
MASTER THESIS

Bc. Lucien Šíma

Finitely generated semirings and
semifields

Department of Algebra

Supervisor of the master thesis: Mgr. Vítězslav Kala, Ph.D.
Study programme: Mathematics

Study branch: Mathematical Structures

Prague 2021



I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



Dedication.
I would like to thank Víťa for being the best supervisor I could imagine. Thank
you for many inspiring consultations and helpful comments.
I thank my family for emotional support. Special thanks belongs to my father
for a couple of interesting ideas.
I thank all my friends that were there for me when I felt down, especially Mar-
tina Trhoňová for running talks, Honza Vrba for playing Star Realms, Miri
Grohmanová for night deep talks and Pavel Trhoň for some sick Roundnet games.
Last but not least, I thank God that I made it here.

ii



Title: Finitely generated semirings and semifields

Author: Bc. Lucien Šíma

Department: Department of Algebra

Supervisor: Mgr. Vítězslav Kala, Ph.D., Department of Algebra

Abstract: We investigate commutative semirings, which are formed by a ground
set equipped with two binary associative and commutative operations such that
one distributes over the other. We narrow down our interest to ideal-simple
semirings, that is, semirings without proper ideals. We present the classification
of ideal-simple semirings and deal with some classes of ideal-simple semirings,
namely semifields and parasemifields. The main result of this thesis is giving tight
bounds on the minimal number of generators needed to generate a parasemifield
as a semiring. We also study how the semifields that are finitely generated as
a semiring look like. Last, but not least, we show that every finitely generated
ideal-simple semiring is finitely-generated as a multiplicative semigroup.

Keywords: ideal-simple semirings, finitely generated semirings, parasemifields,
semifields

iii



Contents

Introduction 2

1 Preliminaries 3
1.1 Semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Rooted trees and forests . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Finitely generated abelian groups . . . . . . . . . . . . . . . . . . 4

2 The classification of ideal-simple semirings 6
2.1 Ideal-simple semirings . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Semifields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 The classification of finitely generated parasemifields 14

4 The minimal number of generators of a parasemifield 16
4.1 Isolated vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 General forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 The classification of finitely generated semifields 25
5.1 Finitely-generated semifields of type (4) . . . . . . . . . . . . . . . 26

5.1.1 Simpler case . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.2 General case . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Bibliography 31

1



Introduction
Commutative semirings are formed by a ground set equipped with two binary
associative and commutative operations such that one distributes over the other.
They are a generalization of commutative rings and can be found in many various
areas of mathematics, such as tropical geometry, number theory and algebra.

The most fundamental examples of semirings are natural numbers, positive
rational integers or real functions together with addition and point-wise maxi-
mum. We narrow down our interest to the class of ideal-simple semirings, i.e.,
semirings without proper ideals.

The thesis is organized as follows. In Chapter 2, we introduce the key defini-
tion of an ideal-simple semiring and define a couple of fundamental classes of ideal-
simple semirings, namely parasemifields and semifields. We present the classifi-
cation of ideal-simple semirings (Theorem 2.8), which was introduced by [Bashir
et al., 2001]. For the comfort of the reader, we give more detailed proofs. More-
over, we add one new class of ideal-simple semirings (formed by a multiplicative
abelian group with an added zero element and with zero addition), which was
not mentioned in the classification by [Bashir et al., 2001].

In Chapter 3, we state the classification of parasemifields that are finitely gen-
erated as the semiring (Theorem 3.5) from the article [Kala, 2017]. The author
shows that every finitely-generated parasemifield can be associated with a rooted
forest containing an additive group of integers in each of its vertices. The sec-
ond semiring operation is defined as a lexicographic maximum with respect to
the forest structure.

The aim of Chapter 4 is to determine the minimal number of generators
needed to generate a given parasemifield using the semiring operations. We show
that this number is indeed linear in the depth of the rooted forest that represents
it (Theorem 4.15). We also give the precise minimal number of generators for
the parasemifields corresponding to Zn equipped with a coordinate-wise addition
and maximum (Theorem 4.7).

Chapter 5 is devoted to study semifields that are finitely generated as a semir-
ing. We combine the classifications from previous chapters together with a couple
of known results regrading finitely-generated groups to give a detailed descrip-
tion of how the finitely-generated semifields look like (Theorem 5.1, Theorem 5.6
and Theorem 5.8). We also show an intriguing fact that every finitely-generated
ideal-simple semiring is finitely-generated as a multiplicative semigroup (Corol-
lary 5.2).

Let us comment on the original contribution of the author. In Chapter 2,
we present a detailed classification of ideal-simple semirings, as self-contained as
possible. All results contained in Chapter 4 and Chapter 5 are original and due
to the author. We intend to submit them to a scientific journal.
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1. Preliminaries

1.1 Semigroups
We are going to present a couple of observations from group theory, which are
going to be useful in the study of semirings. We assume that every semigroup is
commutative.

