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Abstract

Motivated by the analysis of neural net models between integer and rational
weights, we introduce a so-called cut language over a real digit alphabet, which
contains finite β-expansions (i.e. base-β representations) of the numbers less
than a given threshold. We say that an infinite β-expansion is eventually quasi-
periodic if its tail sequence formed by the numbers whose representations are
obtained by removing leading digits, contains an infinite constant subsequence.
We prove that a cut language is regular iff its threshold is a quasi-periodic num-
ber whose all β-expansions are eventually quasi-periodic, by showing that alto-
gether they have a finite number of tail values. For algebraic bases β, we prove
that there is an eventually quasi-periodic β-expansion with an infinite number
of tail values iff there is a conjugate of β on the unit circle. For transcenden-
tal β combined with algebraic digits, a β-expansion is eventually quasi-periodic
iff it has a finite number of tail values. For a Pisot base β and digits from the
smallest field extension Q(β) over rational numbers including β, we show that
any number from Q(β) is quasi-periodic. In addition, we achieve a dichotomy
that a cut language is either regular or non-context-free and we show that any
cut language with rational parameters is context-sensitive.

Keywords: β-expansion, quasi-periodicity, Pisot number, cut language,
Chomsky hierarchy

1. Introduction

Hereafter, let β be a real number such that |β| > 1, which represents a
base (radix) of non-standard positional numeral system, and let A 6= ∅ be a
finite set of real numbers corresponding to digits. We say that a word (string)
a = a1 . . . an ∈ A∗ over alphabet A is a finite base-β representation, or briefly
a β-expansion of a real number x if

x = (a)β = (a1 . . . an)β =

n∑
k=1

akβ
−k . (1)
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Note that we use only negative powers of β while omitting the radix point at
the left of β-expansions.

We introduce a so-called cut language L<c ⊆ A∗ over alphabet A, which
contains all finite β-expansions of the numbers that are less than a given real
threshold c, that is,

L<c = {a ∈ A∗ | (a)β < c} =

{
a1 . . . an ∈ A∗

∣∣∣∣∣
n∑
k=1

akβ
−k < c

}
. (2)

In other words, a cut language is composed of finite β-expansions of a Dedekind
cut from which its name comes from. One can analogously define the cut lan-
guage L>c for the numbers greater than c, which is used in Paragraph 1.3.
Moreover, a cut language can be defined over any finite alphabet Γ 6= ∅ when
a mapping α : Γ −→ A is introduced so that each symbol u ∈ Γ represents a
digit α(u) ∈ A. In this paper we classify the class of cut languages within the
Chomsky hierarchy, which is related to the theory of β-expansions reviewed in
Paragraph 1.1.

1.1. β-Expansions: Uniqueness and Periodicity

We first review the definitions and results concerning β-expansions related
to our study of cut languages which is introduced in Paragraph 1.2 including
an outline of the paper. We say that a = a1a2a3 . . . ∈ Aω is an infinite base-β
representation, or briefly a β-expansion of a real number x if

x = (a)β = (a1a2a3 . . .)β =

∞∑
k=1

akβ
−k . (3)

Note that the infinite sum in (3) can be viewed as a power series in variable β−1

which is convergent due to |β| > 1. Further denote A = {α1, . . . , αp} so that
α1 < α2 < · · · < αp. It can be shown [1] for β > 1 that every real number x
from the interval [α1/(β − 1), αp/(β − 1)] has an infinite β-expansion iff

max
1<j≤p

(αj − αj−1) ≤ αp − α1

β − 1
(4)

(a slightly more complicated condition can also be derived for β < −1).
Furthermore, we say that an infinite β-expansion a ∈ Aω is eventually

periodic if a = a1a2 . . . ak1(ak1+1ak1+2 . . . ak2)ω where m = k2 − k1 > 0 is
the length of a repetend (repeating digits) ak1+1ak1+2 . . . ak2 ∈ Am, whose
minimum is called the period of a, while k1 is the length of preperiodic part
a1a2 . . . ak1 ∈ Ak1 . For k1 = 0, we call such a β-expansion (purely) periodic.
Any eventually periodic β-expansion can be evaluated as

(a1a2 . . . ak1(ak1+1ak1+2 . . . ak2)ω)β = (a1 . . . ak1)β + β−k1% (5)

where a so-called periodic point % = ((ak1+1ak1+2 . . . ak2)ω)β ∈ R satisfies

(ak1+1ak1+2 . . . ak2)β =

m∑
k=1

ak1+kβ
−k = %

(
1− β−m

)
(6)
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by the sum of geometric series with the common ratio β−m.
Obviously, β-expansions are a generalization of the classical decimal expan-

sions in integer base β = 10 with the digits from A = {0, 1, . . . , 9}. Another
important example are the binary expansions in base β = 2 with the digit al-
phabet A = {0, 1}, which are widely used in contemporary computers. The
representations in non-integer bases have been systematically studied since late
1950’s, starting with the seminal papers due to Rényi [2] and Parry [3]. For
simplicity, it is usually assumed in the literature that a real base meets β > 1
and the standard digits are integers from A = {0, 1, . . . , dβe− 1}, which ensures
that a β-expansion exists for every real number x ∈ Dβ where Dβ is the closure
of an open interval

Dβ =

(
0 ,
dβe − 1

β − 1

)
, (7)

according to (4).
For an integer base β ∈ N when Dβ = [0, 1], it is well known that every irra-

tional number x ∈ Dβ \Q has a unique infinite β-expansion, while any rational
x ∈ Dβ ∩Q has either a unique eventually periodic β-expansion (e.g., the end-
points 0 and 1 of Dβ have the trivial β-expansions 0ω and (β−1)ω, respectively),
or exactly the two distinct eventually periodic β-expansions, a1a2 . . . an0ω and
a1a2 . . . an−1(an−1)(β−1)ω, if there exists a finite β-expansion a1a2 . . . an ∈ A∗
of x = (a1a2 . . . an)β such that an 6= 0. An example of such an ambiguity is
3/4 = (75)10 = (750ω)10 = (749ω)10.

For a non-integer base β, by contrast, almost every number x ∈ Dβ has
a continuum of distinct β-expansions [4]. In particular, for 1 < β < 2 when
A = {0, 1}, every number x ∈ Dβ = (0, 1/(β − 1)) has a continuum of dis-
tinct β-expansions if 1 < β < ϕ where ϕ = (1 +

√
5)/2 ≈ 1.618034 is the

golden ratio [5]. On the other hand, for ϕ ≤ β < q where q ≈ 1.787232 is the
(transcendental) Komornik-Loreti constant (i.e. the unique solution of equation∑∞
k=1 tkq

−k = 1 where (tk)∞k=1 is the Thue-Morse sequence in which tk ∈ {0, 1}
is the parity of the number of 1s in the binary representation of k), there are
countably many numbers in Dβ that have unique β-expansions which are even-
tually periodic [6], e.g. 0n(10)ω or 1n(01)ω for every n ≥ 0. In contrast, there
are countably many eventually periodic ϕ-expansions of x = 1 including only
(10)n110ω, (10)ω, and (10)n01ω for every n ≥ 0. Moreover, for q ≤ β < 2,
there is a continuum of numbers in Dβ with the unique β-expansions, whose
Hausdorff dimension is 0 for β = q and strictly between 0 and 1 for q < β < 2
(while its Lebesgue measure remains zero). In addition, for q2 ≤ β < 2 where
q2 ≈ 1.839287 meets q32 − q22 − q2− 1 = 0, there is x ∈ Dβ which has exactly two
β-expansions (a similar result holds for any fixed number of β-expansions) [7].
Furthermore, for every m ≥ 2, there exists a bound βm satisfying ϕ ≤ βm < 2,
such that there is x ∈ Dβ that has a periodic unique β-expansion with period m,
provided that β > βm, while there is no such a number if β ≤ βm [8].

These results have further been generalized to any non-integer base β > 2
combined with the standard integer digits from A = {0, 1, . . . , dβe−1}, by using
generalized golden ratios [9] and generalized Komornik-Loreti constants [10, 11].
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For a general alphabet A that may include non-integer digits, which is the case
considered in this paper, the only unique β-expansions are the trivial ones, αω1
and αωp , when β is sufficiently close to 1 [12]. The number of unique β-expansions
increases when β satisfying (4) increases, while for β that meets

β > 1 +
αp − α1

min1<j≤p(αj − αj−1)
, (8)

all the β-expansions from Aω are unique [13]. In particular, for β and A sat-
isfying (4), there exist two critical bases ϕA and qA such that 1 < ϕA ≤ qA
and the number of unique β-expansions is finite if 1 < β < ϕA, countable if
ϕA < β < qA, and uncountable if β > qA. Nevertheless, the determination of
these critical bases (and even the existence of qA) for arbitrary A is still not
complete even for three digits [12, 13].

The multiple β-expansions of a number can be ordered lexicographically and
its maximal (resp. minimal) β-expansion is called greedy (resp. lazy). Obviously,
any unique β-expansion is simultaneously greedy and lazy. Denote by Per(β) the
set of numbers whose greedy β-expansion using the digits from A, is eventually
periodic, where A will always be clear from the context. For simplicity, assume
β > 1 and A = {0, 1, . . . , dβe − 1}. For any integer base β ∈ Z, it is well
known that Per(β) = Q ∩ [0, 1]. For a non-integer base β, we have Per(β) ⊆
Q(β) ∩Dβ where Q(β) denotes the smallest field extension over Q including β,
according to (5) and (6). On the other hand, if Q ∩ [0, 1] ⊂ Per(β), then
β must be either a Pisot or a Salem number [14] where a Pisot (resp. Salem)
number is a real algebraic integer (a root of some monic polynomial with integer
coefficients) greater than 1 such that all its Galois conjugates (other roots of
such a unique monic polynomial with minimal degree) are in absolute value less
than 1 (resp. less or equal to 1 and at least one equals 1). In particular, for
any β ∈ Q \ Z which cannot be a Pisot nor Salem number by the integral root
theorem, there exists a rational number from Dβ ∩Q whose greedy β-expansion
is not eventually periodic. Nevertheless, it was shown for any Pisot number β
that Per(β) = Q(β) ∩ Dβ [14], while for Salem numbers this is still an open
problem [15]. Recently, these results have partially been generalized to negative
base β < −1 and non-integer digits in A [16, 17, 18].

1.2. Paper Overview: Quasi-Periodic Numbers and Cut Languages

For the purpose of classifying the cut languages within the Chomsky hier-
archy, we introduce and analyze an interesting concept of a β-quasi-periodic
number within A (see Section 4) whose all infinite β-expansions using the
digits from A, are so-called eventually quasi-periodic. Namely, an eventually
quasi-periodic β-expansion (see Section 2) represents a natural generalization of
eventually periodic β-expansion (5), which can be composed of distinct quasi-
repetends that satisfy (6) for the same periodic point %.

The quasi-repetends in a single eventually quasi-periodic β-expansion can
also have different length which can even be unbounded, allowing for e.g. a con-
stant, polynomial, or exponential number of distinct quasi-repetends of a given
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length. Thus, a β-quasi-periodic number within A with at least two different
quasi-repetends has uncountably many eventually quasi-periodic β-expansions,
while countably many of them are eventually periodic which are generated us-
ing individual quasi-repetends as repetends. Moreover, any greedy eventually
quasi-periodic β-expansion of a number can employ only one identical repetend,
and hence it must be eventually periodic, although the number itself need not
be β-quasi-periodic within A. This implies QPer(β) ⊆ Per(β) where QPer(β)
denotes the set of β-quasi-periodic numbers within A, which have an infinite
β-expansion. In general, a number that is not β-quasi-periodic within A can
still have some of its β-expansions eventually quasi-periodic.

In Section 2, we present examples of β-expansions that are eventually quasi-
periodic, including those with quasi-repetends of unbounded length for the plas-
tic constant β which is the minimal Pisot number. For any base β that is an
algebraic number whose conjugates are in absolute value not 1, we prove that
a β-expansion is eventually quasi-periodic iff its tail sequence formed by the
numbers whose representations are obtained by removing leading digits, con-
tains a finite number of values. As it has been pointed to us, this result has al-
ready appeared in Akiyama, Thuswaldner, Zäımi’s paper [19, Theorem 3] within
a slightly different context restricted to integer digits of bounded absolute value
and zero periodic point (cf. Theorem 1). This equivalence is also shown for
transcendental β when the digits are assumed to be algebraic numbers.

