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Abstract. Current AI technologies based on deep neural networks
(DNNs) are computationally extremely demanding, which limits their
widespread deployment in embedded devices with constrained energy
resources (e.g. battery-powered smartphones). One possible approach to
solving this problem is to reduce the precision of weight parameters,
which can save an enormous amount of energy for computation and data
transfer at the cost of only a small loss in inference accuracy. In this pa-
per, we provide a theoretical analysis of the effect of any weight rounding
(e.g. reduced bitwidth) in a trained DNN on its output. We first derive
a global upper bound on the output error of DNN (under the L1 norm)
caused by the weight rounding for all inputs from a bounded domain in
the worst case, which turns out to be overestimated for practical use. We
prove that computing this maximum error is NP-hard for a given weight
rounding even for two layers, which follows from the NP-hardness of neu-
ron state domains. Based on the concept of so-called shortcut weights,
we propose a method called AppMax that estimates this error using lin-
ear programming on convex polytopes around test/training data points,
which works for any approximation of DNN (e.g. including pruning). The
AppMax method was extensively tested on fully connected and convolu-
tional neural networks (trained on the MNIST database) for decreasing
bitwidth of weights. The experiments demonstrate a clear improvement
in the error guarantees provided by this method, which can be used to
evaluate different approximation strategies and identify those that best
balance accuracy and energy efficiency.

Keywords: Deep neural networks · Weight rounding · Maximum error
bounds · NP-hardness · Linear programming.

1 Introduction

Deep neural networks (DNN) stands at the forefront of both research and prac-
tical applications in artificial intelligence (AI), including large language models,
image recognition, computer vision, speech recognition, robotics, etc. An increas-
ing number of embedded devices rely on DNNs to deliver sophisticated services,
such as autonomous surveillance systems utilizing advanced object recognition,
personal assistants employing machine translation, smart healthcare applica-
tions. Nevertheless, remarkable performance on these tasks comes with increased
computational demands, posing significant challenges for deploying DNNs on
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resource-constrained edge devices. The escalated computational requirements of
DNNs which typically consist of tens of layers, hundreds of thousands of neurons,
and tens of millions of weight parameters, naturally lead to increased battery
consumption, which is a major bottleneck to the development of smart wearable
electronics, such as smartphones, smart glasses, or voice assistants. In light of
these considerations, addressing the energy consumption of DNN implementa-
tions emerges as a topic of paramount importance.

Recent research has focused on developing methods that enable energy-
efficient processing of DNNs [26]. There are basically two main approaches to
reduce energy costs of DNNs. First, computational requirements are addressed by
hardware design utilizing specialized accelerators tailored for DNN inference [11,
23] that employ massive parallelism. DNNs are implemented on various hard-
ware platforms including GPUs [32], FPGAs [18], in-memory computing archi-
tectures [19], etc. which share asymptotic energy complexity bounds [25, 24].

The second approach is suitable for error-tolerant applications such as image
classification where enormous amount of energy can be saved at the cost of
only a small loss in accuracy by using approximate computing methods [2, 6,
15–17, 27]. One possibility is to reduce the number of operations and model size
which is based on techniques such as compression [4], pruning [31], and compact
network architectures [12]. Another possibility is to reduce the precision of the
used arithmetics which includes conversion from floating point to fixed point [30],
reducing the bitwidth [20], nonuniform quantization [14], weight sharing [8],
and approximate multiplication circuits [1]. For example, an 8-bit fixed-point
multiply consumes 15.5 or 18.5 times less energy than a 32-bit fixed-point or
floating-point multiply, respectively [9].

It has been empirically observed that the energy consumption for DNN in-
ference is predominantly due to both numerical computation and data moves in
memory where the later can achieve 70% of the total energy cost [31]. Both these
energy components can be significantly decreased by reducing the precision of
DNN weight parameters. In this paper, we theoretically analyze the effect of
weight rounding in a trained DNN on its output. This post-training rounding
is specified by individual weight deviations and can thus be generated by any
method, such as those referenced above (e.g., reduced bitwidth, quantization).
For the purposes of error analysis, we formalize a model of feedforward (acyclic)
DNNs composed of ReLU gates employing the rectified linear unit activation
function (Section 2), which appears also to cover a widespread important DNN
class of convolutional neural networks (CNNs).

First, we derive a global worst-case upper bound on the DNN output error
that is caused by a given weight rounding, which is valid for all inputs from
a bounded domain (Section 3). The error of DNN outputs is measured by the
L1 norm which makes the analysis applicable to regression tasks. The main idea
is that the output error of any individual neuron is bounded for all its inputs
taken from a previously estimated interval state domains, which is propagated
feedforwardly through the network. Nevertheless, our experiments show that this
worst-case upper bound on the DNN output error turns out to be overestimated



Weight-Rounding Error in Deep Neural Networks 3

for practical tasks. It could be improved by refining the estimation of neuron
state domains, which, however, are shown to be NP-hard to compute even for
two-layer networks (Section 4). Since the maximum of the DNN output can
be attained at any interior point of the input domain, we prove this result for
both binary and real inputs. As a consequence, we obtain NP-hardness also for
computing the global maximum error for a given weight rounding even for two
layers.