Definition 1.1. By a (commutative) semigroup, we mean a ground set S equip-
ped with one binary operation (usually denoted by ∗) that is associative and com-
mutative.

Definition 1.2. Let S(∗) be a semigroup and a ∈ S its element. We say that a
is an absorbing element if a ∗ s = a for every s ∈ S. We say that a is a neutral
element if a ∗ s = s for every s ∈ S.

For k ∈ N, we denote by ak the element we obtain by applying the operation ∗
on a with itself k times. By a cyclic subsemigroup generated by a, we mean
{ak | k ∈ N}, usually denoted by ⟨a⟩.

Claim 1.3. Let S be a finite semigroup and a ∈ S its arbitrary element. Then
⟨a⟩ contains an idempotent element.

Proof. We let A = {a2i | i ∈ N} be the subsemigroup of ⟨a⟩. Since S is finite,
we are able to find i, j ∈ N, i < j such that a2i = a2j . Letting b = a2i and k =
2j−i ≥ 2, we have that bk = b. We obtain the following equation:

bk−1 ∗ bk−1 = bk ∗ bk−2 = b ∗ bk−2 = bk−1

which shows that bk−1 (which clearly lies in ⟨a⟩) is an idempotent element.

Claim 1.4. Let S be a semigroup and let us suppose that a ∗ S
def= {a ∗ s | s ∈

S} = S for each a ∈ S. Then S is a group.

Proof. Take any x ∈ S. Since x ∗ S = S, we can find y ∈ S such that x ∗ y = x.
Similarly, we can find z ∈ S such that x∗z = y. Multiplying the first equation by
z and the second one by y, we obtain that x∗y ∗z = x∗z = y and x∗y ∗z = y ∗y.
Altogether, we have that y ∗ y = y.

We will show that y is a neutral element in S. For that, we take an arbitrary
element a from S. Since y ∗ S = S, we can find b ∈ S such that y ∗ b = a. We
obtain that y ∗ a = y ∗ (y ∗ b) = (y ∗ y) ∗ b = y ∗ b = a. It follows that S is
a group.

1.2 Rooted trees and forests
Definition 1.5. By a tree, we mean a (finite, non-oriented) connected graph
T = (V (T ), E(T )) without cycles. We call its vertices of degree one leaves, the rest
of them are called internal vertices. We say that a tree is rooted if one of its
vertices has been designated to be the root, usually denoted by v.
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A forest is a disjoint union of trees. A forest consisting of k trees T1 ∪· · ·∪Tk

is rooted if we can specify a root vi ∈ V (Ti) in each of its tree components. We
usually denote the union of trees T1 ∪ · · · ∪ Tk by F and by R the set of roots
{v1, . . . , vk}.

Since trees are connected and acyclic, we always have a unique path connecting
two arbitrary vertices. Let us develop a couple more notions.

Definition 1.6. Let (T, v) be a rooted tree and w ̸= v its vertex. A parent of
a vertex w is the vertex connected to w on the path from w to the root v. Every
vertex has a unique parent except for the root, which has no parent. We say that
a vertex x is a child of a vertex w if w is a parent of x.

Definition 1.7. For an arbitrary vertex w ∈ V (T ), we define its depth as
the number of vertices on a unique path from v to w. Note that the depth of
the root equals 1. By the depth of a tree T , we mean the maximal depth of a ver-
tex among all vertices from T . We can extend these notions to forests naturally.

Definition 1.8. Let n be a natural number. We say that a rooted tree (T, v) is n-
ary if each vertex of T has at most n children. We say that a rooted forest (F, R)
is n-ary if |R| ≤ n and each of its tree components is n-ary. We sometimes write
binary instead of 2-ary.

1.3 Vectors
Notation 1.9. Let n be a natural number. We denote the set {1, 2, . . . , n} by [n].

Notation 1.10. Throughout the thesis, we are going to work with integer-valued
vectors. To distinguish vectors from scalar numbers, we use either a tuple of
integers or we write a vector’s name in bold (for example v).

If v is a vector of dimension n, we denote by vi its i-th coordinate for any
i ∈ [n]. For a natural number k and a vector v we will denote by k · v the vector
obtained by applying addition on v with itself k times.

Furthermore, for any i ∈ [n], we denote by ei the vector, which has i-th
coordinate equal to one and all the other coordinates equal to zero. We sometimes
refer to ei as the i-th canonical vector.

Finally, the vector (c, . . . , c) is sometimes denoted by c for an integer c.
The dimension of c should be clear from the context.