In contrast, for any algebraic base β that has a conjugate which is a complex
number of absolute value 1, we construct a quasi-periodic β-expansion with
infinitely many distinct tail values in Section 3. Thus, for algebraic bases β, we
obtain the equivalence that for any digit alphabet A, every eventually quasi-
periodic β-expansion has a finite number of tail values iff the conjugates of
β are outside the unit circle. This result yields the opposite implication to
[19, Theorem 3] concerning the regularity of language (95). In addition, for
both rational and irrational bases β, we provide examples of a real number
that has no eventually quasi-periodic β-expansion since the tail values of any of
its β-expansions are pairwise distinct. Apart from Section 3, all the examples
presented in the paper exploit the binary alphabet A = {0, 1} which is the
simplest case widely used in the literature. Simpler examples can easily be
found for larger alphabets and/or for arbitrary real digits.

In Section 4, we present examples of β-quasi-periodic numbers within A for
bases β that are or are not Salem or Pisot numbers, including those numbers
having eventually quasi-periodic β-expansions with a constant, linear, and ex-
ponential number of distinct quasi-repetends in terms of their length. On the
other hand, we provide examples of real numbers that are not β-quasi-periodic
within A, despite their greedy and/or lazy β-expansion is eventually periodic.
Furthermore, we prove that a real number is β-quasi-periodic within A iff all
its β-expansions have altogether a finite number of tail values. For any number
that is not β-quasi-periodic within A, an infinite β-expansion exists whose tail
sequence contains only pairwise distinct values. For Pisot bases β and digits
from Q(β), we show that every number in Q(β) is β-quasi-periodic within A,
which means QPer(β) = Per(β).
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In Section 5, we prove that a cut language is regular iff its threshold is
β-quasi-periodic within A. In Section 6, we achieve a dichotomy that a cut lan-
guage is either regular or non-context-free, depending on whether its threshold
is or is not a β-quasi-periodic number within A, respectively. This provides
examples of cut languages that are not context-free. We show that any cut
language with a rational threshold is context-sensitive when the base β and the
digits in A are also rationals. Finally, we summarize the results and present
some open problems in Section 7. A preliminary version of this paper which
considered mainly rational bases, appeared in [20].

1.3. Motivations from Neural Networks

The cut languages can be used to refine the analysis of the computational
power of neural network models which depends on the information content of
their weight parameters [21, 22]. This analysis is satisfactorily fine-grained
in terms of Kolmogorov complexity when changing from rational to arbitrary
real weights, which is approved by an infinite proper hierarchy of nonuniform
complexity classes between P and P/poly for polynomial-time computations [23,
24]. In contrast, there is still a gap between integer and rational weights, which
results in a jump from regular to recursively enumerable languages within the
Chomsky hierarchy.

In particular, neural nets with integer weights, corresponding to binary-
state networks, coincide with finite automata [25, 26, 27, 28, 29, 30, 31]. On the
other hand, a neural network that contains a few analog-state units with rational
weights, can implement two stacks of pushdown automata, a model equivalent
to Turing machines [32]. A natural question arises: What is the computational
power of binary-state networks including one extra analog unit with rational
(or even real) weights? Such a model is equivalent to finite automata with a
register [33], which accept the languages L ⊆ Σ∗ over alphabet Σ 6= ∅ that can
roughly be written in the following form [34, 35]:

L = h

( p⋃
r=1

(
L<cr ∩ L<cr+1

)R · Γr)Pref

∩R0

∗ ∩R
 (9)

(L<cr ∩ L<cr+1
can be replaced with L<0 , L>cr ∩ L<cr+1

, L>cr ∩ L>cr+1
,

L<cr ∩L>cr+1 , and L>1 , so that the underlying intervals create a disjoint cover
of the real line) including usual language operations. In particular, h : Γ∗ −→ Σ∗

is a letter-to-letter morphism where a finite alphabet Γ 6= ∅ is partitioned into
Γ1, . . . ,Γp . Moreover, R,R0 ⊆ Γ∗ are regular languages, SPref denotes the
largest prefix-closed subset of S ∪ Γ ∪ {ε}, and SR denotes the reversal of lan-
guage S. Nevertheless, the core of representation (9) is based on the cut lan-
guages L<cr , L>cr parametrized by rational thresholds 0 = c1 ≤ c2 ≤ · · · ≤
cp+1 = 1 , and defined over the alphabet Γ using a base β where a mapping
α : Γ −→ A transforms Γ into digit alphabet A. The digits, the base, and the
thresholds are derived from the network weights so that β ∈ Q and A ⊂ Q if
the weights of the extra analog-state unit are rationals.
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This representation together with the present results on the cut languages
show that the computational power of neural networks having integer weights
can increase from regular languages to that between context-free and context-
sensitive languages, when an extra analog-state unit with rational weights is
added, while this does not bring any additional power even for real weights if
the thresholds of cut languages in (9) are β-quasi-periodic within A [34, 35].

2. Quasi-Periodic β-Expansions

In this section, we introduce and analyze a notion of eventually quasi-
periodic β-expansions which is a natural generalization of the eventual peri-
odicity defined by (5) and (6) for non-integer bases. We say that an infinite
β-expansion a1a2a3 . . . ∈ Aω is eventually quasi-periodic with a periodic point
% ∈ R if there is an increasing infinite sequence of indices, 0 ≤ k1 < k2 < · · · ,
such that for every i ≥ 1,

(aki+1 . . . aki+1
)β =

mi∑
k=1

aki+kβ
−k = %

(
1− β−mi

)
(10)

(cf. (6)) where mi = ki+1−ki > 0 is the length of quasi-repetend aki+1 . . . aki+1
∈

Ami , while k1 is the length of preperiodic part a1 . . . ak1 ∈ Ak1 . For k1 = 0, we
call such a β-expansion (purely) quasi-periodic. Any eventually quasi-periodic
β-expansion can be evaluated as

(a1a2a3 . . .)β =

∞∑
k=1

akβ
−k = (a1 . . . ak1)β + β−k1% (11)

(cf. (5)) by using (10) since

∞∑
k=k1+1

akβ
−k =

∞∑
i=1

β−ki
mi∑
k=1

aki+kβ
−k = %

∞∑
i=1

β−ki(1− β−mi)

= %

∞∑
i=1

(β−ki − β−ki+1) = β−k1% (12)

is an absolutely convergent series. In fact, condition (10) is equivalent to the
statement that every quasi-repetend creates a periodic β-expansion of %, that
is, for every i ≥ 1,

((aki+1 . . . aki+1
)ω)β = % . (13)

It follows that the sum (11) does not change if any quasi-repetend is re-
moved from the β-expansion or if it is inserted in between two other quasi-
repetends. More generally, the preperiodic part together with an arbitrary se-
quence of quasi-repetends satisfying (10) for the same periodic point %, yields a
β-expansion of the same number. Clearly, every eventually periodic β-expansion
is eventually quasi-periodic with a sequence of identical quasi-repetends. An
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eventually periodic β-expansion can be decomposed into repetends in different
ways by extending the preperiodic part and using a cyclic shift of the repetends.
Although the periodic points ρ are different in these decompositions, such de-
compositions are closely related to each other. On the other hand, a general
eventually quasi-periodic β-expansion can be decomposed into quasi-repetends
in ways which are completely unrelated, as illustrated in the following example.

Example 1. Assume A = {0, 1} and let β ≈ 1.220744 be the real root of the
polynomial x4 − x− 1, which means

β4 − β − 1 = 0 , (14)

such that 1 < β < 2. Any infinite word a ∈ Aω generated by the ω-regular
expression 00 (010 + 1000)ω is an eventually quasi-periodic β-expansion of the
number 1 with the periodic point % = β2. In particular, the prefix 00 is the
preperiodic part of length k1 = 2 while 010 and 1000 represent two quasi-
repetends of length 3 and 4, respectively, satisfying condition (10):

(010)β = β−2 = β2
(
1− β−3

)
(15)

(1000)β = β−1 = β2
(
1− β−4

)
(16)

according to (14). Clearly, formula (11) reads as

(a)β = (00)β + β−2β2 = 1 . (17)

For instance, a = 00 (010 1000 010)ω = 000 (1010000 100)ω can also be decom-
posed into the preperiodic part 000 and two quasi-repetends 1010000 and 100
with the periodic point % = β3, which are not related to the original quasi-
repetends 010 and 1000.

We characterize an eventually quasi-periodic β-expansion by using a so-called
tail sequence. In particular, given an infinite β-expansion a = a1a2a3 . . . ∈ Aω,
we define its tail sequence (rn)∞n=0 as

rn = (an+1an+2an+3 . . .)β =

∞∑
k=1

an+kβ
−k , (18)

which implies
rn+1 = βrn − an+1 for every n ≥ 0 . (19)

Denote by

R(a) = {rn |n ≥ 0} =

{ ∞∑
k=1

an+kβ
−k

∣∣∣∣∣ n ≥ 0

}
(20)

the set of its tail values. In addition, we define a directed transition graph
G(a) = (R(a), E(a)) on the vertex set R(a) with the edges from E(a) =
{(rn, rn+1) ∈ (R(a))2 |n ≥ 0}. Each edge (rn, rn+1) ∈ E(a) is labeled with
the digit an+1 ∈ A, for every n ≥ 0, so that the β-expansion a ∈ Aω defines an
infinite directed walk in G(a), traversing vertices r0, r1, r2, . . . which satisfy the
recurrence condition (19).
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Lemma 1. A β-expansion a ∈ Aω is eventually quasi-periodic with a periodic
point % iff its tail sequence (rn)∞n=0 contains a constant infinite subsequence
(rki)

∞
i=1 such that

rki = % for every i ≥ 1 . (21)

Thus, if R(a) is finite, then a is eventually quasi-periodic.

Proof. Let a = a1a2a3 . . . ∈ Aω be an eventually quasi-periodic β-expansion
with periodic point %, which means there is an increasing infinite sequence of
indices 0 ≤ k1 < k2 < · · · such that equation (10) holds for every i ≥ 1. It
follows that

β−kirki =

∞∑
k=ki+1

akβ
−k =

∞∑
j=i

β−kj
mj∑
k=1

akj+kβ
−k

= %

∞∑
j=i

β−kj
(
1− β−mj

)
= %

∞∑
j=i

(
β−kj − β−kj+1

)
= β−ki% , (22)

which implies (21).
Conversely, assume that (rn)∞n=0 contains a constant subsequence (rki)

∞
i=1

that meets (21). We have

(aki+1 . . . aki+1
)β =

mi∑
k=1

aki+kβ
−k = rki − β−mirki+1

= %
(
1− β−mi

)
(23)

where mi = ki+1 − ki > 0 , which implies (10) for every i ≥ 1.
Finally, assume that R(a) is a finite set, which means there must be a real

number % ∈ R(a) such that rki = % for infinitely many indices 0 ≤ k1 < k2 < · · · ,
that is, (rki)

∞
i=1 creates a constant infinite subsequence of tail sequence (rn)∞n=0 .

Hence, β-expansion a is eventually quasi-periodic. �

Denote by P (a) the set of all possible periodic points of an eventually
quasi-periodic β-expansion a = a1a2a3 . . . ∈ Aω, which meets P (a) ⊆ R(a)
by Lemma 1. As illustrated in Example 1, the decomposition of a into a prepe-
riodic part a1 . . . ak1 and quasi-repetends aki+1 . . . aki+1 for i ≥ 1, is ambiguous
by definition. Nevertheless, any choice of the periodic point % ∈ P (a) deter-
mines the unique quasi-repetends (inducing the unique preperiodic part) that
are delimited by all its occurrences rki = % for i ≥ 1, in the tail sequence (rn)∞n=0

of a, according to Lemma 1, which means rn 6= % whenever n /∈ {ki | i ≥ 1}.

