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Abstract. In the effort to refine the analysis of computational power
of neural nets between integer and rational weights we study a hybrid
binary-state network with an extra analog unit. We introduce a finite
automaton with a register which is shown to be computationally equiv-
alent to such a network. The main result is a sufficient condition for a
language accepted by this automaton to be regular which is based on the
new concept of a quasi-periodic power series. These preliminary results
suggest an interesting connection with the active research field on the
expansions of numbers in non-integer bases which seems to be a fruitful
area for further research including many important open problems.
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1 Introduction

The computational power of neural networks with the saturated-linear activa-
tion function1 depends on the descriptive complexity of their weight parame-
ters [25, 30]. Neural nets with integer weights corresponding to binary-state net-
works coincide with finite automata [3, 9, 11, 16, 29, 31]. Rational weights make
the analog-state networks computationally equivalent to Turing machines [11,
27], and thus (by a real-time simulation [27]) polynomial-time computations of
such networks are characterized by the complexity class P. Moreover, neural nets
with arbitrary real weights can even derive “super-Turing” computational ca-
pabilities [25, 26]. For example, their polynomial-time computations correspond
to the nonuniform complexity class P/poly while any I/O mapping (including
undecidable problems) can be computed within exponential time. In addition,
a proper hierarchy of nonuniform complexity classes between P and P/poly has
been established for polynomial-time computations of neural nets with increasing
Kolmogorov complexity of real weights [4].

It follows that our understanding of the computational power of neural net-
works is satisfactorily fine-grained when changing from rational to arbitrary real
weights. In contrast, there is still a gap between integer and rational weights
which results in a jump from regular to recursive languages in the Chomsky hier-
archy. It appears that Turing machines can be simulated by the neural networks

? Research was supported by the projects GA ČR P202/10/1333 and RVO: 67985807.
1 The results are valid for more general classes of activation functions [14, 24, 28, 32]

including the logistic function [13].
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that, apart from binary-state neurons interconnected via integer weights, in-
clude only two analog-state units with rational weights implementing two stacks
of pushdown automata, a model equivalent to Turing machines [27]. A natural
question arises: what is the computational power of hybrid binary-state net-
works with one extra analog unit having rational weights? Our investigation
which was originally motivated by the quest of refining the analysis along this
direction, has revealed interesting connections with other active research fields
such as representations of numbers in non-integer bases [1, 2, 5, 7, 8, 15, 19, 20, 22,
23] and automata with multiplication [6, 10, 12, 17, 21]. In addition, our analysis
leads to interesting open problems and even to new concepts which are worth
investigating on their own.

The present paper which initiates our preliminary study, is organized as
follows. In Section 2, we give a brief review of basic definitions concerning the
language acceptors based on a hybrid model of binary-state neural networks
with an extra analog unit. In Section 3, we introduce a new notion of a finite
automaton with a register whose domain is partitioned into a finite number of
intervals, each associated with a local state-transition function. This automaton
is shown to be computationally equivalent by mutual simulations to a neural
network with an analog unit. Our main technical result in Section 4 provides
a sufficient condition when a finite automaton with a register accepts a regular
language, which is based on the new concept of a quasi-periodic power series.
In section 5, related results on so-called β-expansions of numbers in non-integer
bases are surveyed and emerging directions for ongoing research are discussed.

2 Neural Language Acceptors with Extra Analog Unit

We will specify a hybrid model of a binary-state neural network with an analog
unit (NN1A) N which will be used as a formal language acceptor. The network
consists of s units (neurons), indexed as V = {1, . . . , s}, where s is called the
network size. All the units in N are assumed to be binary-state perceptrons
(i.e. threshold gates) except for the last sth neuron which is an analog unit.
The neurons are connected into a directed graph representing the architecture
of N , in which each edge (i, j) leading from unit i to j is labeled with a rational
weight w(i, j) = wji ∈ Q. The absence of a connection within the architecture
corresponds to a zero weight between the respective neurons, and vice versa.

The computational dynamics of N determines for each unit j ∈ V its state

(output) y
(t)
j at discrete time instants t = 0, 1, 2, . . .. The states y

(t)
j of the first

s − 1 perceptrons j ∈ V \ {s} are binary values from {0, 1}, whereas y
(t)
s of

analog unit s ∈ V is a rational number from the unit interval I = [0, 1] ∩ Q.

This establishes the network state y(t) = (y
(t)
1 , . . . , y

(t)
s ) ∈ {0, 1}s−1 × I at each

discrete time instant t ≥ 0. At the beginning of a computation, the neural
network N is placed in an initial state y(0) which may also include an external
input. At discrete time instant t ≥ 0, an excitation of any neuron j ∈ V is

defined as ξ
(t)
j =

∑s
i=0 wjiy

(t)
i , including a rational bias value wj0 ∈ Q which
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can be viewed as the weight w(0, j) from a formal constant unit input y
(t)
0 ≡ 1.