Definition 1.11. We say that a vector is positive (negative), if all its coordinates
are.

1.4 Finitely generated abelian groups
In this section, we define a free abelian group and a finitely generated group. We
also present a couple of fundamental results from group theory.

Notation 1.12. Let G(+, −, 0) be an additive group and a ∈ G its element. For
a natural number n, we denote by na the element obtained by applying addition
on a with itself n times. By (−n)a, we mean the element n(−a).
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Notation 1.13. Let G and H be two groups. By G × H, we mean the Cartesian
product of ground sets G and H. We denote the direct product of groups G and H
by G ⊕ H.

Definition 1.14. Let G(+) be a group and H ⊆ G its subset. We say that H gen-
erates G if for every g ∈ G, we can find n ∈ N, h1, . . . , hn ∈ H and k1, . . . , kn ∈ Z
such that g = k1h1 + · · · + hnkn. If such H can be chosen finite, we say that G is
finitely generated.

Observation 1.15. Let G(+) be an abelian group and H its subgroup. If H
and G/H are finitely generated groups, then G is also finitely generated.

Proof. We suppose that the set B = {[b1], . . . , [bm]} generates G/H and that
the set C = {c1, . . . , cn} generates H. We will show that G is generated by
the set {b1, . . . , bm, c1, . . . , cn}. Let us take an arbitrary g ∈ G. Since G/H is
generated by B, we can find k1, . . . , km ∈ Z and h ∈ H such that:

[g] = [
m∑︂

i=1
(kibi)] ⇒ g = h +

m∑︂
i=1

(kibi). (1.1)

Because H is generated by C, we can find l1, . . . , ln ∈ Z such that:

h =
n∑︂

j=1
(ljcj). (1.2)

We plug Equation 1.2 into the Equation 1.1 to obtain that:

g =
n∑︂

j=1
(ljcj) +

m∑︂
i=1

(kibi),

as desired.

Definition 1.16. An abelian group G(+) is called free if we can find a basis
B = {b1, . . . , bn} ⊆ G such that every element g ∈ G can be uniquely expressed
as g = k1b1 + · · · + knbn for some integer coefficients k1, . . . , kn. We denote this
fact by G = ⟨b1, . . . , bn⟩. The number n is called the rank of G.

Let us recall the well-known classification of finitely generated abelian groups
and mention how the subgroups of a free group look like.

Theorem 1.17 ([Rotman, 1999, Theorem 10.20.]). Let G be a finitely gener-
ated abelian group. Then we can find n, m ∈ N0, natural numbers k1, . . . , km

and primes p1, . . . , pm such that G ≃ Zn ⊕ Z
p

k1
1

⊕ Z
p

k2
2

⊕ · · · ⊕ Zpkm
m

.

Notation 1.18. Let m, n be integers such that m divides n. We denote this fact
by m | n.

Theorem 1.19 ([Dummit and Foote, 1999, Theorem 12.4.]). Let H be a subgroup
of Zn. Then we can find a basis {a1, . . . , an} of Zn, a natural number m ≤ n
and natural numbers d1 | d2 | · · · | dm such that H = ⟨d1 · a1, . . . , dm · am⟩.
Consequently, H is free of rank m.
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2. The classification of
ideal-simple semirings
In this chapter, we introduce the key definition of an ideal-simple semiring. We
present the classification of ideal-simple semirings from [Bashir et al., 2001] and we
give more detailed proofs.

2.1 Ideal-simple semirings
Definition 2.1. By a (commutative) semiring, we mean a ground set S equipped
with two binary associative and commutative operations (denoted by + and ·)
such that multiplication distributes over addition, i.e., for every a, b, c ∈ S, we
have that c · (a + b) = (c · a) + (c · b).

Throughout the thesis, we will be working with commutative semirings only,
and hence the word semiring will always mean a commutative semiring.

Definition 2.2. Let S be a semiring. We say that S is additively idempotent if
a + a = a for every a ∈ S. S is called additively cancellative if a + c = b + c
implies a = b for every a, b, c ∈ S. The same notions (multiplicative idempotency
and multiplicative cancellativity) are defined for multiplication.

Definition 2.3. Let S be a semiring and I ⊆ S its subset. We say that I is an
ideal if following two conditions are met:

1. ∀a, b ∈ I : a + b ∈ I

2. ∀a ∈ I, ∀s ∈ S : a · s ∈ I

An ideal I is called proper if and only if |I| ≥ 2 and I ̸= S. S is said to be
ideal-simple if it does not contain any proper ideals.

Observation 2.4. Let S be a semiring and a ∈ S. Then aS
def= {a · s | s ∈ S} is

an ideal.

Proof. It suffices to verify the axioms of an ideal. Let us take two arbitrary
elements as, at from aS. Then as + at = a(s + t) also lies in aS. For any r ∈ S,
we have (as)r = a(sr), which is also an element of aS.

