CROSS-ENTROPY LOSS OF APPROXIMATED DEEP NEURAL NETWORKS

JIRi SiMA & PETRA VIDNEROVA

ICONIP
2025

5

Efficient Processsing of Deep Neural Networks

Cross-Entropy Loss of Approximated Classification DNNs

(Sze, Chen, Yang, Emer, Morgan & Claypool Publishers, 2020)

The energy efficiency of DNNs on low-power, battery-operated embedded hardware (e.g., cellphones,
smartwatches, augmented reality glasses) is a critical challenge.

— reducing the energy cost of DNNs:

1. Specialized Hardware Accelerators for DNN inference (on GPUs, FPGAs, in-memory, etc.)

2. Approximate Computing in error-tolerant applications (e.g. image classification) save large amounts

of energy with minimal accuracy loss by reducing:
e Model Size: pruning, compression, weight sharing, approximate multipliers
e Arithmetic Precision: fixed-point operations, reduced weight bit-width, nonuniform quantization

The aim of this study: Estimate the maximum cross-entropy loss of approximated classification DNNSs.

The classification error of A/ for an input (X1,...,Xn) € [0,1]", measured by the cross-entropy loss
between the softmax categorical probability distributions of A" and N

S~

L(Xq,y...,Xpn) = — Z Vi In yi (upper bounds the Kullback-Leibler divergence of M from A)
keY

Theorem: It is NP-hard to find the maximum of the cross-entropy loss L over the input space [0, 1]".

Upper-Bounding L Using ReLU Networks N & N

within the convex polytope =g around a data point (x4,...,Xn) € T of categoryc € Y
from a test/training set T C [0,1]", where S = S(xq, ..., Xn), restricted to inputs in =g that are

Formal Model of DNN classified by A into the category ¢ with probability at least p (e.g., p = 0.8): Ye Z P

The architecture of a DNN A is a connected directed acyclic graph (V, E) composed of neurons,
where edges (i, j) € E C V x V are labeled with real-valued weights wj; :

Y C V' output neurons

g =) RE) #iev\(XUY)
O O ¢l i cY sofmax functi
O s ot 1] sofmax function

R(€) = ReLU(£) = max(0, €)
£ = Z w;;y; excitationof 3 € V \ X
1€+«
jo={1 €V | (i,5) € E} inputstoneuronj € V \ X

output (state) of
neuron 3 € V

activation function

V\ (X UY) hidden neurons

X ={0,1,...,n} C V input neurons including
formal 0 € X (yo = 1) for biases wjp for 3 € V' \ X

T

(15...,2y,) € [0,1]™

external input to N

w.l.0.g., excluding (max) pooling layers (max(y1,y2) = R(y1 — y2) + y2)

1. Tool: Shortcut Weights

The excitation & of any neuron j € V' \ X is a continuous piecewise linear function of the external input

— £I=ZVV]I.VI for (V1,...,¥n) € =
ieX
within a subset = C [0, 1]” of the input space, where Wij; are referred to as the shortcut weights (bias)
from input neurons i € Xtoneuronj e V \ X.

For an input (x4, ..., xn) € [0,1], let =g C [0, 1]" be its neighborhood within which &; are linear
for all j € V \ X under fixed shortcut weights, where

S=S8(Xq,....xn) ={J€ VN(XUY) | <0}
denotes the set of hidden neurons saturated at zero output, y; = R(&;) = 0.
— =g Is a convex polytope—an intersection of finitely many half-spaces:

<0ifje S :
51:2%"""{20”;%3 forje V\(XUY)

ieX
0<y; <1 foriekX
Efficient Computation of the shortcut weights via feedforward propagation (skipping S) forj € V \ X:
i L 1 ifk=1i i
VVI',' = Z ij Wki foralli e X (Inltla”y Wki = {0 otherwise for k,l -~ X)

k€j—\S

2. Tool: Continuous Piecewise Linear Interpolation of e*

([@90 if x < ap
eX ~ Ne(X) = { m;x + bi If a < X < aj 1
M X + by, 1 itX>apo

o & < Ne(X) for x € (—Ooaar+2]

_>
“““““ o e = Ne(a;) fori e {0,...,r+2}
a ap = Gp Qprp1Grg T g
Theorem: There are r unique points a4, ..., ar inside [ag, a,,.1] that minimize
F . rajyq edi+1 — @di—1