At the next instant t+ 1, the neurons j ∈ αt+1 from a selected subset αt+1 ⊆ V
compute their new outputs y

(t+1)
j = σj(ξ

(t)
j ) in parallel by applying an activation

function σj : R −→ R to ξ
(t)
j , whereas y

(t+1)
j = y

(t)
j for the remaining units

j ∈ V \ αt+1. For perceptrons j ∈ V \ {s} with binary states yj ∈ {0, 1} the
Heaviside activation function σj(ξ) = σH(ξ) is used where σH(ξ) = 1 for ξ ≥ 0
and σH(ξ) = 0 for ξ < 0, while the analog-state unit s ∈ V employs the saturated-
linear function σs(ξ) = σL(ξ) where

σL(ξ) =

1 for ξ ≥ 1
ξ for 0 < ξ < 1
0 for ξ ≤ 0 .

(1)

In this way, the new network state y(t+1) at time t+ 1 is determined.
Without loss of efficiency [18] we assume synchronous computations for which

the sets αt, defining the computational dynamics of N , are predestined deter-
ministically. Usually, sets αt correspond to layers in the architecture of N which
are updated one by one (e.g., a feedforward subnetwork). In particular, we use a
systematic periodic choice of αt so that αt+d = αt for any t ≥ 0 where an integer
parameter d ≥ 1 represents the number of updates within one macroscopic time
step (e.g., d is the number of layers). We assume that the analog unit s ∈ V is up-
dated exactly once in every macroscopic time step, say s ∈ αdτ for every τ ≥ 1.

The computational power of neural networks has been studied analogously
to the traditional models of computations so that the networks are exploited
as acceptors of formal languages L ⊆ {0, 1}∗ over the binary alphabet. For the
finite networks the following I/O protocol has been used [3, 4, 9, 11, 24–27, 30,
31]. A binary input word (string) x = x1 . . . xn ∈ {0, 1}n of arbitrary length
n ≥ 0 is sequentially presented to the network bit by bit via the first, so-called
input neuron 1 ∈ V . The state of this unit is externally set (and clamped) to
the respective input bits at microscopic time instants, regardless of any influence

from the remaining neurons in the network, that is, y
(d(τ−1)+k)
1 = xτ for τ =

1, . . . , n and every k = 0 . . . , d − 1 where an integer d ≥ 1 is the time overhead
for processing a single input bit which coincides with the microscopic time step.
Then, the second, so-called output neuron 2 ∈ V signals at microscopic time
instant n whether the input word belongs to underlying language L, that is,

y
(dn)
2 = 1 for x ∈ L whereas y

(dn)
2 = 0 for x /∈ L. Thus, a language L ⊆ {0, 1}∗

is accepted by NN1A N , which is denoted by L = L(N), if for any input word
x ∈ {0, 1}∗, x is accepted by N iff x ∈ L.

3 Finite Automata with a Register

We introduce a (deterministic) finite automaton with a register (FAR) which is
formally a nine-tuple A = (Q,Σ, {I1, . . . , Ip}, a, (∆1, . . . ,∆p), δ, q0, z0, F ) where,
as usual, Q is a finite set of automaton states including a start (initial) state
q0 ∈ Q and a subset F ⊆ Q of accept (final) states. We assume Σ = {0, 1} to be
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a binary input alphabet. In addition, the automaton is augmented with a register
which stores a rational number z ∈ I = [0, 1] ∩ Q. Domain I is partitioned into
a finite number of intervals I1, . . . , Ip, possibly of different types: open, closed,
half-closed, or degenerate (containing a single point) bounded intervals with
rational endpoints. Each such an interval Ir is associated with a usual local
state-transition function δr : Q × Σ −→ Q which is employed if the current
register value z falls into this interval Ir.

Moreover, we have a rational shift function ∆r : Q×Σ −→ Q for each interval
Ir, r = 1, . . . , p. The register is initialized to a start (initial) value z0 ∈ I, and
during each state transition, its value z ∈ I is updated to σL(az +∆r(q, x)) ∈ I
by applying a linear mapping with saturation (1) having a fixed slope a ∈ Q
called multiplier and an y-intercept ∆r(q, x) ∈ Q given by the shift function
∆r for z ∈ Ir which depends on current state q ∈ Q and input bit x ∈ Σ. In
summary, for current state q ∈ Q, register value z ∈ I, and input bit x ∈ Σ, the
global state-transition function δ : Q× I×Σ −→ Q× I produces the new state
and the new register value of automaton A as follows:

δ(q, z, x) = (δr(q, x), σL(az +∆r(q, x))) if z ∈ Ir . (2)

A binary input word x ∈ Σ∗ is accepted by A if automaton A, starting at
initial state q0 with start register value z0, reaches a final state q ∈ F by a
sequence of state transitions according to (2) while reading the input x from left
to right. A language L ⊆ {0, 1}∗ is accepted by FAR A, which is denoted by L =
L(A), if for any input word x ∈ Σ∗, x is accepted by A iff x ∈ L. The concept
of FAR is reminiscent of today’s already classical definition of finite automaton
with multiplication [10]. In the following theorems, we will show by mutual
simulations that the binary-state neural networks with analog unit introduced
in Section 2 are computationally equivalent to the finite automata with register.

Theorem 1. For any binary-state neural network with an analog unit, there is
a finite automaton with a register such that both accept the same language.

Proof. Let L ⊆ {0, 1}∗ be a language accepted by NN1A N , that is, L = L(N).
We will construct a FAR A such that L(A) = L. Let Q = {0, 1}s−2 be a finite set

of automaton states corresponding to all possible binary states (y
(dτ)
2 , . . . , y

(dτ)
s−1 )

of neurons in V \ {1, s} at macroscopic time τ ≥ 0, excluding the input and

analog unit. The start state q0 = (y
(0)
2 , . . . , y

(0)
s−1) ∈ Q of A is defined using the

initial state of N and F = {1} × {0, 1}s−3 represents the set of accept states.
At any time instant t ≥ 0, the computational dynamics of N ensures

y
(t+1)
j = 1 iff

∑s−1
i=0 wjiy

(t)
i + wjsy

(t)
s ≥ 0 for a non-input binary-state neuron

j ∈ {2 . . . , s− 1} ∩ αt+1. For wjs 6= 0, this condition can be rewritten as

y
(t+1)
j = 1 iff

(
wjs > 0 & y(t)s ≥ cj

(
ỹ(t)

))
∨
(
wjs < 0 & y(t)s ≤ cj

(
ỹ(t)

))
(3)

where ỹ(t) = (y
(t)
1 , . . . , y

(t)
s−1) and cj(y) = (−

∑s−1
i=0 wjiyi)/wjs ∈ Q for y ∈

{0, 1}s−1. Let C = {(cj(y), 1−σH(wjs)) ∈ I×{0, 1} | 1 < j < s such that wjs 6= 0,
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y ∈ {0, 1}s−1}∪{(0, 0), (1, 1)} be a finite set of all possible values cj(y) ∈ I asso-
ciated with the opposite signs of corresponding weights wjs, which is extended
with the endpoints 0, 1 of I. We sort the elements of C lexicographically as
(0, 0) = (c1, s1) < (c2, s2) < . . . < (cp+1, sp+1) = (1, 1), which defines the parti-
tion of I to rational intervals I1, . . . , Ip as Ir = [cr, cr+1) if sr = 0 & sr+1 = 0,
Ir = [cr, cr+1] if sr = 0 & sr+1 = 1, Ir = (cr, cr+1) if sr = 1 & sr+1 = 0, and
Ir = (cr, cr+1] if sr = 1 & sr+1 = 1, for r = 1, . . . , p. It follows from (3) that for
any interval Ir (1 ≤ r ≤ p) of this partition, for every neuron j = 2, . . . , s−1 and

for any ỹ(t) ∈ {0, 1}s−1, the inequality
∑s−1
i=0 wjiy

(t)
i + wjsy

(t)
s ≥ 0 either holds

for all y
(t)
s ∈ Ir or it is not satisfied for all y

(t)
s ∈ Ir. This means that y

(t)
s ∈ I

influences the state y
(t+1)
j only by its membership to particular interval Ir and

not by its exact analog value.
We can define local state-transition functions δr : Q×Σ −→ Q of A for each

interval Ir, r = 1, . . . , p. Given an automaton state q = (y
(d(τ−1))
2 , . . . , y

(d(τ−1))
s−1 ) ∈

Q corresponding to the network state y(d(τ−1)) at microscopic time τ −1 when a

current input bit y
(d(τ−1))
1 = xτ ∈ Σ is read, and let y

(d(τ−1))
s ∈ Ir, we know that

y
(d(τ−1)+k)
1 = y

(d(τ−1))
1 and y

(d(τ−1)+k)
s = y

(d(τ−1))
s for every k = 1, . . . , d − 1,

as the input and analog units are updated only at microscopic time instants.

Hence, for this interval Ir, the neuron states (y
(dτ))
2 , . . . , y

(dτ))
s−1 ) = q′ ∈ Q depend

only on state q ∈ Q and input bit xτ ∈ Σ using the computational dynamics of
N , which define δr(q, xτ ) = q′.

Finally, the register of A is initialized as z0 = y
(0)
s ∈ I. We define the mul-

tiplier a = wss ∈ Q and the shift functions ∆r : Q × Σ −→ Q for r = 1, . . . , p

as ∆r(q, x) =
∑s−1
i=0 wsiy

(dτ−1)
i ∈ Q for q = (y

(d(τ−1))
2 , . . . , y

(d(τ−1))
s−1 ) ∈ Q and

x = y
(d(τ−1))
1 = y

(dτ−1)
1 ∈ Σ, and y

(d(τ−1))
s = y

(dτ−1)
s ∈ Ir, which is a correct

definition since the network state y(dτ−1) is uniquely determined by the state
y(d(τ−1)) at the last microscopic time instant τ − 1 using the computational dy-
namics of N . By induction on microscopic time τ , the register of A stores the

current state y
(dτ)
s of analog unit s ∈ V , as its value z = y

(d(τ−1))
s = y

(dτ−1)
s ∈ Ir

is updated to σL (az +∆r(q, x)) = σs

(
wssy

(dτ−1)
s +

∑s−1
i=0 wsiy

(dτ−1)
i

)
= y

(dτ)
s

according to (2) and (1). This completes the definition of global state-transition
function δ which ensures that A simulates N . ut

Theorem 2. For any finite automaton with a register, there is a binary-state
neural network with an analog unit accepting the same language.

Proof. Let L ⊆ {0, 1}∗ be a language accepted by FARA = (Q,Σ, {I1, . . . , Ip}, a,
(∆1, . . . ,∆p), δ, q0, z0, F ), that is, L = L(A). We will construct a NN1A N such
that L(N) = L. Apart from the input, output, and analog neurons {1, 2, s}, the
set of neurons V contains four types of units corresponding to the automaton
states from Q, to the given partition I1, . . . , Ip of domain I, to all triples from
Q × Σ × {I1, . . . , Ip}, and to the endpoints 0 ≤ c2 ≤ · · · ≤ cp ≤ 1 of rational
intervals from the partition (excluding the left endpoint c1 = 0 of I1 and the
right endpoint cp+1 = 1 of Ip), respectively. For simplicity, we will identify the
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names of neurons with these objects, e.g. cr has two different meanings, once
denoting neuron cr ∈ V and other times standing for rational number cr ∈ I.
The initial network state y(0) ∈ {0, 1}s−1 × I is defined as an almost null vector

except for the input unit receiving the first input bit y
(0)
1 = x1 ∈ Σ = {0, 1},

the output neuron whose state y
(0)
2 = 1 iff q0 ∈ F , the neuron corresponding to

the initial automaton state q0 ∈ Q with output y
(0)
q0 = 1, and the analog unit

implementing the register initialized with its start value y
(0)
s = z0.

Each microscopic time step of N is composed of d = 4 updates. At the first
time instant 4(τ − 1) + 1 within the microscopic step τ ≥ 1, each neuron cr
(1 < r ≤ p) corresponding to the left endpoit of Ir fires, i.e. y

(4(τ−1)+1)
cr = 1

iff either y
(4(τ−1))
s ≥ cr for left-closed interval Ir or y

(4(τ−1))
s ≤ cr for left-open

interval Ir, which is implemented by weights w(s, cr) = 1 and biases w(0, cr) =
−cr for left-closed Ir, and w(s, cr) = −1 and w(0, cr) = cr for right-closed Ir,
for every r = 2, . . . , p. Thus, α4(τ−1)+1 = {c2, . . . , cr} ⊆ V . At the second time
instant 4(τ − 1) + 2, neuron Ir (1 ≤ r ≤ p) representing the interval Ir from

the partition of I fires, i.e. y
(4(τ−1)+2)
Ir

= 1 iff the current register value falls in

Ir, that is, iff y
(4(τ−1))
s = y

(4(τ−1)+1)
s ∈ Ir. This is implemented by the following

weights: w(cr, Ir) = 1 if Ir is left-closed whereas w(cr, Ir) = −1 if Ir is left-open,
for r = 2, . . . , p ; w(cr+1, Ir) = 1 if Ir is right-closed whereas w(cr+1, Ir) = −1 if
Ir is right-open, for r = 1, . . . , p − 1 ; w(0, Ir) = −2 if Ir is closed, w(0, Ir) = 0
if Ir is open, and w(0, Ir) = −1 otherwise, for r = 2, . . . , p− 1, while the biases
of units I1 and Ip having only one incoming edge are by 1 greater than those
defined for I2, . . . , Ip−1. Thus, α4(τ−1)+2 = {I1, . . . , Ir} ⊆ V .

At the third time instant 4(τ − 1) + 3, units in α4(τ−1)+3 = Q × Σ ×
{I1, . . . , Ip} ⊆ V are updated so that the only firing neuron (q, x, Ir) ∈ V among
α4(τ−1)+3 indicates the current triple of state q ∈ V , input bit x ∈ Σ = {0, 1},
and the interval Ir such that y

(4(τ−1))
s ∈ Ir. For any q ∈ Q and every r = 1, . . . , p,

this is simply implemented by weights w(q, (q, x, Ir)) = w(Ir, (q, x, Ir)) = 1 for
any x ∈ Σ, w(1, (q, 1, Ir)) = 1, w(1, (q, 0, Ir)) = −1, and biases w(0, (q, 1, Ir)) =
−3, w(0, (q, 0, Ir)) = −2. At the next time instant 4τ when α4τ = Q∪{2, s} ⊆ V ,
the new automaton state is computed while the output neuron signals whether
this state is accepting. For any q, q′ ∈ Q, x ∈ Σ, and r = 1, . . . , p, we define
the weight w((q, x, Ir), q

′) = 1 iff δr(q, x) = q′, and the bias w(0, q′) = −1,
while w((q, x, Ir), 2) = 1 iff q ∈ F , and w(0, 2) = −1. Finally, the register
value is properly updated according to (2) using the weights wss = a and
w((q, x, Ir), s) = ∆r(q, x) for any q ∈ Q, x ∈ Σ, and every r = 1, . . . , p. This
completes the construction of network N simulating FAR A. ut

4 A Sufficient Condition for Accepting Regular Languages

In this section, we prove a sufficient condition when a finite automaton with
a register accepts a regular language. For this purpose, we introduce a new
concept of a quasi-periodic power series. We say that a power series

∑∞
k=0 bka

k
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is eventually quasi-periodic with maximum period M ≥ 1 and period sum P
if there is an increasing infinite sequence of its term indices 0 ≤ k1 < k2 <
k3 < · · · such that 0 < mi = ki+1 − ki ≤ M and for every i ≥ 1, Pi =
(
∑mi−1
k=0 bki+ka

k)/(1 − ami) = P where k1 is the length of preperiodic part,
that is, for any 0 ≤ k0 < k1, P0 6= P . For example,

∑∞
k=1 bka

k is eventually
quasi-periodic with maximum period m ≥ 1 if associated sequence (bk)∞k=1 is
eventually periodic, that is, there exists k1 ≥ 0 such that bk = bk+m for every
k ≥ k1. For |a| < 1, one can calculate the sum of any eventually quasi-periodic

power series as
∑∞
k=1 bka

k =
∑k1−1
k=0 bka

k +
∑∞
k=k1

bka
k where

∑∞
k=k1

bka
k =∑∞

i=1 a
ki
∑mi−1
k=0 bki+ka

k = P ·
∑∞
i=1 a

ki (1− ami), which gives

∞∑
k=1

bka
k =

k1−1∑
k=0

bka
k + ak1P (4)

since the absolutely convergent series
∑∞
i=1 a

ki(1 − ami) =
∑∞
i=1(aki − aki+1)

sums up to ak1 . It follows that the sum (4) of eventually quasi-periodic power se-
ries does not change if any quasi-repeating block bki , bki+1, . . . , bki+1−1 satisfying
Pi = P is removed from associated sequence (bk)∞k=1 or if it is inserted in be-
tween two other quasi-repeating blocks, which means that these quasi-repeating
blocks can also be permuted arbitrarily.

Theorem 3. Let A = (Q,Σ, {I1, . . . , Ip}, a, (∆1, . . . ,∆p), δ, q0, z0, F ) be a finite
automaton with a register satisfying |a| ≤ 1. Denote by C ⊆ I the finite set
of all endpoints of rational intervals I1, . . . , Ip and let B =

⋃p
r=1∆r(Q × Σ) ∪

{0, 1, z0} ⊆ Q be the finite set of all possible shifts including 0, 1, and the initial
register value. If every series

∑∞
k=0 bka

k ∈ C with all bk ∈ B is eventually
quasi-periodic, then L = L(A) is a regular language.

Proof. We will construct a conventional finite automaton A′ = (Q′, Σ, δ′, q′0, F
′)

with binary input alphabet Σ = {0, 1} simulating FAR A so that L(A′) = L,
which shows that L is regular. According to (2) and (1), a current register value

z =
h∑
k=0

bka
k ∈ I (5)

is uniquely determined by the complete history of shifts b0, b1, . . . , bh ∈ B since
the last time instant when either the register was initialized with start value
bh = z0 or its value saturated at bh = 0 or bh = 1. For a = 0 or |a| = 1, the set of
all possible register values proves to be finite, and henceforth assume 0 < |a| < 1.

Let C ′ = C ∩ {
∑∞
k=0 bka

k | all bk ∈ B} = {c1, . . . , cγ} be a subset of the
interval endpoints from C that are reached by eventually quasi-periodic series
according to the assumption of the theorem, where γ = |C ′|. We choose an
integer κ′ ≥ 0 so that each such series

∑∞
k=0 bka

k ∈ C ′ meets k1 + 2M ≤ κ′ + 1
where k1 is the length of its preperiodic part and M is its maximum period, while
we set κ′ = 0 if γ = 0. It follows that one can decide whether

∑∞
k=0 bka

k /∈ C
with all bk ∈ B, based only on the first κ′ + 1 terms b0, b1, . . . , bκ′ . We observe
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that there exists an integer κ ≥ κ′ such that for every series
∑∞
k=0 bka

k /∈ C
with all bk ∈ B, the interval I(b0, b1, . . . , bκ) = [zκ+

∑∞
k=κ+1 minb∈B

(
bak
)
, zκ+∑∞

k=κ+1 maxb∈B
(
bak
)
] where zκ =

∑κ
k=0 bka

k, does not contain any c ∈ C,

since the opposite would force c =
∑∞
k=0 bka

k by Cantor’s intersection theorem.
A finite set Q′ = Q×Bκ × {<,=, >}γ is now composed of the states of A

which are extended with a limited history of register shifts b0, b1, . . . , bκ ∈ B up
to the last κ state transitions. If h < κ, then bk = 0 for every k = h + 1, . . . , κ.
Moreover, a critical information %j ∈ {<,=, >} is recorded from the “prehistory”
when h > κ, which is specific to each cj ∈ C ′ for j = 1, . . . , γ. In addition,
let q′0 = (q0, z0, 0, . . . , 0,=, . . . ,=) ∈ Q′ be an initial state of A′, while F ′ =
F ×Bκ × {<,=, >}γ ⊆ Q′ represents the set of final states.

We define the transition function δ′ : Q′ ×Σ −→ Q′ of A′ by using the local
state transition and shift functions of A as follows:

δ′((q, b0, . . . , bκ, %1, . . . , %γ), x)

=

{
(δr(q, x), ∆r(q, x), b0, . . . , bκ−1, %

′
1, . . . , %

′
γ) if 0 < zκ < 1

(δr(q, x), σL(zκ), 0, . . . , 0,=, . . . ,=) otherwise,
(6)

for q ∈ Q, b0, . . . , bκ ∈ B, %1, . . . , %γ ∈ {<,=, >}, and x ∈ Σ. In the following
we will describe two cases of choosing the parameter r in definition (6) which
depend on whether or not the arguments b0, . . . , bκ coincide with the first κ+ 1
coefficients of a series from C ′. We first consider the case when for any series∑∞
k=0 b

′
ka
k ∈ C ′ with all b′k ∈ B,

bk 6= b′k for some 0 ≤ k ≤ κ . (7)

In this case, parameter r is chosen so that zκ ∈ Ir. Obviously, the actual register
value (5) is approximated with zκ in (6), which gives a correct simulation of A
by A′ according to (2), as long as h ≤ κ implying z = zκ. Note that the register
saturates properly at value σL(zκ) ∈ {0, 1} if zκ ≤ 0 or zκ ≥ 1. Nevertheless,
the correctness of the simulation must still be proven for h > κ, and henceforth
assume h > κ. Condition (7) implies {zκ, z}∩C = ∅, and {zκ, z} ⊆ I(b0, . . . , bκ).
It follows from the definition of κ that there is only one r ∈ {1, . . . , p} such that
I(b0, . . . , bκ) ⊂ Ir while I(b0, . . . , bκ) ∩ Ir′ = ∅ for the remaining r′ 6= r, which
gives zκ ∈ Ir iff z ∈ Ir in this case.

Now consider the case when the arguments b0, . . . , bκ ∈ B do not satisfy
condition (7), which means there exists a quasi-periodic series

∑∞
k=0 b

′
ka
k =

cj ∈ C ′ with all b′k ∈ B, maximum period M ≥ 1, and period sum P such that

bk = b′k for every k = 0, . . . , κ . (8)

Let 0 ≤ k1 < k2 < k3 < · · · be the increasing infinite sequence of its term
indices, which delimit the quasi-periods mi = ki+1 − ki ≤ M with Pi = P for
i ≥ 1, so that the shifts b0, . . . , bh ∈ B defining the register value (5) coincide
with the coefficients of the series

∑∞
k=0 b

′
ka
k = cj ∈ C ′ up to the first d quasi-

repeating blocks for the maximum possible d ≥ 1 over the permutations of these
blocks, that is,

bk = b′k for every k = 0, . . . , kd+1 − 1 , (9)
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where κ ≤ kd+1 − 1 ≤ h according to (8). Recall that cj ∈ C ′ may serve
as an endpoint of possibly three neighbor intervals Ir including a degener-
ate one. According to (2), parameter r in (6) can thus be chosen uniquely
based on whether z % cj for % ∈ {<,=, >}. In particular, z % cj rewrites to

z = (
∑k1−1
k=0 bka

k +
∑d−1
i=1 a

ki
∑mi−1
k=0 bki+ka

k + akd
∑h
k=kd

bka
k−kd) % cj which

reduces to (akd
∑h
k=kd

bka
k−kd) % (akdP ) according to (9) and (4). Furthermore,

we divide this inequality by akd−k1 6= 0 and add
∑k1−1
k=0 bka

k to both its sides,
which yields

z′ =

(
k1−1∑
k=0

bka
k + ak1

h∑
k=kd

bka
k−kd

)
%′ cj (10)

where %′ ∈ {<,=, >} differs from % ∈ {<,>} iff

a < 0 & kd − k1 =

d−1∑
i=1

mi is odd. (11)

It follows that z % cj can be replaced by z′ %′ cj where z′ is determined by the
history of shifts b0, . . . , bk1−1, bkd , . . . , bkd+1

, . . . , bh according to (5) in which the
terms bk1 , . . . , bkd−1 corresponding to the first d − 1 quasi-repeating blocks of∑∞
k=0 b

′
ka
k = cj , are excluded.

By the definition of κ′, we know that κ ≥ κ′ ≥ k1 + 2M − 1 ≥ k1 + md +
md+1 − 1 ≥ k1 + kd+2 − kd − 1 which gives kd+2 − 1 ≤ kd + κ− k1. In addition,
suppose that the history for z′ in (10) exceeds κ+1 shifts (c.f. assumption h > κ
for z), that is, k1 +h−kd > κ implying h > kd +κ−k1. This yields z 6= cj since
otherwise cj could be expressed as a finite sum (5) with h = kd+1− 1 producing
a contradiction κ′ + 1 ≤ κ + 1 < k1 + kd+1 − kd = k1 + md ≤ k1 + M . Hence,
there is an index kd+1 ≤ k ≤ kd+2 − 1 such that bk 6= b′k due to the maximality
of d. By the definition of κ, condition z % cj can further be reduced to

z′κ =

(
k1−1∑
k=0

bka
k + ak1

kd+κ−k1∑
k=kd

bka
k−kd

)
%′ cj (12)

which only includes the history of κ+ 1 shifts from (10).
Based on the preceding analysis, we can now specify %′1, . . . , %

′
γ ∈ {<,=, >}

in definition (6) of δ′ which make the correct choice of parameter r possible in
the case of (8). According to (6), %1, . . . , %γ are set to default = whenever the reg-
ister value z saturates at 0 or 1, including the initial state q′0. The value of %j for
1 ≤ j ≤ γ is then updated only if the arguments b0, . . . , bκ ∈ B of δ′ start with
any quasi-repeating block b′ki , . . . , b

′
ki+1−1 of a quasi-periodic series

∑∞
k=0 b

′
ka
k =

cj ∈ C ′, which means bk = b′ki+k for every k = 0, . . . ,mi−1 where mi = ki+1−ki.
Otherwise set %′j = %j . Moreover, the update of %j depends on whether or
not the block is followed by another quasi-repeating block of the series. If it
is not the case, the value of %′j is chosen to satisfy the inequality (

∑k1−1
k=0 b′ka

k +

ak1
∑κ
k=0 bka

k) %′j cj anticipating (12) with kd = ki. If, on the other hand,
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b0, . . . , bκ start with at least two quasi-repeating blocks of the series (i.e. i < d),
then %′j differs from %j ∈ {<,>} iff a > 0 and mi is odd, complying with (11).
It follows from (12) and (11) that inequality z %′j cj holds when the arguments
b0, . . . , bκ meet (8), which automaton A′ exploits for deciding whether z ∈ Ir,
particularly at the endpoint cj ∈ C ′ of interval Ir. This determines parameter r
in definition (6) for the case of (8) and completes the proof of the theorem. ut

5 Directions for Ongoing Research

In the effort to fill the gap in the analysis of computational power of neural
nets between integer a rational weights we have investigated a hybrid model of a
binary-state network with an extra analog unit. We have shown this model to be
computationally equivalent to a finite automaton with a register. Our main result
in Theorem 3 formulates a sufficient condition for a language accepted by this
automaton to be regular. Our preliminary study leads to natural open problems
for further research such as completing the statement in Theorem 3 for |a| >
1, finding a corresponding necessary condition for accepting regular languages,
analyzing the algebraic properties of quasi-periodic power series, characterizing
the full power of finite automata with register, e.g. by comparing them to finite
automata with multiplication [10, 12] etc.

Even more important, our analysis of computational power of neural nets
has revealed interesting connections with an active research on representations
of numbers in non-integer bases (see [1, 2, 5, 7, 8, 15, 19, 20, 22, 23] including ref-
erences there). In particular, a power series

∑∞
k=0 bka

k can be interpreted as a
representation of a number from [0, 1] in base β = 1/a using the digits from a fi-
nite set B, which is called a β-expansion when β > 1 and B = {0, 1, . . . , dβe−1}
(usually starting from k = 1). Any number from

[
0, dβe−1β−1

]
has a β-expansion

which need not be unique. Obviously, for any integer bases β ≥ 2 when multiplier
a has the from 1/β, the β-expansion of c ∈ [0, 1] is eventually periodic iff c is
a rational number, which satisfies the assumption of Theorem 3. For simplicity,
we further assume a binary set of digits B = {0, 1} corresponding to 1 < β < 2,
that is, 1

2 < a < 1, although the analysis has partially been extended to sets of
integer digits that can even be greater than dβe − 1 [15].

It has been shown [23] that for β ∈ (1, ϕ) where ϕ = (1 +
√

5)/2 is the
golden ratio, which means for 0.618033 . . . ≤ a < 1, any number from [0, 1]
has a continuum of distinct β-expansions including those not quasi-periodic,
which breaks the assumption of Theorem 3. For β ∈ (ϕ, qc) where qc is the
(transcendental) Komornik-Loreti constant (i.e. the unique solution of equation∑∞
k=1 tkq

−k
c = 1 where (tk)∞k=1 is the Thue-Morse sequence in which tk ∈ {0, 1}

is the parity of the number of 1’s in the binary representation of k), that is,
for 0.559524 . . . < a < 0.618033 . . ., there are countably many numbers in [0, 1]
having eventually periodic unique β-expansions, which are candidate elements
to C in Theorem 3, while for β ∈ (qc, 2) corresponding to 1

2 < a ≤ 0.559524 . . .,
the set of numbers from [0, 1] having unique β-expansions has the cardinality of
continuum and a positive Hausdorff dimension (although its Lebesgue measure
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remains zero) [7]. In addition, for 0 < a < 1
2 (i.e. β > 2 whereas B = {0, 1}),

not every number from [0, 1] has a β-expansion (in fact, the β-expansions create
a Cantor-like set in this case), which can fulfill the assumption of Theorem 3 if
the elements of C do not have β-expansions.

Furthermore, for every m ≥ 2, there exists βm ∈ [ϕ, 2) corresponding to
1
2 < am < 0.618033 . . . such that there exists a number from [0, 1] that has a
periodic unique β-expansion of period m if a < am, while there is no such a num-
ber for a ≥ am [2]. In addition, a so-called greedy (resp. lazy) β-expansion has
been considered which is lexicographically maximal (resp. minimal) for a given
number. Denote by Per(β) a set of numbers having a quasi-periodic greedy β-
expansions. If I ⊆ Per(β), then β is either a Pisot or a Salem number [22] where
a Pisot (resp. Salem) number is a real algebraic integer (a root of some monic
polynomial with integer coefficients) greater than 1 such that all its Galois con-
jugates (other roots of such a unique monic polynomial with minimal degree) are
in absolute value less than 1 (resp. less or equal to 1 and at least one equals 1).
For any Pisot number β, it holds I ⊆ Per(β), while for Salem numbers this im-
plication is still open [8, 22]. It follows that for any non-integer rational β (which
is not a Pisot nor Salem number by the integral root theorem) corresponding to
irreducible fraction a = a1/a2 where a1 ≥ 2 and a2 are integers, there always
exists a number from I whose (greedy) β-expansion is not quasi-periodic.

It appears that the computational power of neural nets with extra analog
unit is strongly related to the results on β-expansions which still need to be
elaborated and generalized, e.g. to arbitrary sets of digits B. This opens a wide
field of interesting research problems which undoubtedly deserves a deeper study.
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