JIŘÍ ŠÍMA & PETRA VIDNEROVÁ

Efficient Processsing of Deep Neural Networks

(See: Sze, Chen, Yang, Emer: Efficient Processing of Deep Neural Networks, 2020)

- ► The energy efficiency of DNN implementations on low-power, battery-operated hardware (e.g. cellphones, smartwatches, smart glasses) becomes crucial
- ► Possible solutions: efficient hardware design and approximate computing

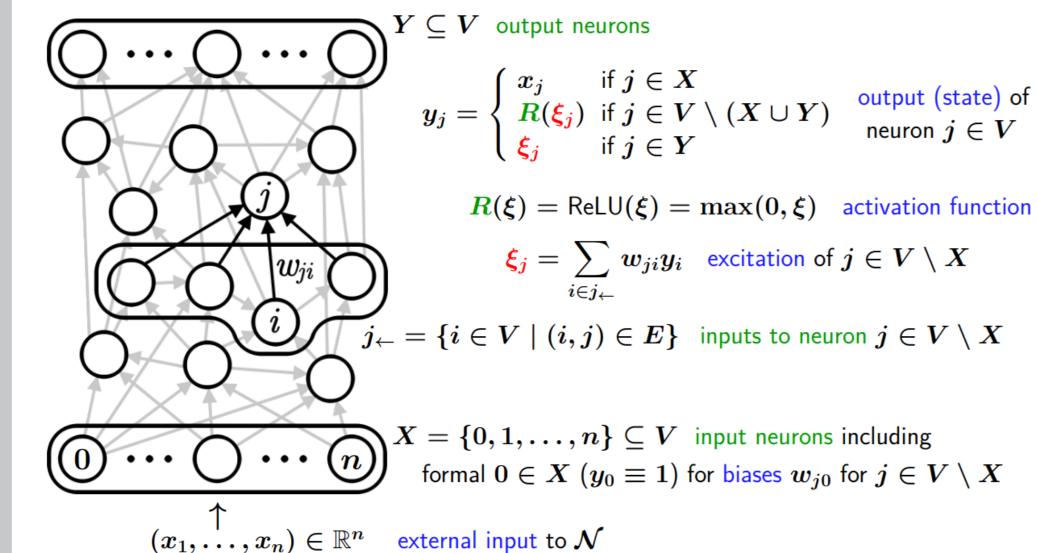
Approximate Computing in error-tolerant applications (e.g. image classification) save large amounts of energy with minimal accuracy loss by reducing:

- ▶ model size pruning, compression, weight sharing, approximate multipliers
- ► arithmetic precision fixed-point operations, reduction of weight bit-width, nonuniform quantization

The aim of this study: theoretical analysis of the effect of (post-training) weight rounding on DNN output to guarantee maximum error bounds

Formal Model of DNN

The architecture of a DNN \mathcal{N} is a connected directed acyclic graph (V, E) composed of neurons, where edges $(i,j) \in E \subset V \times V$ are labeled with weights $w_{ii} \in \mathbb{R}$



w.l.o.g., excluding (max) pooling layers ($\max(y_1,y_2)=R(y_1-y_2)+y_2$)

Regression Error of Approximated DNN

 $\widetilde{\mathcal{N}}$ is an approximated DNN of \mathcal{N} , sharing the same input neurons (X = X) and the same number of output neurons ($|\widetilde{Y}| = |Y|$) (tilde denotes parameters of $\widetilde{\mathcal{N}}$)

 \rightarrow regression error under L_1 norm for an external input $(x_1, \dots, x_n) \in \mathbb{R}^n$

$$E(x_1,\ldots,x_n)=\sum_{j\in Y}\left|y_j-\widetilde{y}_j\right|=\sum_{j\in Y}\left|\xi_j-\widetilde{\xi}_j\right|$$

Weight Rounding — an important example of approximated $\tilde{\mathcal{N}}$:

$$\widetilde{w_{ji}} = w_{ji} + \delta_{ji}$$
 for $j \in V \setminus X \& i \in j_{\leftarrow}$

where $\delta_{ii} \in \mathbb{R}$ is a real rounding error of weight w_{ii}

Theorem: It is NP-hard to find the maximum error of approximated DNNs (for any approximation, not only weight rounding).

