
CROSS-ENTROPY LOSS OF APPROXIMATED DEEP NEURAL NETWORKS

JIŘÍ Š ÍMA & PETRA VIDNEROVÁ

Efficient Processsing of Deep Neural Networks

(Sze, Chen, Yang, Emer, Morgan & Claypool Publishers, 2020)

The energy efficiency of DNNs on low-power, battery-operated embedded hardware (e.g., cellphones,
smartwatches, augmented reality glasses) is a critical challenge.

−→ reducing the energy cost of DNNs:

1. Specialized Hardware Accelerators for DNN inference (on GPUs, FPGAs, in-memory, etc.)
2. Approximate Computing in error-tolerant applications (e.g. image classification) save large amounts
of energy with minimal accuracy loss by reducing:
• Model Size: pruning, compression, weight sharing, approximate multipliers
• Arithmetic Precision: fixed-point operations, reduced weight bit-width, nonuniform quantization

The aim of this study: Estimate the maximum cross-entropy loss of approximated classification DNNs.

Formal Model of DNN

The architecture of a DNNN is a connected directed acyclic graph (V ,E) composed of neurons,
where edges (i, j) ∈ E ⊂ V × V are labeled with real-valued weights wji :

Y ⊆ V output neurons

yj =





xj if j ∈ X

R(ξj) if j ∈ V \ (X ∪ Y)
e

ξj
∑

k∈Y eξk
if j ∈ Y sofmax function

output (state) of
neuron j ∈ V

R(ξ) = ReLU(ξ) = max(0, ξ) activation function
ξj =

∑

i∈j←

wjiyi excitation of j ∈ V \X

j← = {i ∈ V | (i, j) ∈ E} inputs to neuron j ∈ V \X

X = {0, 1, . . . , n} ⊆ V input neurons including
formal 0 ∈ X (y0 ≡ 1) for biases wj0 for j ∈ V \X

↑
(x1, . . . , xn) ∈ [0, 1]n external input to N

0 n

w.l.o.g., excluding (max) pooling layers (max(y1, y2) = R(y1 − y2) + y2)

V \ (X ∪ Y) hidden neurons

1. Tool: Shortcut Weights

The excitation ξj of any neuron j ∈ V \ X is a continuous piecewise linear function of the external input

→ ξj =
∑

i∈X

Wji yi for (y1, . . . , yn) ∈ Ξ

within a subset Ξ ⊂ [0, 1]n of the input space, where Wji are referred to as the shortcut weights (bias)
from input neurons i ∈ X to neuron j ∈ V \ X .

For an input (x1, . . . , xn) ∈ [0, 1]n, let ΞS ⊂ [0, 1]n be its neighborhood within which ξj are linear
for all j ∈ V \ X under fixed shortcut weights, where

S = S(x1, . . . , xn) = {j ∈ V \ (X ∪ Y) | ξj < 0}
denotes the set of hidden neurons saturated at zero output, yj = R(ξj) = 0.
→ ΞS is a convex polytope—an intersection of finitely many half-spaces:

ξj =
∑

i∈X

Wji yi

{
< 0 if j ∈ S
≥ 0 if j /∈ S for j ∈ V \ (X ∪ Y)

0 ≤ yi ≤ 1 for i ∈ X

Efficient Computation of the shortcut weights via feedforward propagation (skipping S) for j ∈ V \ X :

Wji =
∑

k∈j←\S
wjk Wki for all i ∈ X

(
initially Wki =

{
1 if k = i
0 otherwise for k , i ∈ X

)

2. Tool: Continuous Piecewise Linear Interpolation of ex

ex ≈ Ne(x) =





ea0 if x ≤ a0
mix + bi if ai < x ≤ ai+1
mr+1x + br+1 if x > ar+2

→
• ex ≤ Ne(x) for x ∈ (−∞, ar+2]

• eai = Ne(ai) for i ∈ {0, . . . , r + 2}

Theorem: There are r unique points a1, . . . , ar inside [a0, ar+1] that minimize
r∑

i=0

∫ ai+1

ai

(
mix + bi − ex) dx

(
→ eai =

eai+1 − eai−1

ai+1 − ai−1

)
.

Evaluating the linear interpolation using ReLU networks:

Ne(x) = ea0 +
r+1∑

i=0

R
(
mix + bi − eai

)
−

r∑

i=0

R
(
mix + bi − eai+1

)

Approximated DNNs

Ñ is an approximation ofN , sharing the same input neurons (X̃ = X) and the same number of output
neurons (|Ỹ | = |Y |) (tilde denotes parameters of Ñ),
e.g., the weights of Ñ are rounded to a given number of binary digits in their floating-point
representations

Cross-Entropy Loss of Approximated Classification DNNs

The classification error of Ñ for an input (x1, . . . , xn) ∈ [0, 1]n, measured by the cross-entropy loss
between the softmax categorical probability distributions ofN and Ñ :

L(x1, . . . , xn) = −
∑

k∈Y
yk ln ỹk (upper bounds the Kullback-Leibler divergence ofN from Ñ)

Theorem: It is NP-hard to find the maximum of the cross-entropy loss L over the input space [0, 1]n.

