Almost k-Wise Independent Sets
 Establish Hitting Sets for Width-3 1-Branching Programs

Jiří Šíma, Stanislav Žák

Institute of Computer Science
Academy of Sciences of the Czech Republic

Derandomization of Space-Bounded Computation

$$
\mathbf{R L} \stackrel{?}{=} \mathbf{L}, \quad \mathbf{B P L} \stackrel{?}{=} \mathbf{L}
$$

pseudorandom generator $g:\{0,1\}^{s} \longrightarrow\{0,1\}^{n}, s \ll n$ stretches a short uniformly random seed of s bits into n bits that cannot be distinguished from uniform ones by small space machines M :

$$
\left|\operatorname{Pr}_{x \sim U_{n}}[M(x)=1]-\operatorname{Pr}_{y \sim U_{s}}[M(g(y))=1]\right| \leq \varepsilon
$$

where U_{n} is the uniform distribution on $\{0,1\}^{n}$ and $\varepsilon>0$ is the error
deterministic simulation performs the computation for every fixed setting of the seed (which replaces the random string of a randomized algorithm) and approximates the probability of accepting/rejecting computations
efficient derandomization ($\mathrm{BPL}=\mathrm{L}$) if there is an explicit pseudorandom generator computable in space $O(\log n)$ with seed length $O(\log n)$

Branching Program P

a leveled directed acyclic multi-graph $G=(V, E)$:

- one source $s \in V$ of zero in-degree at level 0
- two sinks of zero out-degree at the last level d (=depth)
- every inner (=non-sink) node has out-degree 2
- the inner nodes are labeled with input Boolean variables x_{1}, \ldots, x_{n}
- the two edges outgoing from any inner node at level $\ell<d$ lead to nodes at the next level $\ell+1$ and are labeled 0 and 1
- the two sinks are labeled 0 and 1
width $=$ the maximum number of nodes in one level
branching program P computes Boolean function $P:\{0,1\}^{n} \longrightarrow\{0,1\}:$

Branching Programs (BPs)

a non-uniform model of space bounded computation:
infinite family of branching programs $\left\{P_{n}\right\}$, one P_{n} for each input length $n \geq 1$
a computation that uses space $s(n)$ and runs in time $t(n)$ is modeled by P_{n} of width $2^{s(n)}$ and depth $t(n)$ (e.g. TM's configurations are represented by BP^{\prime} 's nodes) Klivans, van Melkebeek, 1999: if $\operatorname{DSPACE}(\mathrm{O}(\mathrm{n}))$ requires branching programs of size $2^{\Omega(n)}$, then $\mathrm{BPL}=\mathrm{L}$.

Restrictions:
Read-Once BPs (1-BPs): every input variable is tested at most once along each computational path

Oblivious BPs: at each level only one variable is queried

Explicit Pseudorandom Generators for 1-BPs

polynomial width: PRG with seed length $O\left(\log ^{2} n\right)$ (Nisan, 1992)
width $w=2$: PRG with seed length $O(\log n)$ where $\varepsilon=O(1 / n)$ (Saks, Zuckerman, 1999)
width $w=3$: known techniques fail to improve the seed length $O\left(\log ^{2} n\right)$ from Nisan's result

\longrightarrow Additional Restrictions:

regular 1-BP: every inner non-source node has in-degree 2 oblivious regular 1-BPs of constant width: PRG with seed length $O(\log n \log \log n)$ where $\varepsilon=O(1 / \log n)$ (Braverman, Rao, Raz, Yehudoff; Brody, Verbin, 2010)
permutation 1-BP: regular 1-BP where the two edges leading to any inner non-source node are labeled 0 and 1 (i.e. edges between levels labeled with 0 respectively 1 create a permutation)
oblivious permutation 1-BPs of constant width: PRG with seed length $O\left(\log n \log \frac{1}{\varepsilon}\right)$
(Koucký, Nimbhorkar, Pudlák, 2010)

Hitting Set Generator

the one-sided error version of pseudo-random generator

Hitting Set:
Let $\varepsilon>0$ and \mathcal{P}_{n} be a class of BPs with n inputs.
A set $H_{n} \subseteq\{0,1\}^{n}$ is an ε-hitting set for \mathcal{P}_{n}
if for every $P \in \mathcal{P}_{n}$,

$$
\begin{gathered}
\operatorname{Pr}_{x \sim U_{n}}[P(x)=1]=\frac{\left|P^{-1}(1)\right|}{2^{n}} \geq \varepsilon \quad \text { implies } \\
\left(\exists a \in H_{n}\right) P(a)=1
\end{gathered}
$$

For every n (given in unary), the hitting set generator (HSG) for a class of families of BPs produces hitting set H_{n}.
deterministic simulation of a randomized algorithm with one-sided error performs the computation for every string from the hitting set and accepts if there is at least one accepting computation

Hitting Set Generator for 1-BPs of Width 3

a normalized form of BP : the probability distribution of inputs on the three nodes at each level is ordered as

$$
p_{1} \geq p_{2} \geq p_{3}>0 \quad\left(p_{1}+p_{2}+p_{3}=1\right)
$$

a simple 1-BP of width 3 excludes one special level-tolevel transition pattern in its normalized form (about 40 possible patterns in normalized width-3 1-BPs):

a polynomial-time construction of $\left(\frac{191}{192}\right)$-hitting set for simple 1-BPs of width 3 (Šíma, Žák, 2007)

The Richness Condition

A set $A \subseteq\{0,1\}^{n}$ is ε-rich if for any index set $I \subseteq\{1, \ldots, n\}$, and for any partition $\left\{R_{1}, \ldots, R_{r}\right\}$ of I ($r \geq 0$) satisfying

$$
\begin{equation*}
\prod_{j=1}^{r}\left(1-\frac{1}{2^{\left|R_{j}\right|}}\right) \geq \varepsilon \tag{1}
\end{equation*}
$$

for any $Q \subseteq\{1, \ldots, n\} \backslash I$ such that $|Q| \leq \log n$, for any $c \in\{0,1\}^{n}$ there exists $a \in A$ that meets

$$
\begin{gather*}
(\forall i \in Q) a_{i}=c_{i} \quad \text { and } \\
(\forall j \in\{1, \ldots, r\})\left(\exists i \in R_{j}\right) a_{i} \neq c_{i} \tag{2}
\end{gather*}
$$

formula (2) can be interpreted as a read-once CNF with $O(\log n)$ single literals and clauses whose sizes satisfy (1):

$$
\bigwedge_{i \in Q} \ell\left(x_{i}\right) \wedge \bigwedge_{j=1}^{r} \bigvee_{i \in R_{j}} \neg \ell\left(x_{i}\right)
$$

where $\quad \ell\left(x_{i}\right)= \begin{cases}x_{i} & \text { for } c_{i}=1 \\ \neg x_{i} & \text { for } c_{i}=0\end{cases}$
for any such a read-once CNF formula, a rich set A contains at least one satisfying assignment (i.e. A is a hitting set for this class of formulas)

Sufficiency of the Richness Condition

the richness condition expresses an essential property of hitting sets for 1 -BPs of width 3 while being independent of a rather technical formalism of branching programs:

Theorem 1 Let $\varepsilon>\frac{5}{6}$. If A is $\varepsilon^{\prime 11}$-rich for some $\varepsilon^{\prime}<\varepsilon$, then $H=\Omega_{3}(A)$ which contains all the vectors within the Hamming distance of 3 from any $a \in A$, is an ε-hitting set for the class of 1-BPs of width 3 .

Idea of proof:

- on the contrary, a normalized 1-BP P of width 3 such that $\left|P^{-1}(1)\right| / 2^{n} \geq \varepsilon$ and $P(a)=0$ for every $a \in H$, is assumed
- starting from the last level, the structure of P is inductively analyzed block after block (corresponding to partition classes $\left.R_{j}\right)$ until a set $Q(|Q| \leq \log n)$ suitable for the richness condition is found
- the richness condition is employed to achieve a contradiction
- the proof includes a rather tedious case analysis, e.g. decreasing the lower bound for ε from the original $\sqrt{12 / 13}$ to $5 / 6$ increases significantly the number of cases to be analyzed

The Necessary Condition

The Weak Richness Condition:
A set $A \subseteq\{0,1\}^{n}$ is weakly ε-rich if for any index set $I \subseteq\{1, \ldots, n\}$ and for any partition $\left\{R_{1}, \ldots, R_{r}, Q_{1}, \ldots, Q_{q}\right\}$ of $I(r \geq 0, q \geq 0)$ satisfying

$$
\begin{equation*}
\left(1-\prod_{j=1}^{q}\left(1-\frac{1}{2^{\left|Q_{j}\right|}}\right)\right) \times \prod_{j=1}^{r}\left(1-\frac{1}{2^{\left|R_{j}\right|}}\right) \geq \varepsilon \tag{3}
\end{equation*}
$$

for any $c \in\{0,1\}^{n}$ there exists $a \in A$ that meets

$$
\begin{align*}
& (\exists j \in\{1, \ldots, q\})\left(\forall i \in Q_{j}\right) a_{i}=c_{i} \quad \text { and } \\
& (\forall j \in\{1, \ldots, r\})\left(\exists i \in R_{j}\right) a_{i} \neq c_{i} . \tag{4}
\end{align*}
$$

Any ε-rich set is weakly ε-rich: condition (3) implies that there is $j \in\{1, \ldots, q\}$ such that $\left|Q_{j}\right| \leq \log n$
formula (4) can be interpreted as a read-once conjunction of DNFs and CNFs whose sizes satisfy (3):

$$
\bigvee_{j=1}^{q} \bigwedge_{i \in Q_{j}} \ell\left(x_{i}\right) \wedge \bigwedge_{j=1}^{r} \bigvee_{i \in R_{j}} \neg \ell\left(x_{i}\right)
$$

Theorem 2 Any ε-hitting set for the class of 1-BPs of width 3 is weakly ε-rich.

The Main Result

Any almost $O(\log n)$-wise independent set is ε-rich.

(k, β)-wise independent set $A \subseteq\{0,1\}^{n}$: for any index set $S \subseteq\{1, \ldots, n\}$ of size $|S| \leq k$, the probability distribution on the bit locations from S is almost uniform, i.e. for any $c \in\{0,1\}^{n}$

$$
\left|\frac{\left|A^{S}(c)\right|}{|A|}-\frac{1}{2^{|S|}}\right| \leq \beta
$$

where $A^{S}(c)=\left\{a \in A \mid(\forall i \in S) a_{i}=c_{i}\right\}$.
for any $\beta>0$ and $k=O(\log n)$, a (k, β)-wise independent set A can be constructed in time polynomial in $\frac{n}{\beta}$ (Alon, Goldreich, Håstad, Peralta, 1992)

Theorem 3 Let $\varepsilon>0, C$ be the least odd integer greater than $\left(\frac{2}{\varepsilon} \ln \frac{1}{\varepsilon}\right)^{2}$, and $0<\beta<\frac{1}{n^{C+3}}$. Then any $(\lceil(C+2) \log n\rceil, \beta)$-wise independent set is ε-rich.

Corollary: Any almost $O(\log n)$-wise independent set extended with all the vectors within the Hamming distance of 3 is a polynomial-time constructible ε-hitting set for 1 -BPs of width 3 with acceptance probability $\varepsilon>5 / 6$.

Idea of Proof

Let A be a $(\lceil(C+2) \log n\rceil, \beta)$-wise independent set.
We will show that A is ε-rich:
Assume a partition $\left\{R_{1}, \ldots, R_{r}\right\}$ of $I \subseteq\{1, \ldots, n\}$ satisfies $\prod_{j=1}^{r}\left(1-1 / 2^{\left|R_{j}\right|}\right) \geq \varepsilon$ and $Q \subseteq\{1, \ldots, n\} \backslash I$ such that $|Q| \leq \log n$.

In order to show for a given $c \in\{0,1\}^{n}$ that there is $a \in A$ that meets

$$
\begin{gathered}
(\forall i \in Q) a_{i}=c_{i} \quad \text { and } \\
(\forall j \in\{1, \ldots, r\})\left(\exists i \in R_{j}\right) a_{i} \neq c_{i}
\end{gathered}
$$

we will prove that the probability

$$
p=p(A)=\frac{\left|A^{Q}(c) \backslash \bigcup_{j=1}^{r} A^{R_{j}}(c)\right|}{|A|}>0
$$

Intuition:

$$
p\left(\{0,1\}^{n}\right)=\frac{1}{2^{|Q|}} \prod_{j=1}^{r}\left(1-\frac{1}{2^{\left|R_{j}\right|}}\right) \geq \frac{\varepsilon}{n}>0
$$

The Main Steps of the Proof

Modifications of Partition Classes:

- superlogarithmic cardinalities:

$$
R_{j}^{\prime} \subseteq R_{j} \text { so that }\left|R_{j}^{\prime}\right| \leq \log n
$$