Furthermore, we introduce a concept of so-called shortcut weights which are
coefficients of the linear dependence of DNN outputs on its inputs for fixed satu-
rations of neuron states, due to the ReLU activation function is piecewise linear.
Based on these shortcut weights, we propose a method called AppMax that
estimates the maximum error for a given weight rounding using linear program-
ming on convex polytopes surrounding test/training data points (Section 5).
The method is also adapted to classification tasks and it is applicable not only
to weight rounding but it provides the maximum error for any approximation of
a DNN by another network, e.g., created by pruning. We have tested the App-
Max method on fully connected and convolutional neural networks trained on the
MNIST database for decreasing bitwidth of weights (Section 6). The presented
experiments demonstrate that the AppMax method provides more confident es-
timates of the maximum error than those on the test data points only, which is
already achieved with fewer data.

A related recent study [3] develops a theoretical framework for analyzing
the numerical stability of DNNs with differentiable activation functions (e.g.,
hyperbolic tangent) under floating-point arithmetic, using backward error anal-
ysis and condition numbers. While its focus is on global perturbation models,
our work complements this by introducing the practically applicable AppMax
method for estimating approximation errors of piecewise linear DNNs under arbi-
trary post-training modifications, including but not limited to weight rounding.
The proposed AppMax method enables systematic comparison of approximation
strategies and helps identify those that offer the best trade-off between accuracy
and performance. Further research in this direction could facilitate the develop-
ment of techniques for identifying DNN components suitable for approximation
or removal, aiming to reduce energy consumption while maintaining explicit and
reliable error guarantees.

2 A Formal Model of NNs and Weight Rounding

For the error analysis of weight rounding, we define a formal model of (artificial)
feedforward neural networks (NNs) with the ReLU (rectified linear unit) activa-
tion function, which covers commonly used DNNs such as convolutional neural
networks (CNNs). The architecture of a NN N is a connected directed acyclic
graph (V,E) where E ⊂ V × V , which is composed of units, called neurons,
whose real states (outputs) are denoted as yj for j ∈ V . This includes a set of
n input neurons X = {1, . . . , n} ⊆ V that serve only for presenting an external
real input (x1, . . . , xn) ∈ Rn to N , that is yj = xj for j ∈ X, whereas a set of m
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output neurons, Y ⊆ V ′ = V \X provides the output N (x1, . . . , xn) ∈ Rm from
N for this input. For any neuron j ∈ V , we denote by j← = {i ∈ V | (i, j) ∈ E}
the set of units in N from which connections (edges) lead to j, which represent
the inputs to j. Thus, we assume j← = ∅ for j ∈ X, and j← ∩ Y = ∅ for j ∈ V .

For any non-input neuron j ∈ V ′ and its input i ∈ j←, let wji ∈ R be a real
weight associated with the connection (i, j) ∈ E, whereas formally wji = 0 for
i ∈ V \ j←. In addition, wj0 ∈ R denotes its real bias, which, as usual, can be
viewed as a weight of an edge (0, j) ∈ E leading from an additional formal input
neuron 0 ∈ X to j, whose state y0 = 1 is constantly one and 0 ∈ j← for every
j ∈ V ′ such that wj0 ̸= 0. Then the excitation ξj of neuron j ∈ V ′ is evaluated
as a weighted sum of its inputs:

ξj =
∑
i∈j←

wjiyi , (1)

provided that the states yi have already been computed for all units i ∈ j←,
after an external input (x1, . . . , xn) to N was given at the beginning. Then the
output yj from neuron j ∈ V ′ is computed by applying the ReLU activation
function R : R → R to its excitation ξj ,

yj = R(ξj) = max(0, ξj) . (2)

Alternatively, for classification tasks, the states yj of at least two output neurons
j ∈ Y normalize their excitations into a categorical probability distribution by
using the softmax function

yj =
eξj∑

k∈Y eξk
∈ (0, 1) . (3)

while the identity yj = ξj for j ∈ Y can be employed for regression (to allow
negative outputs).

The convolutional layers in CNNs are at times interlaced by max pooling lay-
ers whose units j implement the maximum of its inputs, yj = maxi∈j← yi. Note
that yi ≥ 0 for i ∈ V ′ due to (2), and we will assume yi ≥ 0 for i ∈ X without
loss of generality (see below). Then such a max pooling unit can be replaced in
N by a subnetwork composed of neurons that compute their states according to
(1) and (2), since the maximum of two numbers max(x, y) = R(x− y) + y for
x, y ≥ 0, can be used for evaluating the maximum of |j←| nonnegative inputs
(e.g., the maxima of pairs is used to compute the maxima of fours, eights, six-
teens, etc.). The alternative average pooling unit j that computes the average
of its nonnegative inputs, yj = 1

|j←|
∑

i∈j← yi, can be viewed as a neuron j ∈ V ′

with the bias wj0 = 0 and weights wji = 1/|j←| for i ∈ j← \ {0}. Thus, we
will hereafter assume without loss of generality that N does not contain pooling
layers.

Suppose that the weights (including the biases) in N are rounded, e.g. to
a given number of binary digits in their floating-point representations, which
can be expressed as

w̃ji = wji + δji for j ∈ V ′ & i ∈ j← (4)



Weight-Rounding Error in Deep Neural Networks 5

where δji ∈ R is a real rounding error of weight wji. Denote by ξ̃j and ỹj the
excitation and output of j ∈ V ′, respectively, that are computed by using the
rounded weights (4). We will be interested in the effect of this weight rounding
on the output of N , which is measured for regression tasks by the L1 norm as
the sum of excitation deviations of output neurons for given external inputs:

E(x1, . . . , xn) =
∑
j∈Y

∣∣∣ξj − ξ̃j

∣∣∣ . (5)

3 The Worst-Case Error Bounds for Weight Rounding

For an unbounded external input (x1, . . . , xn) ∈ Rn to N , the output error (5)
caused by weight rounding (4) can be arbitrarily large. In practical applications,
however, this input is usually taken from some bounded interval domain:

ai ≤ xi ≤ bi for i ∈ X (6)

(particularly, a0 = x0 = b0 = 1 for the formal input 0 ∈ X corresponding
to biases wj0 for j ∈ V ′) which ensures ai ≤ yi ≤ bi for i ∈ X. In addition,
we assume without loss of generality that ai = 0 and bi = 1 for each input
neuron i ∈ X \ {0}, since external inputs can be linearly mapped onto [0, 1]n by
appropriately adjusting the corresponding weights.

Then we can estimate the state intervals [aj , bj ] also for non-input neurons
j ∈ V ′ by propagating the input domain (6) through N so that

aj ≤ yj ≤ bj for j ∈ V ′ , (7)

provided that ai ≤ yi ≤ bi for all its inputs i ∈ j←. This can be ensured by

aj = R(a′j) , bj = R(b′j) for j ∈ V ′ , where (8)

a′j =
∑
i∈j←
wji<0

wjibi +
∑
i∈j←
wji>0

wjiai , b′j =
∑
i∈j←
wji<0

wjiai +
∑
i∈j←
wji>0

wjibi for j ∈ V ′ . (9)

Furthermore, we assume without loss of generality that aj = 0 and bj > 0 for
j ∈ V \(Y ∪{0}), since any non-input neuron j ∈ V ′ with aj > 0 or bj = 0 can be
eliminated from N as its output is linear, yj = ξj , or zero, yj = 0, respectively,
due to (7) and (2). Note that the interval bounds (9) represent the possible
worst case only for one neuron while they are overestimated when combined for
more consecutive neurons in deep N where their states usually cannot reach
the interval endpoints (8) for any external input satisfying (6). We will show in
Section 4 that it is actually NP-hard to find the tight bounds in (7) already for
two-layer N .

For weight rounding (4), the states ỹi of inputs i ∈ j← to a non-input neuron
j ∈ V ′ are supposed to be within intervals around their precise values yi as

yi + αi ≤ R(yi + αi) ≤ ỹi ≤ yi + βi for i ∈ j← , (10)
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where αi ≤ 0 ≤ βi. Clearly, the states yi = ỹi of input units i ∈ X are not
affected by weight rounding, which means αi = βi = 0 for i ∈ X. The main idea
of estimating the impact of weight rounding on the non-input neuron j ∈ V ′ in
the worst case, is to bound ỹj so that for some αj ≤ 0 ≤ βj ,

yj + αj ≤ R(yj + αj) ≤ ỹj ≤ yj + βj (11)

for every ỹi ∈ [R(yi + αi), yi + βi] in (10), over all yi ∈ [ai, bi] (where ai = 0
and bi > 0) given by (6) for i ∈ j← ∩X or by (8) for i ∈ j← ∩ V ′. This can be
achieved by

αj = min(0, α′j) ≤ 0 , βj = max(0, β′j) ≥ 0 (12)

where ξj + α′j ≤ ξ̃j ≤ ξj + β′j is ensured by

α′j = δj0 +
∑
i∈j←
δji<0

δjibi +
∑
i∈j←
w̃ji>0

w̃jiαi +
∑
i∈j←
w̃ji<0

w̃jiβi (13)

β′j = δj0 +
∑
i∈j←
δji>0

δjibi +
∑
i∈j←
w̃ji<0

w̃jiαi +
∑
i∈j←
w̃ji>0

w̃jiβi (14)

for j ∈ V ′.
We show that (12)–(14) meets (11). It follows from (10) and (4) that

ξ̃j =
∑
i∈j←

w̃ji ỹi ≥
∑
i∈j←
w̃ji≥0

w̃ji(yi + αi) +
∑
i∈j←
w̃ji<0

w̃ji(yi + βi)

=
∑
i∈j←

(wji + δji)yi +
∑
i∈j←
w̃ji>0

w̃jiαi +
∑
i∈j←
w̃ji<0

w̃jiβi ≥ ξj + α′j (15)

according to (6), (7), ai = 0 for i ∈ j← \ {0}, and (13), which gives

ỹj = R(ξ̃j) ≥ R(ξj + α′j) ≥ R(ξj + αj) ≥ R(ξj) + αj = yj + αj (16)

due to (12). Similarly, ξ̃j ≤ ξj + β′j which implies ỹj ≤ yj + βj . This completes
the proof of (11).

The theoretical estimates (12)–(14) including (8) and (9), can be used to
compute an upper bound on the weight-rounding error (5) of N in the worst
case, which is valid for any external input from the interval domain (6):

max
(x1,...,xn)∈[0,1]n

E(x1, . . . , xn) ≤
∑
j∈Y

max(−α′j , β
′
j) . (17)

Nevertheless, practical experiments show that these bounds are very conserva-
tive. For example, we tested a NN (see Net1 in Section 6) with only three fully
connected layers whose weights were rounded to be represented by 16 bits. The
experiment has shown that the intervals [αj , βj ] for j ∈ V , tend to get larger
by magnitude every next layer (see Tab. 1). For comparison, the actual values
of error (5) are shown in Section 6 to be less than 0.1 for all test data points.
Therefore, this approach turns out to be infeasible for practical usage, since the
interval bounds are highly overestimated.
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Table 1. The smallest and widest intervals [αj , βj ] according to (12)–(14) for each of
the three layers of the fully-connected NN Net1.

Layer Smallest [αj , βj ] Widest [αj , βj ]

1 [-0.0016, 0.0028] [-0.0142, 0.0157]
2 [-2.0662, 2.0615] [-2.6336, 2.6642]
3 [-57.5910, 58.6081] [-84.9428, 85.1832]

4 Computing the Maximum Error is NP-hard

In Section 3, the worst-case error bound (17) computed by (12)–(14) is overesti-
mated also because it is based on the very conservative estimates of the interval
boundaries of neuron states (8), (9). Thus, there is a natural issue whether these
estimates could be improved. This can be formulated as the problem of finding
the maximum output for a given NN. Namely, we are given N with one output
(|Y | = 1) and |X| = n input neurons, and a positive real constant M > 0. The
maximum output problem (MO) is to decide whether there is an external input
(x1, . . . , xn) ∈ [0, 1]n to N such that N (x1, . . . , xn) ≥ M . However, this problem
is proven to be computationally hard by reduction from the Boolean satisfiability
problem SAT (proof omitted):

Theorem 1. MO is NP-hard for two-layer NNs with binary inputs from {0, 1}n.

Nevertheless, the maximum output value of NNs can also be attained at any
interior point of the external input domain [0, 1]n. Consider a simple example of
a NN Nµ with a real parameter µ ∈ (0, 1), that is composed of two layers with
one input neuron (n = 1) for external inputs x ∈ [0, 1], one unit in the first layer,
and one output neuron which computes the function Nµ(x) = R

(
x−R( xµ − 1)

)
.

Observe that Nµ(x) = x for every x such that 0 ≤ x ≤ µ due to R( xµ − 1) = 0
in this case. On the other hand, for every x satisfying µ < x ≤ 1 we have
R( xµ − 1) = x

µ − 1 which, for Nµ(x) > 0, implies Nµ(x) = R
(
x − ( xµ − 1)

)
=

µ−1
µ x+1 < µ due to x > µ and 0 < µ < 1. It follows that the maximum output

value maxx∈[0,1] Nµ(x) = µ is attained at the interior point x = µ ∈ (0, 1).
Therefore, we generalize Theorem 1 to the real external input domain.

Theorem 2. MO is NP-hard for two-layer NNs with real inputs from [0, 1]n

(remains NP-hard even if the excitation of the output neuron is nonnegative).

Proof. We will use a reduction from the known NP-complete Exactly-1 Posi-
tive 3-SAT problem (1-in-3-SAT+) [22] which is a variant of SAT restricted to
Boolean formulas in conjunctive normal form with 3 positive literals (i.e. vari-
ables) per clause, to decide whether there exists an assignment to the variables
so that each clause has 1 assigned to exactly one variable (and thus 0 assigned
to exactly two variables). For any such 1-in-3-SAT+ instance φ over n variables
y1, . . . , yn ∈ {0, 1} with r clauses C1, . . . , Cr ⊆ {y1, . . . , yn} where |Cj | = 3 for
all j ∈ {1, . . . , r}, we will construct a NN NM

φ so that there exists an assignment
to variables yi = xi ∈ {0, 1} for every i ∈ {1, . . . , n}, satisfying φ such that
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|{yi ∈ Cj | xi = 1}| = 1 for all j ∈ {1, . . . , r} iff the output of NM
φ reaches a

given real bound M > 0 for some external real input.
The NN NM

φ is composed of two layers with n input neurons for external real
inputs (x1, . . . , xn) ∈ [0, 1]n, representing the n Boolean variables y1, . . . , yn ∈
{0, 1} of φ, 3r units in the first layer corresponding to the 3 variables per each of
the r clauses C1, . . . , Cr in φ, and one output neuron on the top which computes
the function NM

φ (x1, . . . , xn) = R
(∑r

j=1
M
r Yj

)
where

Yj = R(xj1 − xj2 − xj3) +R(xj2 − xj1 − xj3) +R(xj3 − xj1 − xj2) ≥ 0 (18)

for Cj = {yj1, yj2, yj3} ⊆ {y1, . . . , yn}, for every j ∈ {1, . . . , r}.
For each j ∈ {1, . . . , r}, suppose at least two of the 3 terms xj1 − xj2 − xj3,

xj2−xj1−xj3, and xj3−xj1−xj2 in (18) are nonnegative, say xj1−xj2−xj3 ≥ 0
and xj2 − xj1 − xj3 ≥ 0 (similarly for the other pairs of terms), which sums to
−2xj3 ≥ 0 implying xj3 = 0 and hence, xj1 − xj2 = xj2 − xj1 = 0. Thus,
we have Yj = R(−xj1 − xj2) = 0 according to (18). On the other hand, if all
these 3 terms are negative, then clearly Yj = 0. Thus, consider the remaining
case when only one of these 3 terms is nonnegative, say xj1 − xj2 − xj3 ≥ 0
(similarly for the other terms), then Yj = xj1−xj2−xj3 attains its maximum 1
for xj1 = 1 and xj2 = xj3 = 0. It follows that if the Boolean formula φ is
satisfied by an assignment x1, . . . , xn ∈ {0, 1} such that each clause Cj has 1
assigned exactly to one variable, that is, |{yi ∈ Cj | xi = 1}| = 1, then Yj = 1
for every j ∈ {1, . . . , r} when (x1, . . . , xn) is presented to NM