Every semiring S, which has at most two elements, clearly has to be ideal-
simple. We present the list of all eight two-element semirings from [Bashir et al.,
2001, Section 2].
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Figure 2.1: Two-element commutative semirings.

From now on, let us suppose that |S| ≥ 3. We will start with definitions of
a semifield and a parasemifield, which are going to be two typical examples of
ideal-simple semirings.

Definition 2.5. Let S be a semiring. If S(·) forms a group, we say that S is
a parasemifield. S is a semifield, if we can find an element 0 ∈ S such that
0S = {0} and (S \ {0}, ·) is a group. We usually denote the neutral element of
the multiplicative group by 1.

Observation 2.6. Parasemifields and semifields are ideal-simple.

Proof. Let S be a semifield. Let I be an ideal such that |I| ≥ 2. We can thus
take a ∈ I, a ̸= 0. For an arbitrary s ∈ S, we have that s = a(a−1s) lies in I,
implying that I = S. The proof for parasemifields is almost identical.

Before giving the first classification of ideal-simple semirings, we need an aux-
iliary claim regarding multiplicatively absorbing elements.

Claim 2.7. Let S be an ideal-simple semiring and w ∈ S absorbing with respect
to multiplication, i.e., sw = w for every s ∈ S. Then:

(a) w + w = w

(b) w is either absorbing or neutral with respect to addition

Proof. We have that sw = w for every s ∈ S, in particular, for s = w + w, we
obtain that: w = sw = (w + w)w = (ww) + (ww) = w + w and we are done with
the first part.
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For the second part, we will observe that the set S + w
def= {s + w | s ∈ S} is

an ideal. For that, we take arbitrary s, t ∈ S and obtain that:

(s + w) + (t + w) = (s + t) + (w + w) = (s + t) + w ∈ S + w

t(s + w) = ts + tw = ts + w ∈ S + w.

Since s and t were chosen arbitrarily, it follows that S + w is an ideal.
From the part (a) of this observation, we have that w = w + w, implying that

w ∈ S + w. Since S + w is an ideal in an ideal-simple semiring S, we have that
either S + w = {w} (exactly that w is absorbing) or S + w = S.

In the second case, we take any element s ∈ S. Since S + w = S, we can find
t ∈ S such that t + w = s. Adding w to both sides of this equation, we obtain:

s + w = (t + w) + w = t + (w + w) = t + w = s

which shows neutrality of w, since s was chosen arbitrarily.

Theorem 2.8 ([Bashir et al., 2001, Theorem 11.2]). Let S be a semiring, |S| ≥ 3.
Then S is ideal-simple if and only if one of the following cases takes place:

(1) S is isomorphic to Zp with zero-multiplication, p odd prime

(2) S is a semifield

(3) S is a parasemifield

Proof. We shall start with showing that semirings of all three listed types are
ideal-simple. Parasemifields and semifields are ideal-simple from Observation
2.6.

In the remaining case (1), let I ⊆ Zp, |I| ≥ 2 be an ideal. Let us take a ∈ I,
a ̸= 0 and we will observe that aZp = Zp. It suffices to show that the set
{0, a, 2a, . . . , (p − 1)a} consists of p distinct elements (in Zp). For contradiction,
suppose 0 ≤ i < j ≤ p − 1 such that ia = ja, implying that p divides (j − i)a.
Since p is a prime number, then either p | a or p | (j − i), which is not possible,
as both numbers lie in [p − 1]. We have that aZp = Zp which clearly implies that
I = Zp. We are done with the first implication.

For the converse, let us assume that S is ideal-simple. From Observation 2.4,
we have that aS is an ideal for every a ∈ S. Because S is an ideal-simple semiring,
we have that either |aS| = 1 or aS = S. Let A = {a ∈ S | |aS| = 1} be a subset
of S.

If A = ∅, we have that aS = S for every element a ∈ S. It follows from Claim
1.4 that S(·) is a group. Consequently, S is a parasemifield.

From now on, we assume that A is non-empty. First, let us observe that
|AS| = 1. For contradiction, suppose that we can find a, b ∈ A and s ̸= t ∈
S, such that aS = {s}, bS = {t}. But ab ∈ (aS ∩ bS) = ({s} ∩ {t}) = ∅,
contradiction. Let us denote by 0 the only element of AS. We have that A =
{a ∈ S | aS = {0}}.

We are going to show that 0 ∈ A. We have assumed that A is non-empty, so
we are able to take a ∈ A. From the definition of A, we have, for every s ∈ S,
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that a0 = 0 and 0s = (a0)s = a(0s) = 0. Since s was chosen arbitrarily, it follows
that 0S = {0}, implying that 0 ∈ A.

Furthermore, let us observe that the set A forms an ideal. Recall that 0S =
{0} and Claim 2.7 gives us that 0 + 0 = 0. Take any a, b ∈ A and any t ∈ S.
The following equations hold for any s ∈ S:

(a + b)s = as + bs = 0 + 0 = 0
(ta)s = t(as) = t0 = 0,

implying that a + b, ta ∈ A and that A is an ideal. Since 0 ∈ A and S is ideal-
simple, we can distinguish two cases depending on whether A = S or A = {0}.
Case 1)
We assume that A = S and consequently SS = {0}. We shall start with an aux-
iliary observation.
Observation 2.9. Let S be a semiring such that SS = {0}. If R is an additively
closed subset of S, then I = R ∪ {0} is an ideal.

Proof. Since SS = {0}, I is closed under multiplication by any element of S.
We have assumed that R is closed under addition and Claim 2.7 gives us that
0+0 = 0 and that r+0 ∈ {0, r}. Thus, I is closed under addition, the observation
follows.

Now, let us fix an arbitrary a ̸= 0 and let P = ⟨a⟩ = {na | n ∈ N}. If P is
infinite, then R = {(2n)a | n ∈ N} is closed under addition and it follows from
Observation 2.9 that R ∪ {0} is a proper ideal, so S is not ideal-simple.

On the other hand, if P is finite, then Claim 1.3 guarantees that P has to
contain an idempotent element e. If e ̸= 0, then it follows from Observation 2.9
that {e, 0} is a proper ideal (we assumed that |S| ≥ 3), so S is not ideal-simple.

Therefore, 0 has to be the only idempotent element in P . Observe that P is
an ideal (see Observation 2.9) containing two distinct elements 0 and a, which
implies that P = S. Since 0 ∈ P , we can take the smallest natural number p ≥ 2
such that pa = 0. If p = 2, then |S| = |P | = 2 which contradicts the assumption
that |S| ≥ 3. We can thus assume that p ≥ 3.

It follows from Claim 2.7(b) that 0 is either absorbing or neutral with respect
to addition. Let us distinguish two subcases based on that.
Case 1a)
We assume that 0 is an absorbing element with respect to addition. Let us look
at the element b = (p − 1)a ̸= 0. It follows that:

b + b = (p − 1)a + (p − 1)a = pa + (p − 2)a = 0 + (p − 2)a = 0.

Therefore, {b, 0} is a proper ideal, contradiction.
Case 1b)
We assume that 0 is a neutral element with respect to addition. If p is a composite
number, then p has a non-trivial divisor d and the set I = {nd(a) | n ∈ N} forms
a proper ideal, contradiction. Therefore, p has to be an odd prime number.

We are going to show that S = P = {a, 2a, . . . , pa} ≃ Zp. Let us suppose
ka ∈ P for a natural number k > p. We take n ∈ N and r ∈ {1, . . . , p} such that
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k = np + r and we observe that ka = (np + r)a = n(pa) + ra = 0 + ra = ra ∈
{a, 2a, . . . , pa}.

We will show that {a, 2a, . . . , pa} consists of p distinct elements. For contra-
diction, suppose 1 ≤ i < j ≤ p such that ia = ja. Adding (p − i)a to both sides
of the equation, we obtain that pa = pa + (j − i)a ⇒ 0 = (j − i)a, contradiction
with the minimality of p.

Since (ia) + (p − i)a = pa = 0 for every i ∈ [p], we have that 0 is a unit
element in the group S(+). It follows that S is isomorphic to the additive group
Zp with zero-multiplication.
Case 2)
In the second case, we have that A = {0} and we let T = S \ {0}. Recall that
A = {0} implies that 0S = {0} and that for every t ∈ T , we have |tS| ≠ 1
and therefore tS = S. Let us take an arbitrary t ∈ T and define the set It = {s ∈
S | ts = 0}.

Let us take any a, b ∈ It. Since following equations are satisfied for every
s ∈ S:

t(a + b) = ta + tb = 0 + 0 = 0
t(as) = (ta)s = 0s = 0,

we have that the set It forms an ideal.
Clearly 0 ∈ It and we have that It ̸= S (since tS = S) and thus It = {0}.

It follows from the definition of It that tT = T . Claim 1.4 gives us that T (·) is
a group and consequently S is a semifield.

The theorem above gives us that ideal-simple semirings are either zero-multi-
plication rings with prime cardinality (which are not that interesting for further
study) or semifields and parasemifields. Let us continue by looking more closely
at the structure of semifields.

2.2 Semifields
The goal of this section will be to classify semifields. We will show that they are
either fields, groups with an added zero element or they arise from a parasemi-
fields. Throughout this section, we will denote by T the set S \ {0}, which forms
a multiplicative group. We have to deal with four distinct type of semifields, as
the following theorem proposes.

Theorem 2.10. Let S be a semifield. Then one of the following cases occurs:

(1) S is a field

(2) T is a parasemifield and s + 0 = s for every s ∈ S

(3) S + S = {0}

(4) a + S ̸= {0} for each a ∈ T and s + 0 = 0 for every s ∈ S

10



Proof. We apply Claim 2.7 on zero element to see that it is either neutral or ab-
sorbing element with respect to addition. We will distinguish two cases based on
that.

First, we assume that 0 is neutral with respect to addition. Let U = {a ∈ T |
0 /∈ a + S}. If U = ∅, we have that each element of S has an additive inverse,
consequently S(+) is a group and S is a field.

If U ̸= ∅, we take a ∈ U and we are going to show that U = T . For
contradiction, suppose that b ∈ T does not belong to U . From the definition of
U , we can find s ∈ S such that b + s = 0. Multiplying both sides of this equation
by ab−1, we obtain a + ab−1s = 0, which is a contradiction with the fact that
a ∈ U . We have shown that U = T . It follows that T is additively closed, T is
a parasemifield and that S is a semifield of type (2).

On the other hand, we assume that 0 is an absorbing element with respect
to addition. Let us suppose that S is not of type (4) and we will show that S
has to be of type (3). We can thus find a ̸= 0 such that for every s ∈ S we
have a + s = 0. Let b, c be two arbitrary elements from T . We can multiply
the equation by ba−1 to obtain that b + sba−1 = 0. Since the equation holds for
any s ∈ S, we can let s = cab−1 to get that 0 = b + cab−1ba = b + c, as we wanted
to show.

We are now going to concentrate on semifields of type (4). In order to classify
semifields of this type completely, we have to develop the theory of congruence-
simple semirings.

Notation 2.11. Let S be a set and R ⊆ S × S a relation. If an ordered pair of
elements (a, b) belongs to R, we write either (a, b) ∈ R or aRb.

Definition 2.12. Let S be a semiring and let R ⊆ S × S be a relation. We say
that R is a congruence if it is an equivalence and it is compatible with semiring
operations, i.e., for every a, b, c ∈ S satisfying that aRb, it holds that (a+c)R(b+c)
and (ac)R(bc).

We say that S is congruence-simple (or cg-simple for brevity) when it has no
non-trivial congruences. In other words, the only congruences on S are idS =
{(s, s) | s ∈ S} and S × S.

The complete classification of congruence-simple semirings is contained in
the article [Bashir et al., 2001]. We will only mention one theorem, which will be
useful for classifying semifields.

Theorem 2.13 ([Bashir et al., 2001, Theorem 3.1. and Theorem 3.3]). Let S be
a cg-simple semiring and |S| ≥ 3. Then one of the following cases occurs:

1. S is additively cancellative

2. S is additively idempotent and multiplicatively cancellative

3. S contains exactly one element a such that |aS| = 1. Then S \ {a} is
a multiplicative group and S = V (S \ {a}), which is defined below.
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Definition 2.14. Let G(·) be a multiplicative abelian group and 0 /∈ G. We let
V (G) def= G ∪ {0} and we define the semiring operations on V (G) as follows. For
every x, y ∈ V (G), x ̸= y, we let x + x = x and x + y = 0. The multiplication is
inherited from G(·) and we set 0 · x = 0 for each x ∈ V (G).

We can now get back to semifields and move towards the classification of
semifields of type (4).

Definition 2.15. Let S be a semiring and a ∈ S its arbitrary element. The anni-
hilator of a is defined to be Ann(a) = {s ∈ S | a + s = 0}. We define the relation
∼ ⊆ S × S as follows: a ∼ b if and only if Ann(a) = Ann(b).

Observation 2.16. Let S be a semifield of type (4) and let ∼ be the relation
from Definition 2.15. It has following properties.

1. ∼ is a congruence on S

2. P
def= [1]∼ is a multiplicative subgroup of T (·)

3. [0]∼ = {0}

Proof. Since ∼ is defined by the certain equality of sets, it is clear that it is
an equivalence. We need to show that it preserves both binary operations. Let
a, b, c, d be arbitrary elements from S such that a ∼ b. We use Ann(a) = Ann(b)
to show that Ann(a + c) = Ann(b + c):

d ∈ Ann(a + c) ⇐⇒ a + c + d = 0 ⇐⇒ c + d ∈ Ann(a) ⇐⇒
⇐⇒ c + d ∈ Ann(b) ⇐⇒ b + c + d = 0 ⇐⇒ d ∈ Ann(b + c).

If c = 0, then Ann(ac) = Ann(bc) is obvious. Otherwise, we obtain Ann(ac) =
Ann(bc) as follows:

d ∈ Ann(ac) ⇐⇒ ac + d = 0 ⇐⇒ a + dc−1 = 0 ⇐⇒
⇐⇒ b + dc−1 = 0 ⇐⇒ bc + d = 0 ⇐⇒ d ∈ Ann(bc).

The second part is easy to show. It is clear that 1 ∈ P . If a ∈ P , we can
multiply both sides of a ∼ 1 by a−1 to obtain 1 ∼ a−1 and a−1 ∈ P . If a, b ∈ P ,
we multiply both sides of a ∼ 1 by b to obtain ab ∼ b. Together with b ∼ 1, we
get ab ∼ 1 and ab ∈ P .

We show that [0]∼ = {0} by contradiction. Let us suppose that there is a ∈ T
such that a ∼ 0. From the definition of semifields of type (4) (see Theorem
2.10), we can find b ∈ T such that a + b ̸= 0, hence Ann(a) ̸= S = Ann(0),
contradiction.

Claim 2.17 ([Bashir et al., 2001, Proposition 12.2.]). Let S be a semifield of type
(4) and let ∼ be the congruence from Definition 2.15. We claim that the factor-
semiring R = S/ ∼ is congruence-simple and that R is isomorphic to an additively
idempotent semifield V (T/P ), where P = [1]∼.
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Proof. From Observation 2.16(b), we have that P (·) is a multiplicative subgroup
of an abelian group T (·), so the factor-group T/P is well-defined.

We will begin with showing that R is congruence-simple. Let C ⊆ R × R be
a congruence, C ̸= idR. We can thus find x, y ∈ R, x ̸= y such that (x, y) ∈ C.
Since Ann(x) ̸= Ann(y), we can without loss of generality assume that we can
find z ∈ Ann(x) \ Ann(y). From the definition of annihilators, we have that
x + z = 0 and y + z ̸= 0. Since (x, y) ∈ C, we have that (x + z = 0, y + z) ∈ C.

Let I = {z ∈ R | (z, 0) ∈ C} and observe that it is an ideal. We have
shown that I contains a non-zero element y + z. Therefore, we have that I = R,
provided that the factor-semiring R of ideal-simple semifield S is also ideal-simple.
It follows that C = R × R and that R is cg-simple.

Let us assume that |R| = 2. From Observation 2.16(c), we have that [0]∼ =
{0}. It follows that R = {[0], [1]}, where P = [1]∼ = T . In order to show that
R ≃ V (T/P ) = V (P/P ) = V ([1]), it suffices to observe that [1] + [1] = [1]. Let
us take a ∈ T . From the definition of semifields of type (4) (see Theorem 2.10),
we can find b ∈ T such that a + b ∈ T and thus [1] + [1] = [1].

If R is additively or multiplicatively cancellative, then let us take any element
a ∈ R, a ̸= 0. We have that a+0 = 0 = 0+0 and a·0 = 0 = 0·0. The cancellativity
would imply a = 0, contradiction.

If |R| ≥ 3 and R is not additively nor multiplicatively cancellative, then
Theorem 2.13 gives us that the only possible option is that R ≃ V (R \ [0]∼),
provided that |0R| = |{0}| = 1. From the fact [0]∼ = {0} (Observation 2.16(c))
and from the definition of P , it follows that R ≃ V (R \ [0]∼) = V (R \ {0}) =
V ((S/ ∼) \ {0}) = V (T/ ∼) = V (T/P ), as required.

Let us summarize and state the complete classification of semifields.

Theorem 2.18. Let S be a semifield. Then one of the following cases occurs:

(1) S is a field.

(2) S is constructed from a parasemifield T by adding an element 0 and letting
0 + s = s and 0s = 0 for every s ∈ S.

(3) S is constructed from a multiplicative abelian group A(·) by adding an element
0 and letting s + t = 0 and 0s = 0 for every s, t ∈ S.

(4) S is constructed from a parasemifield P (+, ·) as follows. Let P (·) be a multi-
plicative subgroup of an abelian group T (·) and let S = T ∪{0} and S0 = {0}.
We define the addition for any x, y ∈ S as follows:

x + 0 = 0
x−1y /∈ P : x + y = 0
x−1y ∈ P : x + y = (x−1y + 1) · x.

The classification above tells us that semifields arise either from well-known
structures (fields and groups) or from parasemifields. It is not much to be known
about parasemifields in general, but when we confine ourselves to the class of
parasemifields that are finitely generated as a semiring, there is a nice classifica-
tion by [Kala, 2017] that will be presented in the following chapter.
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3. The classification of finitely
generated parasemifields
In this chapter, we would like to present the striking classification of parasemi-
fields, which are finitely generated as a semiring, introduced by [Kala, 2017]. Let
us begin with the definition of being finitely generated as a semiring.