Shortcut Weights

The excitation ξ_i of any neuron $j \in V \setminus X$ is a continuous piecewise linear function of the external input (due to ReLU is piecewise linear)

 \rightarrow within a subset $\Xi \subseteq [0,1]^n$ of the input space, the excitation is a linear function of the input-neuron states:

$$\xi_j = \sum_{i \in X} W_{ji} y_i \quad \text{for } (y_1, \dots, y_n) \in \Xi$$

where W_{ii} are the coefficients of the linear function, referred to as the shortcut weights (bias) from input neurons $i \in X$ to neuron $j \in V \setminus X$

for input $(x_1, \ldots, x_n) \in [0, 1]^n$, its neighborhood Ξ_S is defined so that ξ_i are linear for all $j \in V \setminus X$ with fixed shortcut weights, where

$$S = S(x_1, \ldots, x_n) = \{ j \in V \setminus (X \cup Y) \mid \xi_i < 0 \}$$

is the set of hidden neurons saturated at zero output, $y_i = R(\xi_i) = 0$

 $\rightarrow \Xi_S$ is a convex polytope—an intersection of finitely many half-spaces:

$$\xi_j = \sum_{i \in X} W_{ji} y_i \begin{cases} < 0 & \text{if } j \in S \\ \ge 0 & \text{if } j \notin S \end{cases} \quad \text{for } j \in V \setminus (X \cup Y)$$

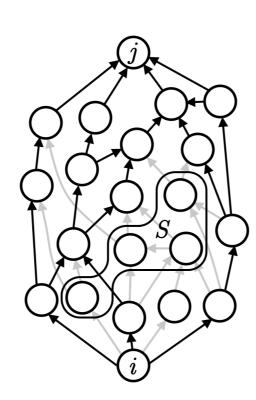
 $0 \le y_i \le 1$ for $i \in X$

Calculating shortcut weights

The shortcut weight W_{ii} represents the cumulative influence from input neuron $i \in X$ to neuron $j \in V \setminus X$, corresponding to the product of weights along all connecting unsaturated paths in \mathcal{N} :

$$extstyle egin{aligned} extstyle egin{aligned} extstyle W_{ji} &= & \sum_{\substack{j=j_0,j_1,\ldots,j_m=j \ j_1,\ldots,j_{m-1}
otin S}} &\prod_{\ell=1}^m extstyle W_{j_\ell,j_{\ell-1}} \end{aligned}$$

The shortcut weights can be calculated efficiently via feed-forward propagation.



Estimating the Maximum Error of Approximated DNNs

► Approximating the maximum or average error using data points from the training or test set *T*

$$E_T = \max_{(x_1,...,x_n)\in T} E(x_1,...,x_n), \ \overline{E_T} = \frac{1}{|T|} \sum_{(x_1,...,x_n)\in T} E(x_1,...,x_n)$$

▶ Refining the error estimate using the maximum over the convex polytope $\Xi_{S(x_1,...,x_n)}$ surrounding the data point $(x_1, \ldots, x_n) \in T$:

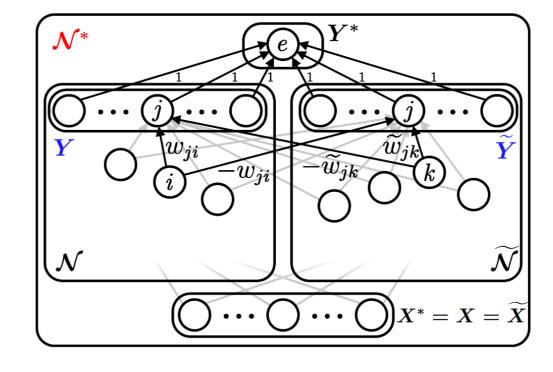
$$E_{\Xi_{S(T)}} = \max_{(x_1, \dots, x_n) \in T} E_{\Xi_{S(x_1, \dots, x_n)}}, \quad \overline{E_{\Xi_{S(T)}}} = \frac{1}{|T|} \sum_{(x_1, \dots, x_n) \in T} E_{\Xi_{S(x_1, \dots, x_n)}}$$

where

$$E_{\Xi_{S(x_1,\ldots,x_n)}} = \max_{(y_1,\ldots,y_n)\in\Xi_{S(x_1,\ldots,x_n)}} E(y_1,\ldots,y_n)$$

AppMax Method for Computing $E_{\Xi_{S^*(x_1,...,x_n)}} = \max_{(y_1,...,y_n) \in \Xi_{S^*(x_1,...,x_n)}} E(y_1,...,y_n)$