Z/ (mjx + b; — e¥) dx — e = :

i=0 a; al—|—1 o al—1
Evaluating the linear interpolation using ReLU networks:

r+1 r
Ne(x) = e+) R(mix + bj — %) — > R (mjx + b; — e%i+1)

Approximated DNNs

s

N is an approximation of N, sharing the same Input neurons ()N(= X) and the same number of output
neurons (| Y| = |Y|) (tilde denotes parameters of V),

e.g., the weights of A/ are rounded to a given number of binary digits in their floating-point
representations

Institute of Computer Science,

The Czech Academy of Sciences

§i— & <0< a

Z eﬁj—éc S

Z Ne(ﬁj—fc) =Nc(x1a---axn)§,1—,—1 SOft—mgX.VcZP

jeY\{c} jeY\{c}

1 1 1
L(X1,...,Xn)=Zyklnxgycln:+(1—yc) max In—

C e o\ s c o i N i o

O 103 e Ehtye(Gte) 2P o&i—Ekt+R(Ek—Ec) —PR(€c—¢k)

keV\{e} keY\{e} 'y
() o L L -
< max S Ne(&—ék+R (& —€c) —pR(Ec—&)) =M max Ng(xq,...,xn)
kEY\{c}iE? keY\{c}

AppMax Method

Input: DNN A/, its approximation N, (X4,...,Xn) € Tofcategoryc e Y
Output: an upper bound on

max _ Ly1s---5yn)
(¥15---5¥Yn) € UkE?\{c} —k
Algorithm: For each k € ?\ {c} do

o Compose N/* from Ny & Ne.
e Determine the saturated neurons $* = §*(xq,...,Xn) in N'*.
o Compute the shortcut weights W of N*forallje V*\ X*andi € X*.

e Solve the linear program (LP) to find (y4, ..., ¥n) that
maximize ./(/';((yh...,yn) (— ok) overthe polytope =) C =g
. . «,) <0 if je S* : * * *
defined by &f = ;("Viiy'{zo fj¢s forj € V¥\ (X*U Y*),
I
NC(X1,...,Xn) §1P—1 (where eaogg—1 ge""r+2>,

S~

gj—g(+R(§I;—€c)—PR(g;—§k) < a2 (%),

and output In max

(¥1,---,¥n) € [0,1]".

kcY\{c} 7k

e DNN: A/ with 3 fully connected layers (784—64—-32—10) and 32-bit weights, trained on the MNIST
dataset; approximated as N with weights rounded to 4 bits

e Source Code: https://github.com/PetraVidnerova/ClassificationRoundingErrors

e Test Set: T with 1135 data points of class ¢ = 1, on which A/ and N achieve 100% and 99.91%
accuracy, respectively

e Linear Interpolation of e*: r = 14 optimal points & ag = —5, a,,.1 = 5, @, 2 = 20

Number of “misclassified polytopes” around data points in T, including so-called misclassified inputs with
the maximum estimated upper bound of cross-entropy loss, which are classified correctly as ¢ = 1 by N
with probability at least p, but misclassified as x # ¢ by N

p 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99
misclassified 134 71 30 11 8 0 0 0 0

Histograms of probabilities yc and y,, over the misclassified inputs:
p=0.3

p=0.5 p=0.7

4.0 -
. C 10 - c 351 =

N & 501
oy
3

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 ~ 01 02 03 04 05 06 0.7 08 009
Class probability Class probability Class probability

- 1 Em « 3.0 m
301
B c I c N cC
| | 2.5
S~
N | 2.0
5 c | =
3
3 e |] 3 1.5
]
| 1.0
1 | 0.5 I I
i i 0.0 ‘

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Class probability Class probability

Class probability

Future Research Directions

e Broaden AppMax evaluation to other datasets (e.g., CIFAR-100, ImageNet).
e Most suitable error metric (KL divergence, cross-entropy loss, accuracy) with optimal upper bound.
e AppMax for classification DNNs with softmax, via nonlinear Karush-Kuhn-Tucker optimization.

e Approximate global error by estimating the probabilities of convex polytopes from their volumes,
measured using the average mean width (evaluated by LP).

e Identify DNN components that can be neglected (e.g., specific weights to be rounded) under explicitly
bounded output error.

simadcs.cas.cz

