ωr+1, which altogether gives ε < 1−Πr +(1−p
(µr+1)
3 πr+1)%rΠr

according to (12). Hence, ε−δ < (1−p
(µr+1)
3 πr+1)%rΠr < 1−p

(µr+1)
3 πr+1 follows

from (11), which implies p
(µr+1)
3 < (1−ε+δ)/(1−δ) < 1/12 since πr+1 ≥ Πr+1 >

1 − δ. Thus, assumption (8) of Section 4 is also met for the (r + 1)st block,
which justifies recurrence inequality (9) for this block providing the solution
ε < 1−Πr+1 + pr+1%r+1Πr+1 implying %r+1 > ε′ by analogy to (12) and (13).
Thus, inductive assumptions (10) and (11) are valid for r replaced with r + 1.

In Section 4, mr+1-conditions 1–3 have been verified, and thus, it suffices
to validate mr+1-condition 4. We exploit the fact that A is ε′11-rich after we
show condition (5) for partition {R1, . . . , Rr+1} of I =

⋃r+1
b=1 Rb. In particular,∏r+1

b=1(1 − 1/2|Rb|) > ε′11 follows from %r+1 > ε′ since (1 − 1/2|Rb|+3)11 < 1 −
1/2|Rb| for |Rb| ≥ 1. This provides required a(mr+1) ∈ A such that for every
b = 1, . . . , r + 1 there exists i ∈ Rb that meets a

(mr+1)
i 6= cRb

i according to (6)
where Q = ∅. Hence, the computational path for this a(mr+1) ends up in sink v

(d)
1

or v
(d)
2 labeled with 1 when we put a(mr+1) at node v

(mr+1)
1 or v

(mr+1)
2 (mr+1-

condition 4) by the definition of Rb, cRb
i , and the structure of P (see Figure 1).

Thus, we can continue recursively for r replaced with r + 1 etc.

The End of Recursion. In this paragraph, we will consider the complemen-
tary case of 1−Πr+1 ≥ δ, which concludes the recursion. Suppose |Qbj | > log n
for every b = 1, . . . , r + 1 and j = 1, . . . , qb, then we would have Πr+1 ≥
(1−1/2log n)n/ log n > 1−(1/n)·(n/ log n) = 1−1/ log n, which gives a contradic-
tion for sufficiently large n. Hence, there must be 1 ≤ b∗ ≤ r+1 and 1 ≤ j∗ ≤ qb∗

such that |Qb∗j∗ | ≤ log n, and we denote Q = Qb∗j∗ . Clearly, Q ∩ Rb = ∅ for
b = 1, . . . , b∗ − 2 due to P is read-once while it may happen that Q∩Rb∗−1 6= ∅
for j∗ = 1, κb∗1 = σb∗1 = mb∗−1, and t

(mb∗−1)
23 = 0. Thus, let r∗ be the maximum

of b∗ − 2 and b∗ − 1 such that Q ∩Rr∗ = ∅. We will again employ the fact that
A is ε′11-rich. First condition (5) for partition {R1, . . . , Rr∗} of I =

⋃r∗

b=1 Rb

is verified as
∏r∗

b=1(1 − 1/2|Rb|) > %11
r > ε′11 according to (13). This provides

a∗ ∈ A such that a∗i = cQ
i for every i ∈ Q and at the same time, for every

b = 1, . . . , r∗ there exists i ∈ Rb that meets a∗i 6= cRb
i according to (6).

Lemma 6. Denote λ = λb∗j∗ . There are two ‘switching’ paths starting from v
(k)
2

and from v
(k)
3 , respectively, at some level λ− 2 ≤ k < λ, which may lead to v

(λ)
3

in addition to v
(λ−1)
1 or v

(λ)
1 .

By a similar argument to Lemma 1.ii, Lemma 6 gives an h-neighbor a′ ∈
Ω2(a∗) ⊆ H of a∗ ∈ A such that a′ ∈ M(v(λ)

1) ∪ M(v(λ)
3). Thus, either a′ ∈

M(v(λ)
1) ⊆ M(v(mb∗−1)

1) ∪ M(v(mb∗−1)
2) or a′ ∈ M(v(λ)

3) which implies a′ ∈
M(v(κb∗j∗)

1) ⊆ M(v(mb∗−1)
1) ∪ M(v(mb∗−1)

2) since a′i = a∗i = cQ
i for every i ∈ Q

according to (6) (see Figure 1). Note that M(v(κb∗j∗)
1) = M(v(mb∗−1)

1) for r∗ =
b∗ − 2. Hence, P (a′) = 1 because for every b = 1, . . . , r∗ there exists i ∈ Rb that
meets a′i = a∗i 6= cRb

i due to (6). This completes the proof of Theorem 2. ut

6 Conclusion

In order to achieve an explicit polynomial time construction of a hitting set for
read-once branching programs of width 3 we combine Theorem 2 with our result
that almost O(log n)-wise independent sets are rich:

Theorem 3 ([16]). Let ε > 0, C be the least odd integer greater than (2
ε ln 1

ε)2,
and 0 < β < 1

nC+3 . Then any (d(C +2) log ne, β)-wise independent set is ε-rich.

In particular, we can use the result due to Alon et al. [1] who, for β > 0 and k =
O(log n), constructed (k, β)-wise independent set A ⊆ {0, 1}∗ in time polynomial
in n

β such that for sufficiently large n and any index set S ⊆ {1, . . . , n} of
size |S| ≤ k, the probability that a given c ∈ {0, 1}n coincides with a string
a ∈ An = A ∩ {0, 1}n on the bit locations from S is almost uniform, that is,
||{a ∈ An | (∀i ∈ S) ai = ci}|/|An| − 1/2|S|| ≤ β. It follows that H = Ω3(A),
which can be constructed in polynomial time, is an ε-hitting set for read-once
branching programs of width 3 and ε > 11/12.

In the present paper, we have made an important step in the effort of con-
structing the hitting set generators for the model of read-once branching pro-
grams of bounded width. Although this model seems to be relatively weak, the

presented proof is far from being trivial. From the point of view of derandom-
ization of unrestricted models, our result still appears to be unsatisfactory but
it is the best we know so far. The issue of whether our technique based on the
richness condition can be extended to the case of width 4 or to bounded width
represents an open problem for further research. Another challenge for improving
our result is to optimize parameter ε, e.g. to achieve the result for ε ≤ 1

n , which
would be important for practical derandomizations. In fact, the presented proof
can be extended for ε > 5/6 by increasing the number of cases in the analysis.

References

1. Alon, N., Goldreich, O., H̊astad, J., and Peralta, R.: Simple constructions of almost
k-wise independent random variables. Random Struct Algor 3 (3) (1992) 289–304

2. Beame, P., Machmouchi, W.: Making branching programs oblivious requires su-
perpolynomial overhead. ECCC TR10-104 (2010)

3. Bogdanov, A., Dvir, Z., Verbin, E., Yehudayoff, A.: Pseudorandomness for width 2
branching programs. ECCC TR09-70 (2009)

4. Braverman, M., Rao, A., Raz, R., Yehudayoff, A.: Pseudorandom generators for
regular branching programs. Proc. of FOCS 2010 (2010) 41–50

5. Brody, J., Verbin, E.: The coin problem, and pseudorandomness for branching
programs. Proc. of FOCS 2010 (2010) 30–39

6. De, A.: Improved pseudorandomness for regular branching programs. Proc. of CCC
2011 (2011) 221–231

7. De, A., Etesami, O., Trevisan, L., Tulsiani, M.: Improved pseudorandom generators
for depth 2 circuits. Proc. of RANDOM 2010, LNCS 6302 (2010) 504–517

8. Fefferman, B., Shaltiel, R., Umans, C., Viola, E: On beating the hybrid argument.
ECCC TR10-186 (2010)

9. Goldreich, O., Wigderson, A.: Improved derandomization of BPP using a hitting
set generator. Proc. of RANDOM’99, LNCS 1671 (1999) 131–137

10. Koucký, M., Nimbhorkar, P., Pudlák, P: Pseudorandom generators for group prod-
ucts. Proc. of STOC 2011 (2011) 263–272

11. Meka, R., Zuckerman, D.: Pseudorandom generators for polynomial threshold func-
tions. Proc. of STOC 2010 (2010) 427–436

12. Nisan, N.: Pseudorandom generators for space-bounded computation. Combina-
torica 12 (4) (1992) 449–461

13. Nisan, N., Wigderson, A.: Hardness vs. randomness. J Comput Syst Sci 49 (2)
(1994) 149–167

14. Š́ıma, J., Žák, S.: A polynomial time constructible hitting set for restricted 1-bran-
ching programs of width 3. Proc. of SOFSEM 2007, LNCS 4362 (2007) 522–531

15. Š́ıma, J., Žák, S.: A polynomial time construction of a hitting set for read-once
branching programs of width 3. ECCC TR10-088 (2010)

16. Š́ıma, J., Žák, S.: Almost k-wise independent sets establish hitting sets for width-3
1-branching programs. Proc. of CSR 2011, LNCS 6651 (2011) 120–133

17. Wegener, I.: Branching Programs and Binary Decision Diagrams—Theory and Ap-
plications. SIAM Monographs on Discrete Mathematics and Its Applications (2000)