► Construct \mathcal{N}^* from \mathcal{N} & $\widetilde{\mathcal{N}}$:



$$egin{aligned} oldsymbol{\xi}_j^* &= oldsymbol{\xi}_j - \widetilde{oldsymbol{\xi}_j} & ext{for } j \in oldsymbol{Y} \ &= \sum_{i \in j_\leftarrow} w_{ji} y_i - \sum_{i \in j_\leftarrow} \widetilde{w_{ji}} \, \widetilde{y}_i \end{aligned}$$

$$egin{aligned} oldsymbol{\xi}_j^* &= \widetilde{oldsymbol{\xi}_j} - oldsymbol{\xi}_j & ext{for } j \in \widetilde{oldsymbol{Y}} \ &= \sum_{k \in j_\leftarrow} \widetilde{w_{jk}} \, y_k - \sum_{k \in j_\leftarrow} w_{jk} \widetilde{y_k} \end{aligned}$$

$$y_{e}^{*} = \xi_{e}^{*} = \sum_{j \in Y} y_{j}^{*} + \sum_{j \in \widetilde{Y}} y_{j}^{*} = \sum_{j \in Y} R\left(\xi_{j}^{*}\right) + \sum_{j \in \widetilde{Y}} R\left(\xi_{j}^{*}\right)$$
$$= \sum_{j \in Y} \left(R\left(\xi_{j} - \widetilde{\xi}_{j}\right) + R\left(\widetilde{\xi}_{j} - \xi_{j}\right)\right) = \sum_{j \in Y} \left|\xi_{j} - \widetilde{\xi}_{j}\right| = E(x_{1}, \dots, x_{n})$$

- ▶ Determine the saturated neurons $S^* = S^*(x_1, ..., x_n)$
- ▶ Compute the shortcut weights W_{ii}^* of \mathcal{N}^* for all $j \in V^* \setminus X^*$ and $i \in X^*$
- Solve the linear program to find the input-neuron states y_1, \ldots, y_n that

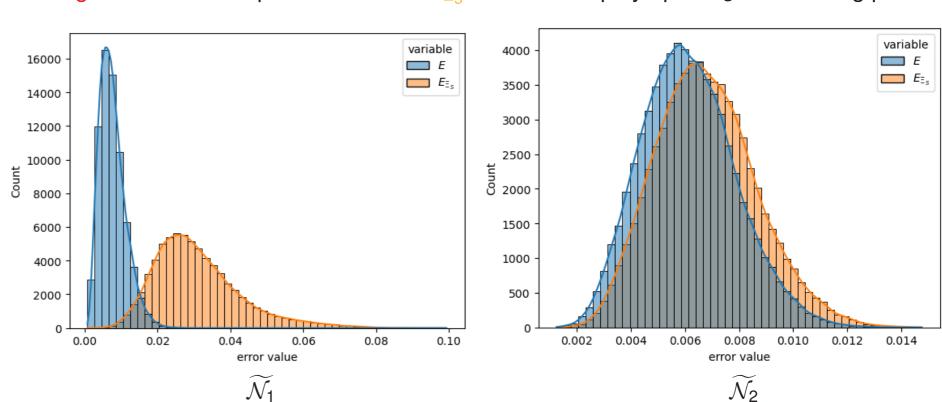
Experiments

- MNIST dataset, PyTorch & SciPy(linprog)
- ► Source Code: https://github.com/PetraVidnerova/RoundingErrorEstimation
- ▶ **DNNs:** trained on MNIST with 32-bit weights
- 1. fully connected NN \mathcal{N}_1 : 3 FC layers 784–2000–1000–10
- 2. convolutional NN \mathcal{N}_2 : 2 convolutional layers with 32 and 64 3x3-kernels (stride 1, padding 1), 1 max pooling layer with 64 2x2-kernels (stride 2), 2 FC layers (1024–10)
- \rightarrow 8 FC layers 784–25088–50176–50176–25088–25088–12544–1024–10

$$E_T$$
 $E_{\Xi_{S(T)}}$ E_T $E_{\Xi_{S(T)}}$ $\widetilde{\mathcal{N}}_1$ 0.032854 0.099374 0.007629 0.030884 $\widetilde{\mathcal{N}}_2$ 0.013466 0.014763 0.006127 0.006777

- weights rounded to 16 bits
- ► T with 70,000 data points

Error Histograms: E at data points in T vs. E_{Ξ_S} over convex polytopes Ξ_S surrounding points in T



Reducing the Sample Size for AppMax

Error estimates E_{T_s} and $E_{\Xi_{S(T_s)}}$ for random samples $T_s \subset T$ of increasing size (50–60,000), averaged over 100 trials:

