
WEIGHT-ROUNDING ERROR IN DEEP NEURAL NETWORKS

JIŘÍ Š ÍMA & PETRA VIDNEROVÁ

Efficient Processsing of Deep Neural Networks

(See: Sze,Chen,Yang,Emer: Efficient Processing of Deep Neural Networks, 2020)

▶ The energy efficiency of DNN implementations on low-power, battery-operated hardware
(e.g. cellphones, smartwatches, smart glasses) becomes crucial

▶ Possible solutions: efficient hardware design and approximate computing

Approximate Computing in error-tolerant applications (e.g. image classification) save large
amounts of energy with minimal accuracy loss by reducing:
▶ model size – pruning, compression, weight sharing, approximate multipliers
▶ arithmetic precision – fixed-point operations, reduction of weight bit-width, nonuniform

quantization

The aim of this study: theoretical analysis of the effect of (post-training) weight rounding on DNN
output to guarantee maximum error bounds

Formal Model of DNN

The architecture of a DNN N is a connected directed acyclic graph (V ,E) composed of neurons,
where edges (i , j) ∈ E ⊂ V × V are labeled with weights wji ∈ R

Regression Error of Approximated DNN

Ñ is an approximated DNN of N , sharing the same input neurons (X̃ = X) and the same number
of output neurons (|Ỹ | = |Y |) (tilde denotes parameters of Ñ)
→ regression error under L1 norm for an external input (x1, . . . , xn) ∈ Rn

E(x1, . . . , xn) =
∑

j∈Y

∣∣yj − ỹj
∣∣ = ∑

j∈Y

∣∣∣ξj − ξ̃j

∣∣∣
Weight Rounding — an important example of approximated Ñ :

w̃ji = wji + δji for j ∈ V \ X & i ∈ j←

where δji ∈ R is a real rounding error of weight wji

Theorem: It is NP-hard to find the maximum error of approximated DNNs (for any
approximation, not only weight rounding).

Shortcut Weights

The excitation ξj of any neuron j ∈ V \ X is a continuous piecewise linear function of the external
input (due to ReLU is piecewise linear)

→ within a subset Ξ ⊆ [0,1]n of the input space, the excitation is a linear function of the
input-neuron states:

ξj =
∑
i∈X

Wji yi for (y1, . . . , yn) ∈ Ξ

where Wji are the coefficients of the linear function, referred to as the shortcut weights (bias) from
input neurons i ∈ X to neuron j ∈ V \ X

for input (x1, . . . , xn) ∈ [0,1]n, its neighborhood ΞS is defined so that ξj are linear for all j ∈ V \ X
with fixed shortcut weights, where

S = S(x1, . . . , xn) = {j ∈ V \ (X ∪ Y) | ξj < 0}

is the set of hidden neurons saturated at zero output, yj = R(ξj) = 0

→ ΞS is a convex polytope—an intersection of finitely many half-spaces:

ξj =
∑
i∈X

Wji yi

{
< 0 if j ∈ S
≥ 0 if j /∈ S for j ∈ V \ (X ∪ Y)

0 ≤ yi ≤ 1 for i ∈ X

Calculating shortcut weights

The shortcut weight Wji represents the cumulative influence from input
neuron i ∈ X to neuron j ∈ V \ X , corresponding to the product of
weights along all connecting unsaturated paths in N :

Wji =
∑

paths i=j0,j1,...,jm=j in (V ,E)
j1,...,jm−1 /∈S

m∏
ℓ=1

wjℓ,jℓ−1

The shortcut weights can be calculated efficiently via feed-forward
propagation.

Estimating the Maximum Error of Approximated DNNs

▶ Approximating the maximum or average error using data points from the training or test set T

ET = max
(x1,...,xn)∈T

E(x1, . . . , xn) , ET =
1
|T |

∑
(x1,...,xn)∈T

E(x1, . . . , xn)

▶ Refining the error estimate using the maximum over the convex polytope ΞS(x1,...,xn) surrounding
the data point (x1, . . . , xn) ∈ T :

EΞS(T)
= max

(x1,...,xn)∈T
EΞS(x1,...,xn)

, EΞS(T)
=

1
|T |

∑
(x1,...,xn)∈T

EΞS(x1,...,xn)

where
EΞS(x1,...,xn)

= max
(y1,...,yn)∈ΞS(x1,...,xn)

E(y1, . . . , yn)

AppMax Method for Computing EΞS∗(x1,...,xn)
= max(y1,...,yn)∈ΞS∗(x1,...,xn)

E(y1, . . . , yn)

▶ Construct N ∗ from N & Ñ :

y∗e = ξ∗e =
∑
j∈Y

y∗j +
∑
j∈Ỹ

y∗j =
∑
j∈Y

R
(
ξ∗j
)
+
∑
j∈Ỹ

R
(
ξ∗j
)

=
∑
j∈Y

(
R
(
ξj − ξ̃j

)
+ R

(
ξ̃j − ξj

))
=

∑
j∈Y

∣∣∣ξj − ξ̃j

∣∣∣ = E(x1, . . . , xn)

▶ Determine the saturated neurons S∗ = S∗(x1, . . . , xn)

▶ Compute the shortcut weights W ∗
ji of N ∗ for all j ∈ V ∗ \ X ∗ and i ∈ X ∗

▶ Solve the linear program to find the input-neuron states y1, . . . , yn that

maximize y∗e =
∑
i∈X

W ∗
ei yi → EΞS∗(x1,...,xn)

subject to ξ∗j =
∑
i∈X

W ∗
ji yi

{
≤ 0 if j ∈ S∗

≥ 0 if j /∈ S∗ for j ∈ V ∗ \ (X ∗ ∪ Y ∗)

0 ≤ yi ≤ 1 for i ∈ X ∗

Experiments

▶ MNIST dataset, PyTorch & SciPy(linprog)
▶ Source Code: https://github.com/PetraVidnerova/RoundingErrorEstimation
▶ DNNs: trained on MNIST with 32-bit weights

1. fully connected NN N1: 3 FC layers 784–2000–1000–10
2. convolutional NN N2: 2 convolutional layers with 32 and 64 3x3-kernels (stride 1, padding 1),
1 max pooling layer with 64 2x2-kernels (stride 2), 2 FC layers (1024–10)
→ 8 FC layers 784–25088–50176–50176–25088–25088–12544–1024–10

ET EΞS(T)
ET EΞS(T)

Ñ1 0.032854 0.099374 0.007629 0.030884
Ñ2 0.013466 0.014763 0.006127 0.006777

▶ weights rounded to 16 bits
▶ T with 70,000 data points

Error Histograms: E at data points in T vs. EΞS over convex polytopes ΞS surrounding points in T

Ñ1 Ñ2

Reducing the Sample Size for AppMax

Error estimates ETs and EΞS(Ts)
for random samples Ts ⊂ T of increasing size (50–60,000),

averaged over 100 trials:

Ñ1 Ñ2

Institute of Computer Science, The Czech Academy of Sciences sima@cs.cas.cz

https://github.com/PetraVidnerova/RoundingErrorEstimation

