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Motivations: The Computational Power of NNs

(discrete-time recurrent NNs with the saturated-linear activation function)

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)

2. rational weights: Turing machine (Siegelmann, Sontag, 1995)

polynomial time ≡ complexity class P

polynomial time & increasing Kolmogorov complexity of real weights ≡
a proper hierarchy of nonuniform complexity classes between P and P/poly

(Balcázar, Gavaldà, Siegelmann, 1997)

3. arbitrary real weights: “super-Turing” computation (Siegelmann, Sontag, 1994)

polynomial time ≡ nonuniform complexity class P/poly

exponential time ≡ any I/O mapping

filling the gap between integer and rational weights w.r.t. the Chomsky hierarchy

regular (Type 3) × recursively enumerable (Type 0) languages
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The Traditional Chomsky Hierarchy
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Type 2

Type 3
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The Analog Neuron Hierarchy

αANN = a binary-state NN with integer weights

+ α extra analog-state neurons with rational weights

the computational power of NNs increases with the number α of extra analog neurons:

(Type 3) FAs ≡ 0ANNs ⊆ 1ANNs ⊆ 2ANNs ⊆ 3ANNs ⊆ . . . ≡ TMs (Type 0)

↑ × ↑
integer weights Chomsky hierarchy rational weights

Type 1, 2 ?

Known Results:

• classifying 1ANNs within the Chomsky hierarchy (Šı́ma, 2017):

– upper bound: 1ANNs ⊂ LBAs ≡ CSLs (Type 1)

– lower bound: 1ANNs 6⊂ PDAs ≡ CFLs (Type 2)(
L1 =

{
x1 . . . xn ∈ {0, 1}∗

∣∣ ∑n
k=1 xn−k+1

(
3
2

)−k
< 1

}
∈ 1ANNs \ CFLs

)
– 1ANNs with “quasi-periodic” weights ⊆ FAs ≡ REG (Type 3)

• the analog neuron hierarchy collapses at 3ANNs (Šı́ma, 2018):

3ANNs = 4ANNs = 5ANNs = . . . ≡ TMs ≡ RE (Type 0)
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The Main Result: Separating 2ANNs From 1ANNs

“counting” language L# =
{
0n1n

∣∣n ≥ 1
}
∈ 2ANNs \ 1ANNs

L# is a (non-regular) deterministic context-free language (DCFL)

accepted by a deterministic push-down automaton (DPDA)

1. L# /∈ 1ANNs:

Theorem 1. The deterministic context-free language L# cannot be recog-
nized by a neural network 1ANN with one extra analog unit having real
weights.

generalizes to (DCFLs \ REG)∩ 1ANNs = ∅

i.e. 1ANNs ∩ DCFLs = 0ANNs (Šı́ma, Plátek, 2019)

2. L# ∈ DCFLs ⊂ 2ANNs:

Theorem 2. For any deterministic context-free language L ⊆ {0, 1}∗,
there is a neural network 2ANN with two extra analog units having rational
weights, N , which accepts L = L(N ).
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A Schema of 2ANNs Simulating DPDAs

the stack contents x1 . . . xn ∈ {0, 1}∗ are encoded by states y1, y2 ∈ [0, 1]
of analog neurons 1 (push), 2 (pop) using Cantor-like set (Siegelmann,Sontag,1995):

code(x1 . . . xn) =
n∑
i=1

2xi + 1

4i
∈ [0, 1]
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Implementing the Stack Operations

top(y1) = H(2y1 − 1) =

{
1 if y1 ≥ 1

2
i.e. y1 = code(1x2 . . . xn)

0 if y1 <
1
2

i.e. y1 = code(0x2 . . . xn)

pop(y2) = σ(4y2 − 2 top− 1)

= code(x2 . . . xn)

push(y1, b) = σ
(
1
4
y1 +

2b+1
4

)
= code(b x1 . . . xn)

for b ∈ {0, 1}

+ synchronizing the swaps

between y1 and y2 Example of a 2ANN recognizing L#
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A Summary of the Analog Neuron Hierarchy

FAs ≡ 0ANNs $ 1ANNs $ 2ANNs ⊆ 3ANNs ≡ TMs

Open Problems:

• the separation of the 3rd level: 2ANNs $ 3ANNs ?

• strengthening the 2nd level separation to the nondeterministic CFLs:

(CFLs \ REG)∩ 1ANNs = ∅ ?

• a proper “natural” hierarchy of NNs between integer and rational weights
which can be mapped to known infinite hierarchies of REG/CFLs ?
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