

Counting with Analog Neurons

Jiří Šíma

sima@cs.cas.cz

Institute of Computer Science Czech Academy of Sciences

Proceedings of ICANN 2019, Part I, pp. 389–400

Manuscript Number 39

Motivations: The Computational Power of NNs

(discrete-time recurrent NNs with the saturated-linear activation function)

depends on the information contents of weight parameters:

- 1. integer weights: finite automaton (Minsky, 1967)
- 2. rational weights: Turing machine (Siegelmann, Sontag, 1995) polynomial time \equiv complexity class P

polynomial time & increasing Kolmogorov complexity of real weights ≡
a proper hierarchy of nonuniform complexity classes between P and P/poly
(Balcázar, Gavaldà, Siegelmann, 1997)

3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time ≡ nonuniform complexity class P/poly exponential time ≡ any I/O mapping

filling the gap between integer and rational weights w.r.t. the Chomsky hierarchy regular (Type 3) \times recursively enumerable (Type 0) languages

The Traditional Chomsky Hierarchy

The Formal Language Hierarchy

The Analog Neuron Hierarchy

α **ANN** = a binary-state NN with **integer** weights + α **extra analog-state neurons** with **rational** weights

the computational power of NNs increases with the number lpha of extra analog neurons:

(Type 3) FAs
$$\equiv$$
 0ANNs \subseteq 1ANNs \subseteq 2ANNs \subseteq 3ANNs $\subseteq ... \equiv$ TMs (Type 0) \uparrow \times integer weightsChomsky hierarchyType 1, 2?

Known Results:

- classifying **1ANNs** within the Chomsky hierarchy (Šíma, 2017):
 - upper bound: $1ANNs \subset LBAs \equiv CSLs$ (Type 1)
 - -lower bound: **1ANNs** $\not\subset$ **PDAs** \equiv **CFLs** (Type 2)
 - $\left(L_1 = \left\{x_1 \dots x_n \in \{0,1\}^* \ \middle| \ \sum_{k=1}^n x_{n-k+1} \left(rac{3}{2}
 ight)^{-k} < 1
 ight\} \in 1$ ANNs \setminus CFLsight)
 - -1ANNs with "quasi-periodic" weights \subseteq FAs \equiv REG (Type 3)
- the analog neuron hierarchy collapses at **3ANNs** (Šíma, 2018):

 $3ANNs = 4ANNs = 5ANNs = ... \equiv TMs \equiv RE$ (Type 0)

The Main Result: Separating 2ANNs From 1ANNs

"counting" language $\ L_{\#} = \left\{ 0^n 1^n \, \big| \, n \geq 1
ight\} \in \mathsf{2ANNs} \setminus \mathsf{1ANNs}$

 $L_{\#}$ is a (non-regular) deterministic context-free language (DCFL) accepted by a deterministic push-down automaton (DPDA)

1. $L_{\#} \notin 1$ ANNs:

Theorem 1. The deterministic context-free language $L_{\#}$ cannot be recognized by a neural network 1ANN with one extra analog unit having real weights.

generalizes to $(\mathsf{DCFLs} \setminus \mathsf{REG}) \cap \mathsf{1ANNs} = \emptyset$

i.e. $1ANNs \cap DCFLs = 0ANNs$ (Šíma, Plátek, 2019)

2. $L_{\#} \in \mathsf{DCFLs} \subset \mathsf{2ANNs}$:

Theorem 2. For any deterministic context-free language $L \subseteq \{0,1\}^*$, there is a neural network 2ANN with two extra analog units having rational weights, \mathcal{N} , which accepts $L = \mathcal{L}(\mathcal{N})$.

A Schema of 2ANNs Simulating DPDAs

the stack contents $x_1 \dots x_n \in \{0,1\}^*$ are encoded by states $y_1, y_2 \in [0,1]$ of analog neurons 1 (push), 2 (pop) using Cantor-like set (Siegelmann, Sontag, 1995):

$$ext{code}(x_1\ldots x_n) = \sum_{i=1}^n rac{2x_i+1}{4^i} \in [0,1]$$

Implementing the Stack Operations

$$ext{top}(y_1) = H(2y_1-1) = egin{cases} 1 & ext{if } y_1 \geq rac{1}{2} & ext{i.e. } y_1 = ext{code}(1\,x_2\dots x_n) \ 0 & ext{if } y_1 < rac{1}{2} & ext{i.e. } y_1 = ext{code}(0\,x_2\dots x_n) \end{cases}$$

$$egin{aligned} \mathsf{pop}(y_2) &= \pmb{\sigma}(4y_2-2\,\mathsf{top}-1) \ &= \mathsf{code}(x_2\dots x_n) \end{aligned}$$

$$ext{push}(y_1,b) = oldsymbol{\sigma}igg(rac{1}{4}y_1+rac{2b+1}{4}igg) \ = ext{code}(b\,x_1\dots x_n) \ ext{ for } b\in\{0,1\}$$

+ synchronizing the swaps between $oldsymbol{y}_1$ and $oldsymbol{y}_2$

Example of a 2ANN recognizing $L_{\#}$

A Summary of the Analog Neuron Hierarchy

 $\mathsf{FAs}\ \equiv\ \mathsf{0ANNs}\ \subsetneqq\ \mathsf{1ANNs}\ \subsetneq\ \mathsf{2ANNs}\ \subseteq\ \mathsf{3ANNs}\ \equiv\ \mathsf{TMs}$

Open Problems:

- the separation of the 3rd level: **2ANNs** \subseteq **3ANNs** ?
- strengthening the 2nd level separation to the nondeterministic CFLs:

 $(CFLs \setminus REG) \cap 1ANNs = \emptyset$?

• a proper "natural" hierarchy of NNs between integer and rational weights which can be mapped to known infinite hierarchies of REG/CFLs ?