Example 2. We present an example of an eventually quasi-periodic β-expansion
which is composed of quasi-repetends of unbounded length. Assume A = {0, 1}
and let β ≈ 1.324718 be the plastic constant (i.e. the minimal Pisot number)
which is the unique real root of the polynomial x3 − x− 1, that is,

β3 − β − 1 = 0 . (24)
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We define an infinite word a ∈ Aω as

a = 0 (100) 0(011)1 (100)2 0(011)21 . . . (100)i 0(011)i1 . . . (25)

which proves to be an eventually quasi-periodic β-expansion of the number 1 by
the same argument as in Example 1. In particular, for the periodic point % = β,
the prefix 0 is a preperiodic part of length k1 = 1 while 100 and 0(011)i1,
for every i ≥ 1, represent the quasi-repetends of length 3 and `i = 3i + 2,
respectively, satisfying condition (10):

(100)β = β−1 = β
(
1− β−3

)
(26)

(0(011)i1)β =

i∑
k=1

β−3k +

i∑
k=1

β−3k−1 + β−`i

=
(
1 + β−1

) 1− β−`i+2

β3 − 1
+ β−`i

=
(β + 1)

(
1− β−`i+2

)
+ β−`i+2

β2
=
β3 − β−`i+3

β2

= β
(
1− β−`i

)
(27)

according (24).
An alternative way of showing that the β-expansion a defined in (25) is

eventually quasi-periodic, is to generate its tail sequence (rn)∞n=0 starting with
r0 = 1 and using the recurrence (19) and condition (24). For this purpose, we
introduce a sequence of integer polynomials fn ∈ Z[x] as f0(x) = 1 and

fn+1(x) = (xfn(x)− an+1) mod
(
x3 − x− 1

)
for every n ≥ 0 , (28)

satisfying rn = fn(β) by induction on n, which produces

1, β , β2 − 1, 1, β , β2, β + 1, β2 + β − 1, β2,

. . . ,
(
β , β2 − 1, 1

)i
, β ,

(
β2, β + 1, β2 + β − 1

)i
, β2, . . . (29)

where (β, β2 − 1, 1)i denotes the three tail values β, β2 − 1, 1 repeated i times
and β in boldface highlights a constant infinite subsequence from Lemma 1.
Hence, the set of tail values,

R(a) =
{
β2 − 1, 1, β, β2, β2 + β − 1, β + 1

}
, (30)

is finite, which proves a to be eventually quasi-periodic according Lemma 1. In
fact, this procedure also generates the corresponding transition graph G(a) =
(R(a), E(a)) which is depicted in Figure 1. It is clear that each vertex in this
graph is traversed infinitely many times following the walk (29), which implies
P (a) = R(a). For each periodic point % ∈ P (a), we obtain the unique decompo-
sition of a into quasi-repetends, e.g. for % = β2 +β− 1, we have the preperiodic
part 0100001 and the quasi-repetends 101 and 11(100)i001, for i ≥ 2.

10



Figure 1: The transition graph G(a) for a = 0 (100) 0(011)1 . . . (100)i 0(011)i1 . . . when
A = {0, 1} and β > 1 is the plastic constant satisfying β3 − β − 1 = 0.

Graph G(a) contains two directed vertex-disjoint cycles C1 = β, β2 − 1, 1
and C2 = β2, β + 1, β2 + β − 1 of length 3, which are bidirectionally connected
by (β, β2) ∈ E(a) and (β2, β) ∈ E(a), respectively. Suppose a periodic point
% ∈ R(a) is taken from the cycle C1 (symmetrically for the cycle C2). For
every integer i ≥ 1, after the cycle C1 is consecutively traversed i times, the
walk crosses the edge (β, β2) ∈ E(a) and enters the cycle C2 which is also
consecutively traversed i times according to (29). Thus the vertex % in the cycle
C1 is again visited first after at least i passes of cycle C2 take place, which
ensures the gap of length at least 3i between two consecutive occurrences of %
in the tail sequence (rn)∞n=0. It follows that for every choice of periodic point
% ∈ P (a), the length of quasi-repetends of eventually quasi-periodic β-expansion
(25) is unbounded.

Example 3. On the other hand, we present below an example of both rational
and irrational base β such that the tail sequence of each infinite β-expansion
of a number contains only pairwise distinct values, which implies there is no
eventually periodic β-expansion of this number according to Lemma 1. We
assume A = {0, 1}.

We first consider rational β = 3
2 < ϕ which ensures there are uncountably

many infinite β-expansions of the number 1 (see Paragraph 1.1). Denote by
a = a1a2a3 . . . ∈ Aω any such a β-expansion whose tail sequence (rn)∞n=0 thus
starts with r0 = 1. We prove by induction on n that for every n ≥ 0, rn = cn/2

n

for some odd integer cn. Obviously, r0 = 1/20, and let rn = cn/2
n holds for an

odd integer cn. If an+1 = 0, then rn+1 = 3cn/2
n+1 by (19) where cn+1 = 3cn

is an odd integer, while for an+1 = 1, we have rn+1 = (3cn − 2n+1)/2n+1 where
cn+1 = 3cn−2n+1 remains odd. Consequently, all the values in the tail sequence
of each 3

2 -expansion of 1 are different.

11



Now consider the case of irrational β =
√

2 ≈ 1.414214 < ϕ and let a =
a1a2a3 . . . ∈ Aω be any of the uncountably many infinite β-expansions of the
number β − 1. Denote by β1 = β and β2 = −β the roots of the polynomial
x2 − 2. We define a sequence of integer polynomials fn ∈ Z[x] of degree at
most 1 as f0(x) = x− 1 and

fn+1(x) = (xfn(x)− an+1) mod
(
x2 − 2

)
for every n ≥ 0 . (31)

By induction on n, the tail sequence (rn)∞n=0 of a meets rn = fn(β1) according
to (19). Similarly, the sequence (r′n)∞n=0 which is defined as r′n = fn(β2), satisfies

r′n+1 = β2r
′
n − an+1 for every n ≥ 0 . (32)

Moreover, we define the sequence

dn = max (0, β2 − r′n, r′n − 1) for every n ≥ 0 , (33)

which is the distance of r′n from the interval [β2, 1]. We prove that

dn+1 ≥ β1dn for every n ≥ 0 . (34)

If r′n ∈ [β2, 1], then dn = 0 and (34) is trivially met. If r′n < β2, then dn = β2−r′n
and r′n+1 > 1 by (32) since β2r

′
n > 2 and an+1 ∈ {0, 1}, which implies dn+1 =

r′n+1− 1. Thus, (34) reduces to dn+1 = β2r
′
n−an+1− 1 ≥ −β2(β2− r′n) = β1dn

which holds due to β2
2 = 2. On the other hand, if r′n > 1, then dn = r′n − 1

and r′n+1 < β2 since β2r
′
n < β2, which implies dn+1 = β2 − r′n+1. Thus, (34)

reduces to dn+1 = β2 − β2r′n + an+1 ≥ −β2(r′n − 1) = β1dn which is met. This
completes the proof of inequality (34) which, together with d0 = 1 following
from r′0 = f0(β2) = β2 − 1, ensures that all dn respectively r′n are distinct.
Hence, all the polynomials fn are different. Since for each n ≥ 0, the degree of
fn is less than the degree of the minimal polynomial of β1 by (31), we have that
also the tail values rn = fn(β1) for n ≥ 0 are pairwise distinct.

For any algebraic base β whose conjugates are not on the unit circle, we
show in the following Theorem 1 that the sufficient condition from Lemma 1
that a set of tail values R(a) is finite, is also necessary for a β-expansion a ∈ Aω
to be eventually quasi-periodic. In a preliminary version of this paper, we have
proven this claim separately for the bases that are rationals [20] and algebraic
integers with conjugates outside the unit circle (including Pisot numbers; cf.
Theorem 5), respectively. The ideas of these two proofs can be combined in
order to prove the result in Theorem 1, which has in fact appeared already in
[19, Theorem 3] within a slightly different context restricted to integer digits of
bounded absolute value and zero periodic point, as has been pointed to us by
an anonymous referee and others (see Acknowledgments).

Theorem 1. Let β ∈ A∩R be a real algebraic number whose conjugates are in
absolute value not 1. Then β-expansion a ∈ Aω is eventually quasi-periodic iff
R(a) is finite.
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Proof. From Lemma 1, we already know even for arbitrary β ∈ R that if R(a)
is finite for some β-expansion a ∈ Aω, then a is eventually quasi-periodic.

Conversely, let a = a1a2a3 . . . ∈ Aω be an eventually quasi-periodic β-expan-
sion with periodic point %. Its tail sequence (rn)∞n=0 satisfying the recurrence
(19), contains a constant infinite subsequence (rki)

∞
i=1 that meets (21) according

to Lemma 1. In the following claim, we first prove that R(a) = {rn |n ≥ 0}
is finite for digits A ⊂ Q(β) from the field extension Q(β) ⊂ A for algebraic
β ∈ A ∩ R, which will then generalize to arbitrary real digits A ⊂ R.

Claim 1. Let A ⊂ Q(β) and assume that (rn)∞n=0 is a sequence of real numbers
satisfying (19) and (21). Then R(a) = {rn |n ≥ 0} is finite.

Proof. Denote by OQ(β) the ring of algebraic integers contained in Q(β). Re-
versely, Q(β) is the field of fractions of the integral domain OQ(β). Hence, there
exists γ ∈ OQ(β) such that γ 6= 0 and

A′ = {γα |α ∈ A} ⊂ OQ(β) (35)

%′ = γ% ∈ OQ(β) (36)

r′0 = γr0 ∈ OQ(β) (37)

since we assume A ⊂ Q(β) which implies % ∈ Q(β) and r0 ∈ Q(β) according to
(10) and (11), respectively. It follows that a′ = a′1a

′
2a
′
3 . . . ∈ (A′)ω where a′n =

γan ∈ A′ ⊂ OQ(β) for every n ≥ 1, is an eventually quasi-periodic β-expansion
with the periodic point %′ ∈ OQ(β). By the assumption, its tail sequence (r′n)∞n=0

with r′n = γrn ∈ Q(β) for every n ≥ 0, satisfies the recurrence (19),

r′n+1 = βr′n − a′n+1 (38)

and condition (21),
r′ki = %′ for every i ≥ 1 . (39)

Lemma 2. If r′n /∈ OQ(β), then r′n+1 /∈ OQ(β).

Proof. Assume r′n /∈ OQ(β) and consider the fractional ideal (r′n) of OQ(β)

generated by r′n ∈ Q(β), which is a non-zero OQ(β)-submodule of Q(β) (i.e.
closed under linear combinations with scalars from OQ(β)) such that there ex-
ists d ∈ OQ(β) \ {0} satisfying d · (r′n) ⊆ OQ(β). Recall that (r′n) decomposes
uniquely up to ordering into the product of integer powers of prime ideals
P ⊂ OQ(β) since the ring OQ(β) is a Dedekind domain [36]. For any prime
ideal P ⊂ OQ(β) in this decomposition, let vP : Q(β) −→ Z ∪ {∞} be the
discrete valuation on Q(β) over P which defines the discrete valuation subring
RP = {x ∈ Q(β) | vP (x) ≥ 0} ⊃ OQ(β) of Q(β) [36]. Since r′n ∈ Q(β) \ OQ(β),
P can be chosen so that it has a negative exponent in the decomposition and
then the discrete valuation v = vP over P meets v (r′n) < 0. Recall that the
discrete valuation v satisfies the axioms: v(0) =∞, v(x · y) = v(x) + v(y), and
v(x+ y) ≥ min(v(x), v(y)) for all x, y ∈ Q(β).

By induction on n, there is a polynomial g(x) =
∑n
i=0 cix

i ∈ OQ(β)[x] with
the coefficients cn = r′0 ∈ OQ(β) and ci = −an−i ∈ OQ(β) for i = 0, . . . , n − 1,
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such that r′n = g(β) according to (37), (38), and (35). We have v(β) < 0 since
v(β) ≥ 0 leads to a contradiction,

v(r′n) = v(g(β)) = v

(
n∑
i=0

ciβ
i

)
≥ min
i=0,...,n

(v(ci) + i · v(β)) ≥ 0 (40)

by the properties of v and v(ci) ≥ 0 following from ci ∈ OQ(β) for every i =
0, . . . , n. According to (38),

min
(
v
(
r′n+1

)
, v
(
a′n+1

))
≤ v

(
r′n+1 + a′n+1

)
= v (βr′n) = v(β)+v (r′n) < 0 (41)

which implies v
(
r′n+1

)
< 0 due to v

(
a′n+1

)
≥ 0 by (35), and hence, r′n+1 6∈

OQ(β), completing the proof of Lemma 2. �

Let p ∈ Q[x] be a minimal (monic) polynomial of β having degree m ≥ 1.
Let β = β1, β2, . . . , βm be its roots which are pairwise different. We introduce a
sequence of polynomials fn ∈ Q[x] for every n ≥ 0, so that f0(β) = r′0 ∈ Q(β) =
Q[β] and

fn+1 =
(
xfn − ga′n+1

)
mod p (42)

where gα′ ∈ Q[x] is a polynomial corresponding to the digit α′ = gα′(β) ∈ A′ ⊂
Q[β]. The polynomials fn(x) =

∑m−1
i=0 φnix

i have degree at most m − 1 and
satisfy

r′n = fn(β) =

m−1∑
i=0

φniβ
i (43)

by induction on n, using (38) and p(β) = 0.

Lemma 3. There exists a natural number d ∈ N such that for every n ≥ 0, the
coefficients of polynomial fn satisfy d · φni ∈ Z for i = 0, . . . ,m− 1.

Proof. Suppose there exists n ≥ 0 such that r′n /∈ OQ(β) and let i ≥ 1 be the
least index in (39) that meets ki > n. By applying Lemma 2 (ki − n) times
we obtain rki /∈ OQ(β) which contradicts rki = %′ ∈ OQ(β) according to (36).
Therefore, r′n ∈ OQ(β) for all n ≥ 0.

Let ω1, . . . , ωm be an integral basis of OQ(β) [37], which means that for every
n ≥ 0, there are integer coordinates cn1, . . . , cnm ∈ Z of r′n with respect to this
basis,

r′n =

m∑
j=1

cnjωj . (44)

Since β ∈ A ∩ R is an algebraic number, for each j ∈ {1, . . . ,m}, the basis
element ωj ∈ OQ(β) ⊂ Q(β) = Q[β] can be written as

ωj =

m−1∑
i=0

µji
dji

βi (45)
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for some integers µji ∈ Z and natural numbers dji ∈ N. Let d ∈ N be the least
common multiple of the numbers dji for every j = 1, . . . ,m and i = 0, . . . ,m−1,
which implies that the numbers zji = d · µjidji ∈ Z are integers. By plugging (45)

into (44), we express r′n as a polynomial in β,

r′n =

m∑
j=1

cnj

m−1∑
i=0

zji
d
βi =

m−1∑
i=0

1

d

m∑
j=1

cnjzji

βi . (46)

Since the minimal polynomial of β has degree m, the polynomials in (43)
and (46) must coincide, which means

d · φni =

m∑
j=1

cnjzji ∈ Z (47)

are integers for every n ≥ 0 and i = 0, . . . ,m − 1, completing the proof of
Lemma 3. �

For every n ≥ 0, we define the vector un = (un1, . . . , unm) as

uᵀn = V φᵀn (48)

where ᵀ denotes the vector transpose, φn = (φn0, . . . , φn,m−1) is the vector of
coefficients of fn, and

V =


1 β1 β2

1 . . . βm−11

1 β2 β2
2 . . . βm−12

...
...

...
. . .

...
1 βm β2

m . . . βm−1m

 (49)

is the square Vandermonde matrix of orderm, which is invertible since β1, . . . , βm
are pairwise distinct. Hence,

φᵀn = V −1uᵀn (50)

which gives the following bound on the maximum norm of φn,

‖φn‖∞ ≤
∥∥V −1∥∥∞ · ‖un‖∞ . (51)

It follows from (48) and (49) that for every n ≥ 0, un = (fn(β1), . . . , fn(βm))
which implies

un+1,i = βiuni − ga′n+1
(βi) for i = 1, . . . ,m (52)

according to (42) and p(βi) = 0 . Note that for i = 1, the recurrence (52)
coincides with (38). In the following lemmas we will bound |uni| by using |βi|
and Mi = maxα′∈A′ |gα′(βi)| for i = 1, . . . ,m.

Lemma 4. If |βi| < 1, then the sequence (uni)
∞
n=0 is bounded.
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Proof. Let

µ =
Mi

1− |βi|
. (53)

We show that for every n ≥ 0, if |uni| > µ, then |un+1,i| < |uni|. According
to (52), we have

|un+1,i| =
∣∣∣βiuni − ga′n+1

(βi)
∣∣∣ ≤ |βi| · |uni|+Mi . (54)

We multiply inequality (54) by −1 and add |uni|, which gives

|uni| − |un+1,i| ≥ (1− |βi|) · |uni| −Mi > (1− |βi|)µ−Mi = 0 . (55)

On the other hand, if |uni| ≤ µ, then

|un+1,i| ≤ |βi|µ+Mi = µ . (56)

Altogether, this implies that for every n ≥ 0, we have |uni| ≤ max (µ, |u0i|)
implying the statement of Lemma 4. �

Lemma 5. If |βi| > 1, then the sequence (uni)
∞
n=0 is either bounded or there is

an index n0 ≥ 0 such that for all n ≥ n0, we have |un+1,i| > |uni|.

Proof. Let

µ =
Mi

|βi| − 1
. (57)

We show that for every n ≥ 0, if |uni| > µ, then |un+1,i| > |uni|. According
to (52), we have

|un+1,i| =
∣∣∣βiuni − ga′n+1

(βi)
∣∣∣ ≥ |βi| · |uni| −Mi (58)

which implies

|un+1,i| − |uni| ≥ (βi − 1) · |uni| −Mi > (|βi| − 1)µ−Mi = 0 . (59)

It follows that either for every n ≥ 0, we have |uni| ≤ µ, or there is an index
n0 ≥ 0 such that |un0i| > µ and then |un+1,i| > |uni| for all n ≥ n0, which
completes the proof of Lemma 5. �

The sequence (un1)∞n=0 is the tail sequence of β-expansion a′ due to un1 =
fn(β) = r′n for every n ≥ 0, which means (un1)∞n=0 is bounded. For i ∈
{2, . . . ,m} such that |βi| < 1, the sequence (uni)

∞
n=0 is bounded according to

Lemma 4. For i ∈ {2, . . . ,m} such that |βi| > 1, assume for a contradiction
that the sequence (uni)

∞
n=0 is unbounded. Lemma 5 implies that there is an

index n0, such that all the numbers uni for n ≥ n0 are different. Hence, the
polynomials fn for n ≥ n0 are distinct because fn(βi) = uni. By Lemma 1 we
know that (un1)∞n=0 contains an infinite constant subsequence and thus, there
are two different polynomials fn1

and fn2
of degree at most m − 1 such that
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fn1(β)− fn2(β) = 0, which contradicts that the minimal polynomial p of β has
degree m. It follows that (uni)

∞
n=0 is bounded also for |βi| > 1.

Since the sequences (uni)
∞
n=0 are bounded for all i ∈ {1, . . . ,m}, inequality

(51) implies that the coefficients of fn are bounded. Consequently, there is only
a finite number of different polynomials fn according to Lemma 3, and hence,
also a finite number of different r′n. This means that R(a′) respectively R(a) is
finite, completing the proof of Claim 1 for A ⊂ Q(β). �

Now we generalize the argument to arbitrary real digits A ⊂ R. Let U =
span(A ∪ {r0}) ⊆ R be the linear span of the set A ∪ {r0} in the vector space
of real numbers over the field Q(β). Clearly, the dimension of U is finite due
to A is finite, and denote by B = {b1, . . . , bd} the basis of U . Since U is closed
under the multiplication by β ∈ Q(β) and A ⊂ U , we have rn ∈ U for every
n ≥ 0, according to (19), which implies % ∈ U by (21). For any u ∈ U and
j ∈ {1, . . . , d}, let cj(u) ∈ Q be the (unique) j-th coordinate of the vector u ∈ U
with respect to the basis B, that is,

u =

d∑
j=1

cj(u)bj . (60)

For every j = 1, . . . , d, denote Aj = {cj(α) |α ∈ A} ⊂ Q(β), %j = cj(%) ∈
Q(β), and rnj = cj(rn) ∈ Q(β). Recurrence (19) reads

βrn − rn+1 =

d∑
j=1

(βrnj − rn+1,j)bj ∈ A for every n ≥ 0 , (61)

which implies βrnj − rn+1,j ∈ Aj . Similarly, condition (21) rewrites to

rki = % =

d∑
j=1

cj(%)bj =

d∑
j=1

%jbj for every i ≥ 1 , (62)

which gives rki,j = %j for every i ≥ 1. Thus for a fixed j ∈ {1, . . . , d}, the
sequence (rnj)

∞
n=0 satisfies the assumption of Claim 1 for A and % replaced by

Aj and %j , respectively. Therefore, {rnj |n ≥ 0} is finite for each j ∈ {1, . . . , d},
which ensures R(a) is finite because

rn =

d∑
j=1

rnjbj . (63)

This completes the proof of Theorem 1. �

Theorem 1 can easily be extended to transcendental bases if the digits are
algebraic numbers.

Theorem 2. Let β ∈ R\A be a real transcendental base and assume A ⊂ A∩R
is a subset of real algebraic numbers. Then β-expansion a ∈ Aω is eventually
quasi-periodic iff R(a) is finite.
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Proof. If R(a) is finite, then β-expansion a ∈ Aω is eventually quasi-periodic
by Lemma 1. Conversely, let a = a1a2a3 · · · ∈ Aω be an eventually quasi-
periodic β-expansion. Clearly, if a is eventually periodic, then R(a) is fi-
nite. On the contrary, suppose there are two distinct unique quasi-repetends
akj+1 . . . akj+1

∈ Amj and akj+1+1 . . . akj+2
∈ Amj+1 satisfying condition (10)

for i = j and i = j + 1, respectively, for the same periodic point % = rkj =
rkj+1 ∈ P (a) whereas rn 6= % for all n /∈ {ki | i ≥ 1}. It follows that

(
1− β−mj+1

) mj∑
k=1

akj+kβ
−k =

(
1− β−mj

)mj+1∑
k=1

akj+1+kβ
−k (64)

which ensures β ∈ A because A ⊂ A and the field of algebraic numbers A
is algebraically closed. This is a contradiction to our assumption that β is
transcendental. �

3. Quasi-Periodic β-Expansions with Infinitely Many Tail Values

For algebraic bases β whose conjugates are outside the unit circle, Theorem 1
shows that a β-expansion is eventually quasi-periodic iff the set of its tail values
is finite. In this section, we prove for any algebraic base β which breaks the
assumption of Theorem 1 concerning its conjugates that for some integer digits,
there is a quasi-periodic β-expansion with infinitely many tail values.

Theorem 3. Let β ∈ A ∩ R be a real algebraic number with a conjugate of
absolute value 1. Then there exists A ⊂ Z and a quasi-periodic β-expansion
a ∈ Aωof the number 0 such that R(a) is infinite.

Proof. Let c0, . . . , cd ∈ Z where cd 6= 0, be the integer coefficients of a unique
(up to its sign) irreducible polynomial

p(x) =

d∑
k=0

ckx
k (65)

of the minimal degree d, whose roots include the algebraic base β = β1 ∈ A∩R
and its conjugate β2 ∈ C from the assumption, which means |β1| > 1 and
|β2| = 1. Note that β2 /∈ R since 1 and −1 cannot be the roots of non-linear
irreducible p. Denote by β3 ∈ C \ R the complex conjugate of β2 which is
also a root of p, satisfying |β3| = |β2| = 1. Thus, d ≥ 3 and β2 = 1/β3,
β3 = 1/β2 are the roots of the reciprocal polynomial of p, which is the unique
minimal polynomial of β2 up to sign, that is, either ck = cd−k for k = 0 . . . , d,
or ck = −cd−k for k = 0 . . . , d. The latter case would imply that 1 is a root
of p, and hence p is self-reciprocal. Since any self-reciprocal polynomial of odd
degree has −1 as a root, we have d ≥ 4 is even.

For all m ≥ m0, where m0 is large enough exceeding the bounds obtained in
several places of the proof, we will construct a quasi-repetend a1 . . . am ∈ Am
of size m over a fixed finite set of integer digits A ⊂ Z, satisfying (10) as

(a1 . . . am)β = 0 (66)
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for the periodic point % = r0 = rm = 0, so that there are infinitely many
different tail values rm′+d where

m′ =
⌊
m
2

⌋
(67)

and

rn = (an+1 . . . . . . am)β =

m∑
k=n+1

akβ
−k for n = 0, . . . ,m , (68)

when m goes to infinity. Note that m0 > 2d in order to have m′ + d < m due
to (67). By using such quasi-repetends, one can simply define a quasi-periodic
β-expansion a ∈ Aω of the number 0 that is composed of an infinite sequence of
these quasi-repetends with increasing m, which ensures the set of its tail values
R(a) is infinite, including infinite set {rm′+d |m ≥ m0}.

We employ an m ×m integer circulant matrix C whose associated polyno-
mial is p. Thus, the first column of C contains its d + 1 coefficients c0, . . . , cd
completed by m− d− 1 zeros, while the remaining columns of C are each cyclic
permutations of the first column with offset equal to the column index, that is,

(C)i,j =

{
ck = cd−k if 0 ≤ k = (i− j) mod m ≤ d
0 otherwise

for 1 ≤ i, j ≤ m. (69)

It is known that the eigenvectors of circulant matrix C are

v(ω) = (1, ω1, . . . , ωm−1) (70)

for any m-th root of unity ω ∈ C satisfying ωm = 1. The eigenvalue λ(ω) ∈ C
paired with the eigenvector v(ω) whose first component is 1, can be determined
from the first component of vector λ(ω)v(ω)ᵀ = Cv(ω)ᵀ as

λ(ω) =

m∑
j=1

(C)1,j(v(ω))j = c0 +

d∑
k=1

ckω
m−k =

d∑
k=0

ckω
m−k

= ωm−d
d∑
k=0

ckω
d−k = ω−d

d∑
k=0

ckω
k =

p(ω)

ωd
(71)

because p is self-reciprocal and ωm = 1. Hence,

|λ(ω)| = |p(ω)| (72)

due to |ω| = 1.
Let δ ∈ C be the m-th root of unity having the smallest positive complex

argument, that is,

δ = e
2πi
m . (73)

Assume that ω is the m-th root of unity such that in the complex plane, the
m-th root of unity ωδd/2 is the closest possible to β2. Then,∣∣ωδi − β2∣∣ = O(1/m) for i = 0, . . . , d . (74)
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According to (70)–(72), the absolute value of the eigenvalues λ(ωδi) paired with
the eigenvectors v(ωδi) for i = 0, . . . , d, for the matrix C, is bounded as

max
i=0,...,d

∣∣(λ(ωδi)
∣∣ = max

i=0,...,d

∣∣(p(ωδi)∣∣ = O(1/m) (75)

since we assume (74) and the derivative of p is bounded in the neighborhood of
its root β2. In particular, choose s = Θ(m) so that∣∣(λ(ωδi)

∣∣ =
∣∣(p(ωδi)∣∣ ≤ 1/s for i = 0, . . . , d . (76)

In addition, let γ0, γ1, . . . , γd ∈ C be the complex coefficients of the monic
polynomial h of degree d whose roots are δm−d, δm−d+1, . . . , δm−1 ∈ C, that is,

h(z) =

d∑
i=0

γiz
i =

d∏
j=1

(
z − δm−j

)
. (77)

Now, we can define the quasi-repetend a1 . . . am ∈ Zm as

(a1, . . . , am)ᵀ = C · u′ᵀ (78)

where C is the circulant matrix introduced in (69) and u′ = (u′1, . . . , u
′
m) ∈ Zm

is an integer vector of size m, such that

u′ = round (Re (su)) . (79)

In particular, the integer vector u′ ∈ Zm is created from a complex vector
su ∈ Cm by rounding the real part of all its components to the nearest integer,
where s meets (76) and u = (u1, . . . , um) ∈ Cm is a complex vector of size m,
which is defined as

u =
1

ωm′

d∑
i=0

γiv(ωδi) (80)

by using m′, γi, and v(ωδi) from (67), (77), and (70), (74), respectively.
The j-th component of vector u introduced in (80), can be expressed as

uj =
1

ωm′

d∑
i=0

γi
(
ωδi
)j−1

= ωj−m
′−1h

(
δj−1

)
for j = 1, . . . ,m , (81)

by using (70) and (77), which implies um−d+1 = um−d+2 = · · · = um = 0 by
(77). Thus,

u′m−d+1 = u′m−d+2 = · · · = u′m = 0 (82)

from (79). According to (78), (69), and (82), we have

aj = (C · u′ᵀ)j =

min(d,j−1)∑
k=max(0,j−m+d)

cku
′
j−k for j = 1, . . . ,m , (83)
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which produces

m∑
j=1

ajx
−j =

m∑
j=1

 min(d,j−1)∑
k=max(0,j−m+d)

cku
′
j−k

 x−j = p(x)

m−d∑
i=1

u′ix
−i−d . (84)

It follows from (84) and p(β) = 0 that

(a1 . . . am)β =

m∑
j=1

ajβ
−j = p(β)

m−d∑
i=1

u′iβ
−i−d = 0 (85)

which meets (66) confirming that a1 . . . am ∈ Zm is a quasi-repetend for the
periodic point % = 0.

In the following lemma, we show that the quasi-repetend introduced in (78)
exploits only bounded digits for arbitrarily large m, which means there is a finite
set of integer digits A ⊂ Z such that a1 . . . am ∈ Am for any m ≥ m0.

Lemma 6. For arbitrarily large m, the digits a1, . . . , am ∈ Z are bounded.

Proof. In (79), rounding changes each component of vector Re(su) by at most
1/2. According to (69), the entries of matrix C are bounded and each row
of C contains at most d + 1 non-zero entries. Hence, at most d + 1 rounding
errors contribute to each component of C ·Re(su)ᵀ. It follows that the difference
between aj in (78) and the j-th component of C ·Re(su)ᵀ is bounded for every
j = 1, . . . ,m. Moreover, we have C · Re(su)ᵀ = Re(C · suᵀ) due to C is an
integer matrix. Thus, it remains to prove that the components of Re(C · suᵀ)
are bounded. For this purpose, it suffices to show that |(C · suᵀ)j | is bounded
for every j = 1, . . . ,m, since the real part of a complex number is at most its
absolute value.

According to (80), we have

C · suᵀ =
s

ωm′

d∑
i=0

γi C · v(ωδi)ᵀ =
s

ωm′

d∑
i=0

γi λ(ωδi) v(ωδi)ᵀ (86)

since λ(ωδi) are the eigenvalues paired with the eigenvectors v(ωδi) for the
matrix C. We know from (70) that each component of v(ωδi) has absolute
value 1 and hence, the absolute value of each component of λ(ωδi) v(ωδi) is at
most 1/s by (76). It follows that∣∣∣(C · suᵀ)j

∣∣∣ ≤ s

|ωm′ |

d∑
i=0

|γi|
s

=

d∑
i=0

|γi| for j = 1, . . . ,m . (87)

For sufficiently large m ≥ m0, the roots of the polynomial h defined by (77),
are close to 1 in the complex plane, because of (73) whereas d is a constant.
Hence, the coefficients γ0, . . . γd of h are close to the coefficients of the polynomial

(z − 1)d = (1− z)d =

d∑
i=0

(−1)d−i
(
d

i

)
zi (88)
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for even d, which extends the bound (87) to∣∣∣(C · suᵀ)j

∣∣∣ ≤ d∑
i=0

|γi| ≤
d∑
i=0

∣∣∣∣(−1)d
(
d

i

)∣∣∣∣+ o(1) = 2d + o(1) (89)

for every j = 1, . . . ,m. This completes the proof of Lemma 6. �

Furthermore, the tail value rn for n = 1, . . . ,m, defined by (68), can be
computed by using (19) for r0 = 0 and p(β) = 0, as

rn = fn(β) (90)

where fn ∈ Z[x] is an integer polynomial of degree at most d− 1 such that

fn(x) =

− n∑
j=1

ajx
n−j

 mod p . (91)

Lemma 7. For 1 ≤ n ≤ m, the coefficient of the monomial xd−1 in fn is
−c0u′n−d+1.

Proof. We multiply equation (84) by −xn and move the terms with the neg-
ative powers of x from the left-hand side:

gn(x) = −
n∑
j=1

ajx
n−j = −

m−d∑
i=1

u′ix
n−i−dp(x) +

m−n∑
j=1

an+jx
−j (92)

which satisfies fn = gn mod p according to (91). In order to analyze fn, it
is thus sufficient to consider the terms u′ix

n−i−dp(x) on the right-hand side
of (92) that contain the non-negative powers of x. For 1 ≤ i ≤ n − d, the

term u′ix
n−i−dp(x) =

∑d
k=0 cku

′
ix
n−i−k is a polynomial that is a multiple of

self-reciprocal p. Hence,

fn(x) =

− m−d∑
i=n−d+1

u′ix
n−i−dp(x) +

m−n∑
j=1

an+jx
−j

 mod p

=

− m−d∑
i=n−d+1

d∑
k=0

cku
′
ix
n−i−k +

m−n∑
j=1

an+jx
−j

 mod p (93)

By (92), all the terms with a negative power of x in the right-hand side of (93)
cancel each other. Hence, we have

fn(x) = −
n∑

i=n−d+1

n−i∑
k=0

cku
′
ix
n−i−k (94)

which is a polynomial of degree at most d − 1 achieved for i = n − d + 1 and
k = 0, corresponding to the coefficient −c0u′n−d+1. This completes the proof of
Lemma 7. �
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By Lemma 7 with n = m′ + d, the coefficient of xd−1 in fm′+d is −c0u′m′+1.

For any sufficiently large m ≥ m0 and m′ defined by (67), δm
′

is arbitrarily close
to −1 in the complex plane, due to (73). Hence, the complex number um′+1 =
h(δm

′
) derived from (81), is close to h(−1) which is close to 2d according to

(88). It follows from (79) that u′m′+1 ≥ s(2d − o(1)) − 1/2 is unbounded with
increasing m since s grows with m. Therefore, there are infinitely many different
values of u′m′+1, so there are infinitely many different polynomials fm′+d(x), and
hence, also infinitely many different tail values rm′+d = fm′+d(β) by (90), which
completes the proof of Theorem 3. �

Combining Theorem 1 and 3, we obtain the following corollary:

Corollary 1. Let β ∈ A ∩ R be a real algebraic number. There exists a digit
alphabet A such that there is an eventually quasi-periodic β-expansion a ∈ Aω
with infinite R(a) iff β has a conjugate of absolute value 1.

Theorem 3 also provides the opposite implication to [19, Theorem 3], which
means there exists an integer M > 0, such that there is no finite automaton
recognizing the language{

am . . . a0 ∈ {−M, . . . ,−1, 0, 1, . . . ,M}∗
∣∣∣∣∣
m∑
k=0

akβ
k = 0

}
(95)

iff a conjugate of β lies on the unit circle.

4. Quasi-Periodic Numbers

In this section, we introduce and study so-called quasi-periodic numbers,
which will be employed for characterizing the class of regular cut languages in
Section 5. We say that a real number c is β-quasi-periodic within A if every infi-
nite β-expansion of c is eventually quasi-periodic. Note that a number c that has
no β-expansion at all, or has, in addition, a finite β-expansion whereas 0 /∈ A, is
also considered formally to be β-quasi-periodic, since this simplifies the formu-
lation of statements concerning the quasi-periodic numbers. For example, the
numbers from the complement of the Cantor set are formally 3-quasi-periodic
within {0, 2}, since they have no 3-expansion for the alphabet {0, 2}.

We generalize the definition of set R(a), introduced for a single β-expansion
a ∈ Aω in (20), to a real number c ∈ R as

Rc =
⋃

a∈Aω : (a)β=c

R(a) (96)

which contains the tail values of all the infinite β-expansions of c. In addition,
we introduce an alternative wider definition of such a set, namely,

R′c = {rc(a) | I ≤ rc(a) ≤ S , a ∈ A∗} (97)
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which includes the normalized differences between c and (a)β ,

rc(a) = β|a|(c− (a)β) (98)

that are in the admissible interval [I, S], for all finite β-expansions a ∈ A∗,
where |a| stands for length of the string a and

I = inf
a∈A∗

(a)β , S = sup
a∈A∗

(a)β . (99)

Clearly, Rc ⊆ R′c since the tail values rn ∈ R(a) of any β-expansion a =
a1a2a3 . . . ∈ Aω of c can be expressed as rn = βn(c−(a1 . . . an)β) = rc(a1 . . . an)
for every n ≥ 0, according to (98). On the other hand, if condition (4) is
satisfied, then every real number within the interval [I, S] has an infinite β-
expansion. In particular, for any a ∈ A∗ such that I ≤ rc(a) ≤ S, which
means rc(a) ∈ R′c, there exists a′ ∈ Aω that meets rc(a) = (a′)β . Hence,
(aa′)β = (a)β + β−|a|rc(a) = c by (98), which ensures rc(a) ∈ R(aa′) ⊆ Rc
according to (96). Thus, Rc = R′c provided that condition (4) holds. In general,
we will show below that for every c ∈ R, the two sets, Rc and R′c, share the
property of being finite.

Furthermore, for every c ∈ R, we define a directed transition graph Gc =
(R′c, Ec) on the vertex set R′c with the edges from Ec = {(rc(a), rc(aα)) ∈
(R′c)2 | a ∈ A∗ , α ∈ A}. Each edge (rc(a), rc(aα)) ∈ Ec is labeled with the
digit α ∈ A which satisfies the recurrence condition (19) as

rc(aα) = βrc(a)− α (100)

according to (98). We also denote by Pc the set of possible periodic points of all
eventually periodic β-expansions of c, which meets Pc ⊆ Rc ⊆ R′c by Lemma 1.

We first illustrate these definitions by the following elaborated examples,
before formulating the theorems concerning the quasi-periodic numbers at the
end of this section.

Example 4. We present an example of a β-quasi-periodic number c within A =
{0, 1}. Let β ≈ 1.722084 be the real root of the polynomial x4−x3−x2−x+ 1,
satisfying

β4 − β3 − β2 − β + 1 = 0 , (101)

such that β > 1, which is a Salem number. We define a real number

c = 1
9

(
4β3 − 2β2 − 2β − 5

)
≈ 0.672505 (102)

whose all β-expansions are generated by the ω-regular expression

(100010 + 011(011101)∗100)ω + (100010 + 011(011101)∗100)∗011(011101)ω ,
(103)

and prove to be eventually quasi-periodic, which ensures that c is β-quasi-
periodic within A. This can be shown by constructing a corresponding transition
graph Gc = (R′c, Ec) which is depicted in Figure 2. Note that R′c = Rc because
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Figure 2: The transition graph Gc for c = 1
9

(
4β3 − 2β2 − 2β − 5

)
when A = {0, 1} and β > 1

is the Salem number satisfying β4 − β3 − β2 − β + 1 = 0.

condition (4) is met, which also guarantees that exactly the real numbers in the
interval [I, S] where I = 0 and S = 1/(β − 1) ≈ 1.384881, including c, have
β-expansions.

In particular, we start with the vertex %7 = rc(ε) = c ∈ R′c which is con-
nected to the two vertices %13 = rc(0) ∈ R′c and %1 = rc(1) ∈ R′c via the directed
edges (%7, %13) ∈ Ec and (%7, %1) ∈ Ec, labeled with 0 and 1, respectively, as indi-
cated in boldface in Figure 2, whereas the recurrence (100) and condition (101)
produce

%13 = rc(0) = βc = 1
9

(
4β4 − 2β3 − 2β2 − 5β

)
= 1

9

(
2β3 + 2β2 − β − 4

)
≈ 1.158110 (104)

by using(
4x4 − 2x3 − 2x2 − 5x

)
mod (x4−x3−x2−x+1) =

(
2x3 + 2x2 − x− 4

)
, (105)

and

%1 = rc(1) = βc− 1 = 1
9

(
4β4 − 2β3 − 2β2 − 5β − 9

)
= 1

9

(
2β3 + 2β2 − β − 13

)
≈ 0.158110 , (106)

falling in the interval [I, S]. Further, we expand the vertex %13 = rc(0) ∈ R′c
through the directed edge (%13, %11) ∈ Ec labeled with 1, leading to vertex

%11 = rc(01) = βrc(0)− 1 = 1
9 (4β3 + β2 − 2β − 11) ≈ 0.994363 , (107)

while there is no edge with the label 0 outgoing from %13 since rc(00) /∈ R′c due
to rc(00), for which S < rc(00) = βrc(0) ≈ 1.994363, has no β-expansion, etc.
This procedure of applying the recurrence condition (100) eventually converges
to the finite transition graph Gc presented in Figure 2, containing 14 vertices,
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R′c = {%1, %2, . . . , %14}, where

%1 = 1
9

(
2β3 + 2β2 − β − 13

)
%8 = 1

9

(
5β3 + 2β2 − 7β − 13

)
%2 = 1

9

(
7β3 − 2β2 − 8β − 14

)
%9 = 1

9

(
−2β3 + 7β2 + β − 5

)
%3 = 1

9

(
4β3 + β2 − 11β − 2

)
%10 = 1

9

(
4β3 + 7β2 − 11β − 14

)
%4 = 1

9

(
5β3 − β2 − 7β − 7

)
%11 = 1

9

(
4β3 + β2 − 2β − 11

)
%5 = 1

9

(
5β3 − 7β2 + 2β − 4

)
%12 = 1

9

(
5β3 − β2 + 2β − 16

)
%6 = 1

9

(
11β3 − 7β2 − 10β − 13

)
%13 = 1

9

(
2β3 + 2β2 − β − 4

)
%7 = 1

9

(
4β3 − 2β2 − 2β − 5

)
%14 = 1

9

(
7β3 − 2β2 − 8β − 5

)
.

(108)

It appears that Gc is composed of three directed cycles of length 6, C1 =
%7, %1, %3, %5, %9, %4, C2 = %7, %13, %11, %8, %2, %4, and C3 = %8, %14, %12, %10, %6, %11.

One can check that the sequences of edge labels on the infinite directed
walks through graph Gc, starting at vertex %7 = c ∈ R′c, which correspond to
eventually quasi-periodic β-expansions of c, are characterized exactly by the ω-
regular expression (103). In particular, the first summand in (103) describes the
walks that traverse the cycles C1 or C2 with the edge labels 100010 or 011 000,
respectively, for infinitely many times, while the walk through the cycle C2

can be interrupted in the middle by several passes through the cycle C3, which
inserts the edge labels (011101)∗ in 011(011101)∗000. The second summand
in (103) denotes the same walks restricted to finitely many iterations of cycles
C1 and C2 possibly interrupted by several passes through C3, which eventually
end up in the infinite loop through the cycle C3, producing the edge labels
(011101)ω.

Moreover, for each vertex % from (108), there exists such a walk whose
vertices create a corresponding tail sequence, traversing % infinitely many times,
which implies Pc = R′c by Lemma 1. For instance, for the periodic point
%12 ∈ Pc, the eventually quasi-periodic β-expansion

a = 01101(110101 110110001101)ω (109)

of c, corresponding to the infinite walk

%7, %13, %11, %8, %14,

(%12, %10, %6, %11, %8, %14,%12, %10, %6, %11, %8, %2, %4, %7, %13, %11, %8, %14)ω (110)

which is in fact the tail sequence of a, is composed of the preperiodic part
01101 and the two quasi-repetends 110101 and 110110001101. In general, there
are uncountably many eventually quasi-periodic β-expansions of c with each
periodic point % ∈ Pc, which are composed of quasi-repetends whose length is
divisible by 6.

In addition, c is also an example of a β-quasi-periodic number within A such
that the number of quasi-repetends of length 6n, which occur in its eventually
quasi-periodic β-expansions, can be constant, linear, or exponential in terms
of n, depending on the choice of periodic point % ∈ Pc. For the periodic points
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that the cycle C2 shares with another cycle in Gc, namely C2 ∩ (C1 ∪ C3) =
{%4, %7, %8, %11} ⊂ R′c, there is only a constant number of quasi-repetends of
length 6n. For instance, consider the periodic point %8 ∈ Pc, associated with
a preperiodic part of the form (100010)k011, for k ≥ 0, corresponding to
the directed walk Ck1 , %7, %13, %11, %8 in Gc from %7 to %8, which first traverses
the cycle C1 for k times. For n ≥ 2, we have only one quasi-repetend of
length 6n, namely 100(100010)n−1011, corresponding to the directed closed
walk %8, %2, %4, C

n−1
1 , %7, %13, %11, %8, which first traverses the path from %8 to

%7, then passes through the cycle C1 for n − 1 times, and finally comes back
from %7 to %8. Note that for n = 1, we have two quasi-repetends of length 6,
100011 and 011101, corresponding to the cycle C2 and C3, respectively.

For the periodic points from cycle C2 that are not shared by another cy-
cle in Gc, namely C2 \ (C1 ∪ C3) = {%2, %13} ⊂ R′c, there is a linear num-
ber of quasi-repetends of length 6n. For example, consider the periodic point
%13 ∈ Pc, associated with a preperiodic part of the form (100010)k0, for k ≥ 0,
corresponding to the directed walk Ck1 , %7, %13 in Gc. For n ≥ 1, we can di-
vide n − 1 into two nonnegative integer summands in n ways as n − 1 =
n1 + n3 where n1, n3 ≥ 0, and thus, we have n quasi-repetends of length 6n,
namely 11(011101)n3100(100010)n10, corresponding to the directed closed walk
%13, %11, C

n3
3 , %8, %2, %4, C

n1
1 , %7, %13.

Finally, for the remaining periodic points in Gc outside the cycle C2, namely
R′c \ C2 = {%1, %3, %5, %6, %9, %10, %12, %14}, there is an exponential number of
quasi-repetends of length 6n. For instance, the quasi-repetends for the periodic
point %1 ∈ Pc, are characterized by the regular expression

00010(011(011101)∗100)∗1 (111)

which corresponds to the directed closed walks in Gc that first traverse the path
from %1 to %7 and then either move directly back to %1 (completing the cycle
C1) or, before that, follow the cycle C2 several times. In addition, the cycle C2

includes vertex %8, at which the walk through C2 can be interrupted by several
passes of cycle C3. Clearly, there is only one quasi-repetend 000101 of length 6,
according to (111). For a quasi-repetend of length 6n where n ≥ 2, if the cycle
C2 is traversed k times which means 1 ≤ k ≤ n−1, then the cycle C3 is traversed
n − k − 1 times altogether. The number of ways of distributing the n − k − 1
passes of C3 among the k passes of C2 is

(
n−2
k−1
)
. Hence, for n ≥ 2, the number

of quasi-repetends of length 6n is

n−1∑
k=1

(
n− 2

k − 1

)
= 2n−2 . (112)

Another example of a β-quasi-periodic number within A = {0, 1} has been
presented in Example 2 (in contrast to Example 1 where 1 is not β-quasi-
periodic) for the plastic constant β satisfying (24), as it can be shown by
generating a corresponding transition graph Gc for c = 1. In addition, there
are also β-quasi-periodic numbers within A = {0, 1} for the base β that is nei-
ther Pisot nor Salem number. In particular, let β ≈ 1.685137 be the unique
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real root of the polynomial x5 − x4 − x2 − x − 1, whose some Galois con-
jugates are in absolute value greater than 1, which means β is neither Pisot
nor Salem number. In this case, all the β-expansions of the real number
c = 1

3 (−β4 + 3β3 − 2β − 1) ≈ 0.640563, which are generated by the ω-regular
expression (10000 + 01(01111)∗10)ω + (10000 + 01(01111)∗10)∗01(01111)ω, are
eventually quasi-periodic. This can again be verified by constructing the tran-
sition graph Gc where R′c = Rc = Pc contains now 10 vertices.

Example 5. On the other hand, we present examples of real numbers c that
are not β-quasi-periodic within A = {0, 1}, although their greedy and/or lazy
β-expansion is eventually periodic. Let β =

√
2 ≈ 1.414214 (cf. Example 3)

which satisfies condition (4). Hence, the real numbers in the interval [I, S]
where I = 0 and S = β + 1 ≈ 2.414214, have β-expansions.

For instance, consider c = 1
2 (β + 1) ≈ 1.207107 whose eventually periodic

greedy β-expansion is a = 110ω by the following reason. The second element of
its tail sequence is

r2 = rc(11) = β2
(
1
2 (β + 1)− β−1 − β−2

)
= 0 = I (113)

according to (98) and β2 = 2. This coincides with the infimum (99), which allows
only for one continuation 0ω. Similarly, a′ = 001ω is the eventually periodic lazy
β-expansion of c due to r′2 = rc(00) = β+1 = S is the supremum, for which the
only possible continuation is 1ω. Nevertheless, c is not β-quasi-periodic within A
since the β-expansions of c with the prefix 0111 are not eventually quasi-periodic
because the tail value rc(0111) = β − 1 has no eventually periodic β-expansion
according to Example 3.

In addition, c = 1
3 is an example of the number with the periodic greedy

β-expansion (0001)ω due to

rc(1) < rc(01) < rc(001) < 0 = I ≤ rc(0001) = 1
3 = c ≤ S = β + 1 , (114)

whose lazy β-expansion a = a1a2a3 . . . ∈ Aω is not eventually periodic. Re-
call that any lazy β-expansion is eventually quasi-periodic iff it is eventually
periodic. First observe that a starts with the prefix 051 since

I ≤ rc(0) < rc(00) < · · · < rc
(
05
)
< rc

(
051
)
≤ S < rc

(
06
)
. (115)

We prove that the continuation of a is not periodic by the same argument as
in Example 3. Denote β1 = β and β2 = −β. Let fn ∈ Q[x], for n ≥ 0,
be the sequence of rational polynomials of degree at most 1, which is defined
recursively by (31) starting with f0(x) = c = 1

3 , and satisfies rn = fn(β1),
where (rn)∞n=0 is the tail sequence of a. Consider the sequence r′n = fn(β2)
which coincides with rn = r′n for even n. By the argument of Example 3, it
follows from r′4 = r4 = rc(0000) = 4

3 /∈ [β2, 1] that the tail values rn for n ≥ 4
are pairwise distinct. Hence, the lazy β-expansion a is not eventually periodic
according to Lemma 1.
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The characterization of a single eventually quasi-periodic β-expansion a ∈ Aω
in Theorems 1 and 2 which employs the finiteness of R(a), can be generalized
to any β-quasi-periodic number c within A for arbitrary real bases and digits
by using the finiteness of R′c respectively Rc.

Theorem 4. The following four conditions are equivalent:

(i) R′c is finite.

(ii) Rc is finite.

(iii) c is a β-quasi-periodic number within A.

(iv) Every infinite β-expansion of c has at least two tails of the same value.

Proof. Let R′c be a finite set which ensures that Rc is also finite due to
Rc ⊆ R′c. Hence, R(a) is finite for every β-expansion a ∈ Aω of c which is
thus eventually quasi-periodic according to Lemma 1. It follows that c is
β-quasi-periodic within A, whose every infinite β-expansion has at least two
tails of the same value by Lemma 1. We have (i) =⇒ (ii) =⇒ (iii) =⇒ (iv).

In the rest of the proof we show (iv) =⇒ (i) by contrapositive. Assume
that R′c is infinite. Consider a directed tree T = (V,E) with vertex set

V = {v ∈ A∗ | rc(v) ∈ R′c} (116)

where rc(v) is defined by (98), which includes the empty string ε as a root
satisfying rc(ε) = c. The set of directed edges E is defined as

E =
{

(u, v) ∈ V 2 | (∃α ∈ A) v = uα
}

(117)

which guarantees the outdegree of T is bounded by |A|. Clearly, the length |v|
of string v ∈ A∗ determines the level of vertex v ∈ V in T .

Let T ′ = (V ′, E′) be a directed rooted tree that is a subgraph of T with
a maximal vertex subset V ′ ⊆ V so that ε ∈ V ′ and for every two vertices
v1, v2 ∈ V ′,

v1 6= v2 =⇒ rc(v1) 6= rc(v2) . (118)

The tree T ′ can be constructed inductively level by level as follows. We start at
zero level and include ε into V ′. In a general step when T ′ has been constructed
up to some level ` ≥ 0, we connect only those vertices v ∈ V at level |v| = `+ 1
to T ′ via edges (u, v) ∈ E from vertices u ∈ V ′ at level |u| = `, that preserve
condition (118). In particular, for each value

r ∈ {rc(v) | (u, v) ∈ E, u ∈ V ′& |u| = `} \ {rc(v′) | v′ ∈ V ′& |v′| ≤ `} , (119)

we include one representative vertex v ∈ V with rc(v) = r at level |v| = ` + 1
into V ′.

We show that for any r ∈ R′c there is v ∈ V ′ such that rc(v) = r. On the
contrary, suppose a1 . . . an ∈ V \ V ′ is a vertex at minimal level n, satisfying

rc(v) 6= rc(a1 . . . an) = r ∈ R′c for every v ∈ V ′ . (120)
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Clearly, a1 . . . an−1 ∈ V \ V ′ since otherwise vertex a1 . . . an could be included
into V ′ according to (119). By the minimality of n, we know there is a′1 . . . a

′
m ∈

V ′ such that rc(a
′
1 . . . a

′
m) = rc(a1 . . . an−1). Thus, we have rc(a

′
1 . . . a

′
man) = r

and a′1 . . . a
′
man ∈ V ′ by (119), which is in contradiction with (120).

It follows that {rc(v) | v ∈ V ′} = R′c implying T ′ is infinite. According to
König’s lemma, there exists an infinite directed path in T ′ corresponding to a
β-expansion of c whose tail sequence contains pairwise distinct values. �

For Pisot bases and digits from Q(β), the following theorem proves QPer(β) =
Per(β) ⊆ Q(β) ⊆ QPer(β) where QPer(β) denotes the set of β-quasi-periodic
numbers within A, including those with no infinite β-expansion. Recall that
QPer(β) contains only the quasi-periodic numbers that have an infinite β-expan-
sion (see Paragraph 1.2).

Theorem 5. Let β be a Pisot number and assume A ⊂ Q(β). Then any number
c ∈ Q(β) is β-quasi-periodic within A.

Proof. If there is no infinite β-expansion of c, then c is β-quasi-periodic within
A by definition. Thus, let a ∈ Aω be any β-expansion of c and let (rn)∞n=0

be its tail sequence. The base β satisfies the assumption of Theorem 1 due
to β is a Pisot number which is even an algebraic integer. Thus, the proof
further proceeds in exactly the same way as the proof of Claim 1 simplified to
algebraic integer β (e.g. avoiding Lemma 2 and 3). In particular, the digits in
A ⊂ Q(β) = Q[β] and the number c = r0 ∈ Q(β) = Q[β] are now multiplied
by a suitable natural number γ > 0 so that A′ = {γα |α ∈ A} ⊂ Z[β] and
c′ = r′0 = γc ∈ Z[β], respectively, which provides a β-expansion of c′ = (a′)β
and its tail sequence (r′n)∞n=0 satisfying (38). In addition, a sequence of integer
polynomials fn ∈ Z[x] which meets (43), is introduced by (42) where p ∈ Z[x] is
now an integer monic polynomial of algebraic integer β. The integer coefficients
of fn are bounded by (51) according to Lemma 4 since the Galois conjugates
of Pisot β lie inside the unit circle. Consequently, there is only a finite number
of different polynomials fn, and hence, also a finite number of r′n. This means
that R(a) is finite, which implies that a is eventually quasi-periodic according
to Lemma 1. It follows that c is β-quasi-periodic within A. �

5. Regular Cut Languages

In this section we prove a necessary and sufficient condition for a cut language
L<c to be regular by using Myhill-Nerode theorem.

Theorem 6. A cut language L<c ⊆ A∗ with base β is regular iff c is β-quasi-
periodic within A.

Proof. According to Theorem 4, c is β-quasi-periodic within A iff R′c is finite.
First assume that R′c is finite. We introduce an equivalence relation ∼ on A∗ so
that for any u, v ∈ A∗, we define u ∼ v iff β|uv| > 0 and either rc(u) = rc(v) ∈ R′c
or max(rc(u), rc(v)) < I or min(rc(u), rc(v)) > S. Obviously, we have only
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finitely many equivalence classes due to R′c is finite. In order to prove that
language L<c is regular we employ Myhill-Nerode theorem by showing that for
any u, v ∈ A∗, if u ∼ v, then for every w ∈ A∗, uw ∈ L<c iff vw ∈ L<c.

Thus, let u, v ∈ A∗ meet u ∼ v, and w ∈ A∗. We have uw ∈ L<c iff
(u)β + β−|u|(w)β = (uw)β < c iff β−|u|(w)β < c − (u)β = β−|u|rc(u). This,
multiplied by β|uv| > 0, reduces to

β|v|(w)β < β|v|rc(u) . (121)

Similarly, we have vw ∈ L<c iff

β|u|(w)β < β|u|rc(v) . (122)

Moreover, observe that β|u| > 0 iff β|v| > 0 due to β|uv| > 0. Hence, (121) and
(122) are equivalent, if rc(u) = rc(v) ∈ R′c or max(rc(u), rc(v)) < I ≤ (w)β or
min(rc(u), rc(v)) > S ≥ (w)β . Hence, uw ∈ L<c iff vw ∈ L<c and this implies
that L<c is regular.

Conversely, let L<c be a regular language. According to Myhill-Nerode
theorem, there is an equivalence relation ∼ on A∗ with finitely many equivalence
classes such that for any u, v ∈ A∗, if u ∼ v, then for every w ∈ A∗, uw ∈ L<c
iff vw ∈ L<c. Assume to the contrary that c is not β-quasi-periodic within A,
which means there is an infinite β-expansion a = a1a2a3 . . . ∈ Aω of c whose tail
sequence contains pairwise distinct values, according to Theorem 4. It follows
that there exist two prefixes u, v ∈ A∗ of a, having even length, such that u ∼ v
and (u′)β = rc(u) > rc(v) = (v′)β where a = uu′ = vv′ for some u′, v′ ∈ Aω,
which implies

(uv′)β = (u)β + β−|u|(v′)β < (u)β + β−|u|(u′)β = (uu′)β = c = (vv′)β (123)

due to β−|u| > 0. By Lemma 1, we know the β-expansion a is not eventu-
ally periodic, and hence, there is an increasing infinite subsequence of indices,
|v| < k1 < k2 < k3 < · · · , satisfying akjβ

−kj < maxα∈A αβ
−kj for every j ≥ 1.

Denote by wj ∈ Aω a modified infinite word v′ in which the (kj − |v|)-th po-
sition is replaced by arg maxα∈A αβ

−kj , which implies (vwj)β > (vv′)β = c for
every j ≥ 1 and the difference (wj)β − (v′)β is arbitrarily small, if j tends to
infinity. Since (uv′)β < (uu′)β by (123), we achieve (uwj0)β < (uu′)β = c for
a sufficiently large j0 ≥ 1. Thus, (uwj0)β < c < (vwj0)β , and hence we have
(uw)β < c < (vw)β for a sufficiently long prefix w ∈ A∗ of wj0 , which implies
uw ∈ L<c and vw /∈ L<c, contradicting u ∼ v. �

Example 6. Obviously, not every regular language is a cut language. This can
be illustrated by any regular language L ⊂ A∗ where {α1, α2} ⊆ A such that
L ∩ {α1, α2}2 = {α1α2, α2α1}. For A = {0, 1}, this corresponds to the XOR
characteristic function on two-bit words which is often used as a counterexample
in neural networks. In particular, assume to the contrary that L = L<c is a
cut language for some threshold c ∈ R. Hence, α1α2, α2α1 ∈ L<c implies
(α1α2)β < c and (α2α1)β < c, which sums to

α1β
−1 + α2β

−2 + α2β
−1 + α1β

−2 < 2c . (124)
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On the other hand, we know α2α2 6∈ L<c, and thus (α2α2)β ≥ c which can be
subtracted from inequality (124), producing

α1β
−1 + α1β

−2 < c , (125)

but this is in contradiction with α1α1 6∈ L<c.

6. Non-Context-Free Cut Languages

In this section we show that a cut language L<c is not context-free if its
threshold c is not β-quasi-periodic within A. According to Theorem 6, this
means that the cut language L<c is context-free iff it is regular. For this purpose,
we use a pumping technique introduced in the following lemma. In particular,
we say that an infinite word a ∈ Aω is approximable in a language L ⊆ A∗, if
for every finite prefix u ∈ A∗ of a, there is x ∈ A∗ such that ux ∈ L.

Lemma 8. Let a ∈ Aω be approximable in a context-free language L ⊆ A∗.
Then there is a decomposition a = uvw where u, v ∈ A∗ and w ∈ Aω, such that
|v| > 0 is even and for every integer i ≥ 0, the word uviw is approximable in L.

Proof. Consider a context-free grammar G for L in Greibach normal form
such that for every nonterminal N of G, there is a derivation of a terminal word
from N . Since a is approximable in L = L(G), there is a left derivation from the
start symbol, S ⇒ . . . ⇒ unνn for every n, such that un ∈ An is the prefix of
a of length n, and νn is a sequence of nonterminal symbols. These derivations
form an infinite directed rooted tree with the root S, whose vertices are the
left sentential forms uν such that u is a prefix of a, and the edges outcoming
from uν correspond to an application of one production rule to the left-most
nonterminal in ν. The degree of each vertex is bounded by the number of
production rules. According to König’s lemma, there is an infinite left derivation
S ⇒ . . . ⇒ unνn ⇒ . . . such that for every n, un is the prefix of a of length n,
and νn is a non-empty sequence of nonterminal symbols.

Let us call an occurrence of a nonterminal in νn temporary, if it is sub-
stituted by a production rule of G in some of the following steps, and stable
otherwise. We prove that for every n, there is m ≥ n such that νm contains
exactly one temporary nonterminal. We know the left-most nonterminal N1

in νn = N1 . . . Ni . . . Nk is temporary, and let Ni be the right-most temporary
nonterminal in νn. If i = 1, then choose m = n. For i ≥ 2, there is an index m,
such that all the temporary nonterminals N1, . . . , Ni−1 in νn are transformed
into terminal words in um. If m is the smallest such index, then Ni is the first
and the only temporary nonterminal of νm. It follows that there is an infinite
number of indices n such that νn contains exactly one temporary nonterminal.

Since there are only finitely many nonterminals in G, there exist three in-
dices m1,m2,m3 such that m1 < m2 < m3 and um1

νm1
= u′Nµ′1, um2

νm2
=

u′v1Nµ
′
2µ
′
1, um3

νm3
= u′v1v2Nµ

′
3µ
′
2µ
′
1 for some nonterminal N , where u′, v1,

v2 ∈ A∗, |v1| > 0, |v2| > 0, and µ′1, µ
′
2, µ
′
3 consist of stable nonterminals in all

νm1 , νm2 , νm3 . If |v1| is even, then define n1 = m1, n2 = m2, u = u′, v = v1,
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µ1 = µ′1, and µ2 = µ′2, otherwise, if |v2| is even, then n1 = m2, n2 = m3,
u = u′v1, v = v2, µ1 = µ′2µ

′
1, and µ2 = µ′3. On the other hand, if |v1| and

|v2| are both odd, then |v1v2| is even and define n1 = m1, n2 = m3, u = u′,
v = v1v2, µ1 = µ′1, and µ2 = µ′3µ

′
2.

Thus, there are two words u, v ∈ A∗ such that un1
νn1

= uNµ1, un2
νn2

=

uvNµ2µ1, and |v| > 0 is even, where N
∗⇒ vNµ2. For every m ≥ n2, we have

umνm = uvξmµ2µ1 where ξm is such that N
∗⇒ ξm. Hence, an infinite word

w ∈ Aω is produced from N , such that a = uvw. Clearly, every finite prefix of
w is the terminal part of ξm for some m ≥ n2.

For every i ≥ 0, we can construct an infinite left derivation whose sentential
forms contain arbitrarily long prefixes of the sequence uviw by combining the
above derivations similarly as in the proof of the pumping lemma. The deriva-
tion starts as the original derivation until un1

νn1
= uNµ1. Then, the derivation

N
∗⇒ vNµ2 is used i times. Finally, the derivations N

∗⇒ ξm are used in an
infinite sequence for all m > n2. Altogether, we obtain

S
∗⇒ uNµ1

∗⇒ uviNµi2µ1 ⇒ . . .⇒ uviξmµ
i
2µ1 ⇒ . . . for all m > n2 . (126)

We show that for every i ≥ 0, the infinite sequence uviw is approximable
in L. For any prefix x ∈ A∗ of uviw, we employ the derivation (126) until x is
derived. Then, we include any finite derivation of a terminal word from each of
the remaining nonterminals. We obtain a word in L = L(G) with prefix x. �

Theorem 7. If c is not β-quasi-periodic within A, then the cut language
L<c ⊆ A∗ with base β is not context-free.

Proof. On the contrary assume that c is not β-quasi-periodic within A and
L<c is a context-free language. Theorem 4 provides an infinite β-expansion
a = a1a2a3 . . . ∈ Aω of c whose tail sequence contains pairwise distinct values.
Suppose for a contradiction that a is not approximable in L<c. This means
there is a prefix u ∈ A∗ of a such that for every x ∈ A∗ it holds ux /∈ L<c, that
is, (ux)β ≥ c = (a)β . On the other hand, we know (a)β = limn→∞(uxn)β where
for every n, xn ∈ A∗ is a string of length n = |xn| such that uxn is a prefix of
a, which implies (a)β = infx∈A∗(ux)β . For β > 0, this ensures ak = minA for
every k > |u|, whereas for β < 0, it must be a2k = minA and a2k+1 = maxA
for every k > |u|/2. Hence, a is periodic, which contradicts the fact that the
tail values of a are pairwise different. It follows that a is approximable in L<c.

Let a = uvw where |v| > 0 is even, be a decomposition guaranteed by
Lemma 8. In particular, uw and uvvw are also approximable in L<c. We know
the tail values rc(u) = (vw)β and rc(uv) = (w)β are different. If β−|u|(w)β >
β−|u|(vw)β , then define y = uw which meets

(y)β = (u)β + β−|u|(w)β > (u)β + β−|u|(vw)β = (uvw)β = (a)β = c . (127)

On the other hand, if β−|u|(vw)β > β−|u|(w)β , then define y = uvvw which
satisfies

(y)β = (uv)β +β−|uv|(vw)β > (uv)β +β−|uv|(w)β = (uvw)β = (a)β = c , (128)
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due to β−|v| > 0. Thus, we have y ∈ Aω which is approximable in L<c and
(y)β > c. This means that for every integer n ≥ 0, there is yn ∈ L<c implying
(yn)β < c, such that y and yn share the same prefix of length at least n. Hence,

|(y)β − (yn)β | ≤
α

|β|n(|β| − 1)
(129)

where α = max{|α1−α2| ; α1 ∈ A, α2 ∈ A∪{0}}. It follows that (yn)β converges
to (y)β as n tends to infinity, which contradicts (yn)β < c < (y)β . �

Theorem 7 represents another proof of the necessary condition from Theo-
rem 6 for a cut language to be regular. According to Theorem 6, we thus achieve
a dichotomy that a cut language is either regular or non-context-free.

Corollary 2. Any cut language L<c ⊆ A∗ with base β is either regular if c is
β-quasi-periodic within A, or non-context-free otherwise.

Examples 3 and 5 provide explicit instances of a number c whose all or some
β-expansions are not eventually quasi-periodic for both rational and irrational β
and/or c, which correspond to examples of non-context-free cut languages L<c.

On the other hand, the cut languages with rational thresholds are shown to
be context-sensitive for any rational base and digits.

Theorem 8. Let β ∈ Q be a rational base and A ⊂ Q be a set of rational digits.
Every cut language L<c with threshold c ∈ Q is context-sensitive.

Proof. A corresponding (deterministic) linear bounded automaton M that
accepts a given cut language L<c = L(M), evaluates (and stores) the sum
sn =

∑n
k=1 akβ

−k step by step when reading an input word a1 . . . an ∈ A∗

from right to left. In particular, M starts with s0 = 0 which updates to sk =
(sk−1+an−k+1)/β every time after M reads the next input symbol an−k+1 ∈ A,
for k = 1, . . . , n. As the numbers β, a1, . . . , an, c ∈ Q can be represented within
constant space and the length of the numerator and the denominator in the
fractions representing sk increases at most by a constant in each step, M needs
only linear space in terms of input length n, for computing sn and testing
whether sn < c. �

7. Conclusion

In this paper we have defined the class of cut languages using a positional
numeral system with a base β and a digit alphabet A, which are motivated by
the analysis of the computational power of neural net models with the weight
parameters between integer and rational numbers. We have classified the cut
languages within the Chomsky hierarchy. In particular, we have shown a di-
chotomy that a cut language L<c is either regular or non-context-free, depend-
ing on whether its threshold parameter c is or is not a β-quasi-periodic number
within A. For rational parameters β, c, and A, any cut language has proven to
be context-sensitive.
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Furthermore, we have introduced the concept of a β-quasi-periodic number
within A, whose all β-expansions are eventually quasi-periodic, which has been
illustrated by detailed examples. The definition of an eventually quasi-periodic
β-expansion which has an infinite subsequence of tails sharing the same value,
naturally generalizes the notion of eventually periodic β-expansions. For any
base β that is an algebraic number whose conjugates in absolute value differ
from 1, or for transcendental β combined with algebraic digits, we have shown
that a β-expansion is eventually quasi-periodic iff it has only finitely many tail
values.

On the other hand, for any algebraic β with a conjugate of absolute value 1,
we have constructed a quasi-periodic β-expansion having infinitely many distinct
tail values. For algebraic bases β, we thus obtain the equivalence that for
any digit alphabet A, every eventually quasi-periodic β-expansion has a finite
number of tail values iff the conjugates of β do not lie on the unit circle. In
addition, we have proven that a number is β-quasi-periodic within A iff all its β-
expansions altogether have a finite number of tail values iff every its β-expansion
has at least two tails of the same value.

Assume A ⊂ Q(β) and recall QPer(β) ⊆ Per(β) ⊆ Q(β) (see Paragraph 1.2).
One can analogously define a set of so-called strongly (resp. weakly) periodic
numbers, SPer(β) (resp. WPer(β)) containing the real numbers for which an
infinite β-expansion exists and every (resp. at least one) such β-expansion is
eventually periodic. Obviously,

SPer(β) ⊆ QPer(β) ⊆ Per(β) ⊆WPer(β) ⊆ Q(β) . (130)

For any Pisot base β, we have shown that QPer(β) = Per(β) = WPer(β). The
presented examples including Pisot or non-Pisot bases satisfy the strict inclusion
SPer(β) ⊂ QPer(β) but it is an open question for which bases β this is satisfied.
For example, we conjecture that for A = {0, 1} and any non-Pisot β less than
the golden ratio ϕ, it holds SPer(β) = QPer(β) = ∅. Another interesting issue
for further research would be to generalize these results to arbitrary real digits.

Acknowledgments

We would like to thank Professor E. Pelantová, Professor Z. Masáková, and
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