- small constant cardinalities:
$R_{\leq \sigma}=\bigcup_{\left|R_{j}^{\prime}\right| \leq \sigma} R_{j}^{\prime}$ where σ is a suitable constant
$\longrightarrow \quad Q^{\prime}=Q \cup R_{\leq \sigma}, \quad c_{i}^{\prime}=1-c_{i} \quad$ for $\quad i \in R_{\leq \sigma}$
Lemma: $\quad p \geq \frac{\left|A^{Q^{\prime}}\left(c^{\prime}\right) \backslash \bigcup_{j=1}^{r^{\prime}} A^{R_{j}^{\prime}}\left(c^{\prime}\right)\right|}{|A|}$
Bonferroni inequality

$$
p \geq \sum_{k=0}^{C^{\prime}}(-1)^{k} \sum_{1 \leq j_{1}<j_{2}<\cdots<j_{k} \leq r^{\prime}} \frac{\left|A^{\cup_{i=1}^{k} R_{j_{i}}^{\prime} \cup Q^{\prime}}\left(c^{\prime}\right)\right|}{|A|}
$$

Almost $O(\log n)$-wise independence

$$
p \geq \frac{1}{2^{\left|Q^{\prime}\right|}}\left(\sum_{k=0}^{C^{\prime}}(-1)^{k} \sum_{1 \leq j_{1}<j_{2}<\cdots<j_{k} \leq r^{\prime}} \prod_{i=1}^{k} \frac{1}{2\left|R_{j_{j}}^{\prime}\right|}-\frac{\varepsilon^{\prime}}{8}\right)
$$

The Main Steps of the Proof II

Grouping the Classes of the Same Cardinalities $\sigma<s_{1}, \ldots, s_{m^{\prime}} \leq \log n \ldots$ cardinalities of R_{j}^{\prime}
$r_{i}=\left|\left\{j\left|,\left|R_{j}^{\prime}\right|=s_{i}\right\} \mid \ldots\right.\right.$ \# classes of cardinality s_{i}
$p>\frac{1}{n^{2}}\left(\sum_{k=0}^{C^{\prime}}(-1)^{k} \sum_{\substack{k_{1}+\cdots+k_{m^{\prime}}=k \\ 0 \leq k_{1} \leq r_{1}, \ldots, 0 \leq k_{m^{\prime}} \leq r_{m^{\prime}}}} \prod_{i=1}^{m^{\prime}} \frac{t_{i}^{k_{i}}}{k_{i}!} \prod_{j=1}^{k_{i}-1}\left(1-\frac{j}{r_{i}}\right)-\frac{\varepsilon^{\prime}}{8}\right)$
where $t_{i}=\frac{r_{i}}{2^{s_{i}}}$

Frequent Cardinalities

$r_{1}>r_{2}>\cdots>r_{m^{\prime \prime}}>\varrho$ where ϱ is a suitable constant

$$
p>\frac{1}{n^{2}}\left(\sum_{k=0}^{C^{\prime}}(-1)^{k} \sum_{\substack{k_{1}+\ldots+k_{m^{\prime \prime}}=k \\ k_{1} \geq 0, \ldots, k_{m^{\prime \prime}} \geq 0}} \prod_{i=1}^{m^{\prime \prime}} \frac{t_{i}^{k_{i}}}{k_{i}!}-\frac{\varepsilon^{\prime}}{2}\right)
$$

The Main Steps of the Proof III

Multinomial theorem
$p>\frac{1}{n^{2}}\left(\sum_{k=0}^{C^{\prime}} \frac{\left(-\sum_{i=1}^{m^{\prime \prime}} t_{i}\right)^{k}}{k!}-\frac{\varepsilon^{\prime}}{2}\right)$

Taylor's theorem
$p>\frac{1}{n^{2}}\left(e^{-\sum_{i=1}^{m^{\prime \prime}} t_{i}}-\mathcal{R}_{C^{\prime}+1}\left(-\sum_{i=1}^{m^{\prime \prime}} t_{i}\right)-\frac{\varepsilon^{\prime}}{2}\right)$
$\sum_{i=1}^{m} t_{i}<\ln \frac{1}{\varepsilon^{\prime}}$
Lagrange remainder $\mathcal{R}_{C^{\prime}+1}\left(-\sum_{i=1}^{m^{\prime \prime}} t_{i}\right)<\frac{\varepsilon^{\prime}}{4}$

$$
p>\frac{\varepsilon^{\prime}}{4 n^{2}}>0
$$

Conclusion \& Open Problems

- the explicit polynomial-time construction of a hitting set for 1 -BPs of width 3
- an important step in the effort to construct HSGs for 1-BPs of bounded width

$$
\times
$$

such constructions were known only for width 2 and for oblivious regular/permutation 1-BPs of bounded width

- Can the result be achieved for any acceptance probability $\varepsilon>0(\times$ our result holds for $\varepsilon>5 / 6)$?
- Can the technique be extended to width 4 or to bounded width?