Upper-Bounding L Using ReLU Networks Ñck &Nc

within the convex polytope ΞS around a data point (x1, . . . , xn) ∈ T of category c ∈ Y
from a test/training set T ⊂ [0, 1]n, where S = S(x1, . . . , xn), restricted to inputs in ΞS that are
classified byN into the category c with probability at least p (e.g., p = 0.8): yc ≥ p

∑

j∈Y\{c}
eξj−ξc

ξj − ξc ≤ 0 ≤ ar+2

≤
∑

j∈Y\{c}
Ne

(
ξj − ξc

)
= Nc(x1, . . . , xn) ≤ 1

p − 1 softmax−→ yc ≥ p

L(x1, . . . , xn) =
∑

k∈Y
yk ln

1
ỹk
≤ yc ln

1
ỹc

+ (1− yc) max
k∈Ỹ\{c}

ln
1

ỹk

softmax
= max

k∈Ỹ\{c}
ln
∑

j∈Ỹ

e
ξ̃j−ξ̃k+yc

(
ξ̃k−ξ̃c

)
yc ≥ p
≤ ln max

k∈Ỹ\{c}

∑

j∈Ỹ

e
ξ̃j−ξ̃k+R

(
ξ̃k−ξ̃c

)
−pR

(
ξ̃c−ξ̃k

)

(⋆)
≤ ln max

k∈Ỹ\{c}

∑

j∈Ỹ

Ne
(
ξ̃j − ξ̃k + R

(
ξ̃k − ξ̃c

)
− pR

(
ξ̃c − ξ̃k

))
= ln max

k∈Ỹ\{c}
Ñck(x1, . . . , xn)

AppMax Method

Input: DNNN , its approximation Ñ , (x1, . . . , xn) ∈ T of category c ∈ Y
Output: an upper bound on

max
(y1,...,yn)∈

⋃
k∈Ỹ\{c}Ξ

∗
k

L(y1, . . . , yn)

Algorithm: For each k ∈ Ỹ \ {c} do
• ComposeN ∗ from Ñck &Nc .
• Determine the saturated neurons S∗ = S∗(x1, . . . , xn) inN ∗.
• Compute the shortcut weights W∗ji ofN ∗ for all j ∈ V∗ \ X∗ and i ∈ X∗.
• Solve the linear program (LP) to find (y1, . . . , yn) that

maximize Ñck(y1, . . . , yn) (→ σk) over the polytope Ξ∗k ⊆ ΞS∗

defined by ξ∗j =
∑

i∈X

W∗ji yi

{
≤ 0 if j ∈ S∗
≥ 0 if j /∈ S∗ for j ∈ V∗ \ (X∗ ∪ Y∗) ,

Nc(x1, . . . , xn) ≤ 1
p − 1

(
where ea0 ≤ 1

p − 1 ≤ ear+2

)
,

ξ̃j − ξ̃k + R
(
ξ̃k − ξ̃c

)
− pR

(
ξ̃c − ξ̃k

)
≤ ar+2 (⋆) , (y1, . . . , yn) ∈ [0, 1]n.

and output ln maxk∈Ỹ\{c} σk

Experiments

• DNN: N with 3 fully connected layers (784–64–32–10) and 32-bit weights, trained on the MNIST
dataset; approximated as Ñ with weights rounded to 4 bits
• Source Code: https://github.com/PetraVidnerova/ClassificationRoundingErrors
• Test Set: T with 1135 data points of class c = 1, on whichN and Ñ achieve 100% and 99.91%

accuracy, respectively
• Linear Interpolation of ex: r = 14 optimal points & a0 = −5, ar+1 = 5, ar+2 = 20

Number of “misclassified polytopes” around data points in T , including so-called misclassified inputs with
the maximum estimated upper bound of cross-entropy loss, which are classified correctly as c = 1 byN
with probability at least p, but misclassified as κ ̸= c by Ñ :

p 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99
misclassified 134 71 30 11 8 0 0 0 0

Histograms of probabilities yc and yκ over the misclassified inputs:
p = 0.3 p = 0.5 p = 0.7

N

Ñ

Future Research Directions

• Broaden AppMax evaluation to other datasets (e.g., CIFAR-100, ImageNet).
• Most suitable error metric (KL divergence, cross-entropy loss, accuracy) with optimal upper bound.
• AppMax for classification DNNs with softmax, via nonlinear Karush-Kuhn-Tucker optimization.
• Approximate global error by estimating the probabilities of convex polytopes from their volumes,

measured using the average mean width (evaluated by LP).
• Identify DNN components that can be neglected (e.g., specific weights to be rounded) under explicitly

bounded output error.

Institute of Computer Science, The Czech Academy of Sciences sima@cs.cas.cz