φ as an external
input. This implies that NM

φ (x1, . . . , xn) = r · M
r · 1 = M reaches its maximum

M at (x1, . . . , xn). Conversely, if NM
φ (x1, . . . , xn) ≥ M for some external input

(x1, . . . , xn) ∈ [0, 1]n, then for the same reason, x1, . . . , xn ∈ {0, 1} must be
an assignment satisfying φ that meets |{yi ∈ Cj | xi = 1}| = 1 for every
j ∈ {1, . . . , r}. This completes the proof that the reduction of 1-in-3-SAT+ to
MO is correct for the real external input domain [0, 1]n. Finally, note that the
excitation of the output neuron of NM

φ is nonnegative according to (18) which
proves the NP-hardness of MO also for this case. ⊓⊔

The NP-hardness of MO has negative consequences on the complexity of
finding the maximum error (5) of a given NN caused by rounding its weights even
for two layers. Namely, given N with n input neurons, weight-rounding errors
δji for j ∈ V ′ and i ∈ j←, from (4), and a positive real constant M > 0, then the
maximum weight-rounding error problem (MWRE) is to decide whether there
is an external input (x1, . . . , xn) ∈ [0, 1]n to N such that E(x1, . . . , xn) ≥ M .

Corollary 1. MWRE is NP-hard for two-layer NNs.

Proof. We reduce MO with nonnegative output neuron excitations, which is NP-
hard according to Theorem 2, to MWRE. For a given MO instance N with two
layers, n input neurons, and one output neuron e (i.e. Y = {e}) such that ξe ≥ 0,
and a real bound M > 0, it is sufficient to round only the weights wei of the
output neuron e to w̃ei = 0 for its inputs i ∈ e←, which means δei = −wei

for i ∈ e←, whereas δji = 0 for j ∈ V ′ \ Y and i ∈ j←. Hence, ξ̃e = 0 and
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E(x1, . . . , xn) = |ξe| = ξe = R(ξe) = ye = N (x1, . . . , xn) from (5) due to ξe ≥ 0,
which ensures the correct reduction of MO to MWRE. ⊓⊔

5 Approximating the Maximum Weight-Rounding Error

We have shown in Section 4 that it is computationally hard to compute the
maximum of weight-rounding error (5) in the worst case over the whole input
domain [0, 1]n of N . Nevertheless, this maximum can simply be approximated
by the maximum or average over a finite sample T ⊂ [0, 1]n which is usually
a training or test data chosen according to some input domain distribution, as

ET = max
(x1,...,xn)∈T

E(x1, . . . , xn) , ET =
1

|T |
∑

(x1,...,xn)∈T

E(x1, . . . , xn) . (19)

In this section, we improve this approximation by proposing a method called
AppMax that computes the maximum weight-rounding error on a certain convex
polytope of [0, 1]n which surrounds a data point from T in the input domain.

To this end, we first introduce the concept of so-called shortcut weights.
Given an external input (x1, . . . , xn) ∈ [0, 1]n to N , some neurons may receive
negative excitation and thus remain inactive, i.e., produce zero output. We define

S = S(x1, . . . , xn) = {j ∈ V ′ | ξj < 0} (20)

to be the subset of non-input neurons whose states are saturated at yj = 0
according to (2). The complement of this set, U = V \S, consists of unsaturated
units, including both the input neurons X ⊂ U and any non-input neurons with
nonnegative excitation (i.e. ξj ≥ 0 for j ∈ V ′). Clearly, fixing a particular pattern
of saturation S uniquely determines a corresponding set of active neurons U .
Under this fixed activation pattern, N operates linearly: for each non-input
neuron j ∈ V ′, the ReLU activation simplifies to either yj = 0 if j ∈ S, or
yj = ξj if j ∈ U \X. This turns the entire computation into a linear function of
the input values yi = xi for i ∈ X. Hence, we can express each excitation ξj as:

ξj =
∑
i∈X

Wjiyi , (21)

where Wji ∈ R are the so-called shortcut weights (including the shortcut bias
Wj0), capturing the total effect of input neuron i ∈ X on the excitation of
neuron j ∈ V ′, under the assumption that the saturation pattern S is fixed.
This representation (21) allows us to characterize the saturation condition (20)
in terms of shortcut weights:∑

i∈X
Wjiyi

{
< 0 if j ∈ S
≥ 0 if j ∈ U .

(22)

Each shortcut weight Wji represents the cumulative influence from input
neuron i ∈ X to unit j ∈ V ′ through all unsaturated paths in N . More precisely,
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it can be expanded from (1) and (2) as

Wji =
∑

paths i=j0,j1,...,jm=j in (V,E)
j1,...,jm−1∈U

m∏
ℓ=1

wjℓ,jℓ−1
, (23)

i.e., the sum over all directed paths i = j0, j1, . . . , jm = j from i to j in the
graph (V,E) (i.e. (jℓ, jℓ−1) ∈ E for every ℓ ∈ {1, . . . ,m}) that pass only through
unsaturated units j1, . . . , jm−1 ∈ U , with each path contributing the product
wj1,j0wj2,j1 · · ·wjm,jm−1 of edge weights along the path. The shortcut weights
can be computed efficiently by propagating the weight values forward through
N , in topological order. A formal initialization is performed for input neurons
j ∈ X by:

Wji =

{
1 if j = i
0 otherwise for every i ∈ X . (24)

Then, for any non-input neuron j ∈ V ′, the shortcut weight is recursively com-
puted as:

Wji =
∑

k∈j←∩U

wjkWki for each i ∈ X , (25)

assuming the shortcut weights Wki have already been computed for all its pre-
decessors k ∈ j← and i ∈ X.

Furthermore, we construct a NN N ∗ that evaluates the weight-rounding er-
ror (5) for a given NN N . The NN N ∗ is composed of N and its parallel copy
Ñ with rounded weights (4), that share the input neurons X∗ = X = X̃ and
their originally output units are replaced one by one by new hidden neurons
Y ∪ Ỹ ⊂ V ∗ in N ∗ which have additional connections to the other network with
the opposite weights so that

ξ∗j = ξj − ξ̃j =
∑
i∈j←

wjiyi −
∑
i∈j←

w̃ji ỹi for j ∈ Y (26)

ξ∗j = ξ̃j − ξj =
∑
i∈j←

w̃ji ỹi −
∑
i∈j←

wjiyi for j ∈ Ỹ . (27)

In addition, we add one new output unit e in N ∗ (i.e. Y ∗ = {e}) on the top of
these new neurons with the unit weights and zero bias, which computes

N ∗(x1, . . . , xn) = y∗e = ξ∗e =
∑
j∈Y

y∗j +
∑
j∈Ỹ

y∗j =
∑
j∈Y

R
(
ξ∗j
)
+
∑
j∈Ỹ

R
(
ξ∗j
)

=
∑
j∈Y

(
R
(
ξj − ξ̃j

)
+R

(
ξ̃j − ξj

))
=
∑
j∈Y

∣∣∣ξj − ξ̃j

∣∣∣ = E(x1, . . . , xn) (28)

according to (2), (26), (27), and (5).
Finally, we calculate the shortcut weights Wji of units j ∈ V ∗ for input

neurons i ∈ X of N ∗, according to (24) and (25). Thus, for any fixed set S ⊂ V ∗
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of saturated units in N ∗, which induces U = V ∗ \ S, we can formulate a linear
program of finding the states y1, . . . , yn of its input neurons X \ {0} that

maximize We0 +

n∑
i=1

Weiyi (29)

subject to Wj0 +

n∑
i=1

Wjiyi ≤ 0 for every j ∈ S (30)

Wj0 +

n∑
i=1

Wjiyi ≥ 0 for every j ∈ U \X (31)

0 ≤ yi ≤ 1 for every i ∈ {1, . . . , n} . (32)

By solving this program we obtain the maximum of weight-rounding error (28)
for the original N on the convex polytope ΞS ⊆ [0, 1]n in its input domain,
that is defined by (30)–(32) for a given S ⊂ V ∗ according to (22) where zero
excitations are allowed for saturated units without loss of generality:

EΞS
= max

(y1,...,yn)∈ΞS

E(y1, . . . , yn) . (33)

Hence, in our AppMax method, we can improve the maximum error approxima-
tion (19) as

EΞS(T )
= max

(x1,...,xn)∈T
EΞS(x1,...,xn)

, EΞS(T )
=

1

|T |
∑

(x1,...,xn)∈T

EΞS(x1,...,xn)
(34)

which takes the maximum or average not only over data points (x1, . . . , xn)
from T but over the convex polytopes ΞS(x1,...,xn) around these data points.

For classification tasks, the regression error (5) under the L1 norm can be
replaced by the cross-entropy between the output categorical probability distri-
butions (3) of N and Ñ , respectively,

L(x1, . . . , xn) = −
∑
k∈Y

yk ln ỹk =
∑
k∈Y

yk ln

1 +
∑

j∈Ỹ \{k}

eξ̃j−ξ̃k

 . (35)

We interpret the output from N to be the class with the maximum excitation
of output neurons which discretizes the softmax probabilities (3) by the winner-
take-all principle. For each input (x1, . . . , xn) ∈ T , the correct class inferred by
the trained N is thus c = argmaxk∈Y ξk, which means that yc ≥ 1/m by (3),
where m = |Y | is the number of classes. Hence, we can lower bound the cross-
entropy loss (35), subject to ξc ≥ ξk for all k ∈ Y \ {c}, as

L(x1, . . . , xn) ≥
1

m
ln

(
1 + exp

(
max

j∈Ỹ \{c}

(
ξ̃j − ξ̃c

)))
. (36)

In this case, contrary to (26)–(27), the original unmodified units from Y ∪ Ỹ
create the output neurons of N ∗ instead of the removed e. The convex polytope
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ΞS ⊆ [0, 1]n in (33) is then defined by (30)–(32) for the saturated units S =

S(x1, . . . , xn) ⊂ V ∗ \ (Y ∪ Ỹ ) in this new N ∗, inducing U = V ∗ \ (S ∪ Y ∪ Ỹ ),
which is further constrained by conditions:

Wc0 +

n∑
i=1

Wciyi ≥ Wk0 +

n∑
i=1

Wkiyi for every k ∈ Y \ {c} . (37)

We replace the argmax of (35) on a feasible convex set ΞS(x1,...,xn) for
(x1, . . . , xn) ∈ T , that meets ξc ≥ ξk for all k ∈ Y \ {c}, due to (37), by the
argument of

max
j∈Ỹ \{c}

max
(y1,...,yn)∈ΞS(x1,...,xn)

ξ̃c≤ξ̃j

(ξ̃j − ξ̃c) , (38)

according to (36), which is computed by solving the |Y |−1 linear programs that
maximize ξ̃j − ξ̃c subject to (30)–(32), (37), and W̃c0 +

∑n
i=1 W̃ciyi ≤ W̃j0 +∑n

i=1 W̃jiyi, for each j ∈ Ỹ \ {c} separately. Clearly, if the nonnegative error
ξ̃j − ξ̃c ≥ 0 is feasible, then Ñ does not infer the correct class produced by N .

Note that the proposed AppMax method of computing the maximum error
can be used for any approximation of N by Ñ , which can be an arbitrary DNN
with the same number of input and output neurons, e.g. created by pruning
hidden neurons and connections in N .

6 Experiments

We have tested the AppMax method introduced in Section 5 on two NNs trained
on the MNIST database [7] of handwritten digits (28x28 grayscale pixels) cat-
egorized into 10 classes (0–9). We carried out our experiments using the deep
learning library PyTorch [21] and the SciPy linear programming routine scipy.
optimize.linprog [29, 10]. The source code is publicly available [28].

The first Net1 is a NN of three fully connected layers with 784–2000–1000–10
neurons (including 784 = 282 input units), respectively. The second Net2 is
a CNN composed of two convolutional layers with 32 and 64 3x3-kernels (stride 1,
padding 1), respectively, followed by one max pooling layer with 64 2x2-kernels
(stride 2), and topped by two fully connected layers with 1024–10 neurons, re-
spectively. The convolutional and max-pooling layers in Net2 are transformed to
eight fully connected layers with 784–25088–50176–50176–25088–25088–12544–
1024–10 neurons (see Section 2) where sparse matrices are used to fit the weights
into the memory. Both NNs employ the ReLU activation function (2) and were

Table 2. Accuracy on the test set.

32b 16b 12b 8b 6b 4b
Net1 98.30 98.30 98.30 98.30 98.30 24.85
Net2 99.25 99.25 99.25 99.25 99.25 99.14
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Table 3. The worst-case maximum error estimates ET and EΞS(T )
and their averaged

variants ET and EΞS(T )
for the weight rounding to 16 bits.

ET EΞS(T )
ET EΞS(T )

Net1 0.032854 0.099374 0.007629 0.030884
Net2 0.013466 0.014763 0.006127 0.006777

Fig. 1. The histograms of weight-rounding errors E on T (blue) and EΞS over convex
polytopes ΞS on T (orange) according to (19) and (33), respectively, for Net1 (left)
and Net2 (right) with 16-bitwidth for weights.

originally trained with 32-bitwidth for weights. Tab. 2 lists accuracies of Net1
and Net2 on the test set (i.e. the percentage of correctly classified data points)
for weights that are rounded to 16, 12, 8, 6, and 4 bits, showing their high
robustness in terms of accuracy only.

We applied the AppMax method to approximate the maximum of regres-
sion error (5) under L1 norm for Net1 and Net2 whose weights are rounded to
16 bits. All available (training and test) 70,000 data points were first used as a
sample T in the maximum error estimates (19) and (34), where the latter thus
involves solving 70,000 linear programs (29)–(32). The results of this experiment
are listed in Tab. 3 and graphically depicted using histograms in Fig. 1. We
can observe a clear shift in the weight-rounding errors E on T and EΞS

over
convex polytopes ΞS on T according to (19) and (33), respectively. This shift
is less pronounced in Net2 due to its higher number of neurons, which results
in smaller convex polytopes. This effect could be mitigated by also considering
the convex polytopes adjacent to those containing the test data points, thereby
expanding the region in which the maximum error is searched for. The AppMax
method clearly improves the estimation of the maximum weight-rounding error.
For illustration, the worst-case points found by the AppMax method (33) in cor-
responding convex polytopes around several data points are depicted in Fig. 2.
They include noise, which is quite visible for Net1, while negligible for Net2.

The AppMax method, which is based on solving large linear programs for
each data point in the sample T , turns out to be computationally intensive. For
example, the presented experiments performed on 70,000 data points required
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Fig. 2. The first line shows a few examples of original data points (x1, . . . , xn) ∈ T ,
whereas the second and third lines depict the points (y1, . . . , yn) ∈ ΞS(x1,...,xn) with the
maximum error EΞS(x1,...,xn)

found by the AppMax method in the convex polytopes
ΞS(x1,...,xn) for Net1 and Net2, respectively, with 16-bitwidth for weights.

Fig. 3. Estimates of errors ETs (blue) and EΞS(Ts)
(orange) for increasing size of data

samples Ts for Net1 (left) and Net2 (right) with 16-bitwidth for weights.

several days using tens of parallel processors. Specifically, the average compu-
tation time per one data point was approximately 8 seconds for Net1 and 250
seconds for Net2 on an Intel® Xeon® E5-2620 v4 processor running at 2.10 GHz.
In the next experiment, we try to answer the question, how many data points
do we need to get reliable estimate of EΞS(T )

. We sampled randomly sets Ts ⊂ T
from the available data points, ranging from 50 to 60,000 sample size, repeating
each sample hundred times. For each sample, the approximate maximum errors
ETs and EΞS(Ts)

were evaluated according to (19) and (34), respectively, as de-
picted in Fig. 3. The results show that it is not necessary to employ the whole
data to get reasonable error estimates because the improvement using tens of
thousands data points is not significant. This brings the required computation
time down to a reasonable level—on the order of several hours in our setting.

Furthermore, we demonstrate the effect of decreasing bitwidth on the weight-
rounding errors (19) and (34). We used 10000 and 2000 randomly chosen test
data points as a sample T for Net1 and Net2, respectively, due to the larger Net2
is slower to evaluate. We summarize the results only for Net1 in Tab. 4, as Net2
shows similar trends. Moreover, Fig. 4 depicts graphically the increase of error
EΞS

(on a logarithmic scale) for decreasing bitwidth of weights in Net1. Clearly,
the AppMax method improves the error guarantees for different bitwidths.
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Table 4. The error estimates ET and EΞS(T )
and their averaged variants ET and

EΞS(T )
for Net1 with decreasing bitwidth of weights.

ET EΞS(T )
ET EΞS(T )

16 bits 0.024727 0.093156 0.007558 0.030998
12 bits 0.613171 1.049668 0.135616 0.384750
8 bits 8.191886 17.585771 2.138221 6.070758
6 bits 40.410836 85.562221 10.226672 25.475516
4 bits 301.230476 479.39271 81.117751 153.583925

Fig. 4. The violin plots showing EΞS for different bitwidths of weights in Net1.

Finally, we test the AppMax variant (38) for the classification by Net1 with
decreasing bitwidth of weights on a sample T of 5000 randomly chosen data
points. For each (x1, . . . , xn) ∈ T which is classified by Net1 as a digit class
c ∈ Y , the AppMax method found the argument of (38) in the convex polytope
ΞS(x1,...,xn) (by solving 9 linear programs) whose all points are classified by Net1
as the same digit class c due to (37), if it exists. This argmax is a point misclas-
sified by weight-rounded Net1 as another digit class g ∈ Y \ {c}. Tab. 5 lists the
percentage of data points in T that are surrounded by convex polytopes contain-
ing misclassified points (shortly, misclassified polytopes), which seems to be not
affected by the bitwidth for weights. The next columns of Tab. 5 present the out-
put probabilities ỹc and ỹg of correct and wrong classes, respectively, averaged
over T (restricted to data points surrounded by misclassified polytopes) that were
provided by Net1 with rounded weights using the softmax function (3) for the
argument of (38) as its input, where c, g ∈ Y may differ for each of these points.
In Tab. 5, these are further compared to the analogous averaged output proba-
bilities yc and yg of correct and wrong classes, respectively, by the original Net1
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Table 5. The percentage of data points in T that are surrounded by misclassified
polytopes including the arguments of (38), for which the output probabilities ỹc and
ỹg of the correct and wrong classes, respectively, averaged over these points, are listed,
which were provided by Net1 with decreasing bitwidth for weights, and compared to
those by the original Net1.

percentage of rounded Net1 original Net1
bitwidth misclassified polytopes ỹc ỹg yc yg
16 bits 0.91 0.28 0.28 0.28 0.28
12 bits 0.91 0.27 0.30 0.29 0.29
8 bits 0.91 0.15 0.39 0.31 0.30
6 bits 0.88 0.14 0.51 0.40 0.32
4 bits 0.89 0.08 0.44 0.57 0.16

for the same inputs. It turns out that the AppMax method reveals the increase
of the cross-entropy restricted to the correct and wrong classes for decreasing
bitwidth of weights although the percentage of misclassified polytopes surround-
ing the data points from T seems to be not affected by the weight rounding.

7 Conclusion

In this paper, we theoretically analyzed the effect of any weight rounding in
a trained DNN on its output. We derived an upper bound on the worst-case
output regression error for bounded input domains, which appears to be over-
estimated for practical use. We proved that it is in fact NP-hard to determine
this error precisely. We introduced the AppMax method that approximates the
weight-rounding error by computing its maxima in convex polytopes around
the data points. This method can be used for any DNN approximation. We
tested the AppMax method on fully connected and convolutional NNs trained
on the MNIST database for decreasing bitwidth of weights, showing a clear im-
provement in error guarantees as compared to those for test data points only.
The proposed AppMax method enables systematic comparison of approxima-
tion strategies to identify those with optimal accuracy–performance trade-offs,
paving the way for techniques that reduce energy consumption by approximating
or removing suitable DNN components with reliable error guarantees.

The AppMax method has only been partially generalized to classification
based on the softmax function. In future research, we plan to explore the possi-
bility of approximating the cross-entropy loss using a piecewise linear function
or addressing the underlying nonlinear optimization problem using techniques
such as the Karush-Kuhn-Tucker conditions. Another open problem concerns
approximating the weight-rounding error on a global scale by estimating the
probabilities of considered convex polytopes in terms of their volumes. We also
plan to extend the error analysis to modern architectures such as ResNet, Trans-
formers. One of the most important challenges is to identify components in a
given DNN that can be neglected (e.g. specific weights to be rounded) at the cost
of an explicitly bounded increase in the output error. We will also extend our
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experiments with the AppMax method to other test datasets including CIFAR-
100 [13] and ImageNet [5].
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