Definition 3.1. Let S be a semiring and A ⊆ S its subset. We let g(A) ⊆ S
to be the smallest additively and multiplicatively closed subset of S containing A.
We say that A generates S if g(A) = S. Moreover, we say that S is finitely
generated as a semiring if S contains a finite subset A generating S. For brevity,
we sometimes write fg-(para)semifeld, meaning that the (para)semifield is finitely
generated as a semiring.

The classification by [Kala, 2017] is stated only for additively idempotent
fg-parasemifields, but [Kala and Korbelář, 2018] proved the following conjecture
a few months after publishing the classification.

Theorem 3.2 ([Kala and Korbelář, 2018, Theorem 4.5.]). Let S be a fg-para-
semifield. Then S is additively idempotent.

As a result, the classification is now complete and we can state Theorem 3.5
and Corollary 3.6 for a general fg-parasemifield.

We are now going to associate a parasemifield G(T, v) to a rooted tree (T, v)
and extend this notion to rooted forests afterwards. We will use a couple of
notions from graph theory (regarding rooted trees and forests) described in pre-
liminaries.

Definition 3.3. Let (T, v) be a rooted tree and n the size of its vertex set. We
attach a copy of integers Zw to each vertex w ∈ V (T ) forming the ground set
of our parasemifield G(T, v). We refer to elements of G(T, v) as integer-valued
vectors from Zn, each coordinate belongs to a certain vertex in (T, v).

We shall define semiring operations on G(T, v). The multiplication is defined
to be the coordinate-wise addition from the group Zn(+), which does not depend
on structure of the tree (T, v).

The addition will be denoted by ∨ and is defined as follows. Let g, h be two
arbitrary elements from G(T, v). For a vertex w ∈ V (T ), we define (g ∨ h)w as
follows. Let v = v1, v2, . . . , vk = w be vertices on the unique path from the root
v to the vertex w. If gvi

= hvi
for all i ∈ [k] (vertices among the path), we set

(g ∨ h)w = gw = hw. Otherwise, we find the least i such that gvi
̸= hvi

. We can
without loss of generality assume that gvi

> hvi
and let (g ∨ h)w = gw.

We define the same structure for rooted forests.

Definition 3.4. Let (F, R) be a rooted forest, F = T1 ∪ · · · ∪ Tk and R =
{v1, . . . , vk} be the set of roots. We define the associated parasemifield G(F, R)
as the direct product of parasemifields G(Ti, vi).

It turns out that every fg-parasemifield arises from a rooted forest in that way,
as the following theorem proposes.
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Theorem 3.5 ([Kala, 2017, Theorem 4.1]). Let S be a fg-parasemifield. Then we
are able to find a rooted forest (F, R) such that (S, +, ·,−1 ) ≃ (G(F, R), ∨, +, −)
and this forest is unique up to isomorphism.

Corollary 3.6 ([Kala, 2017, Corollary 4.12.]). Let S be a fg-parasemifield. Then
S is finitely generated as a multiplicative semigroup.

Proof. Theorem 3.5 gives us that S ≃ G(F, R) = Zn for some rooted forest
(F, R) and n = |V (F )|. The multiplicative group S(·) corresponds to Zn(+).
The corollary follows from the fact that Zn is clearly generated as an additive
semigroup (see Claim 4.3 in the next chapter).
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4. The minimal number of
generators of a parasemifield
We have discussed (in the previous chapter) that every fg-parasemifield S cor-
responds to a rooted forest (F, R) (in a sense that S ≃ G(F, R)). We turn our
interest to finding the minimal number of generators needed to generate S as
a semiring.

In this chapter, we are going to show that the minimal number of semiring
generators of a fg-parasemifield S is indeed linear in the depth of the correspond-
ing rooted forest (F, R). Let us briefly introduce some notation and show a couple
of elementary results.
Notation 4.1. Let S ≃ G(F, R) be a fg-parasemifield. We will denote by m(F, R)
the minimal number of semiring generators of S.

The multiplicative group of a parasemifield G(F, R) is Zn(+). Thus, it is
quite useful to determine the minimal number of vectors needed to generate Zn

as an additive semigroup.
Observation 4.2. Let n be a natural number and u ∈ Zn a negative vector.
Then the set {e1, . . . en, u} together with coordinate-wise addition generates Zn.
Proof. Let us take any vector v ∈ Zn. Since u is a negative vector, we can find
a natural k such that w = v − k · u is a positive vector. Then v = w + k · u =
w1 · e1 + · · · + wn · en + k · u for positive integers k, w1, . . . , wn, as we wanted to
show.
Claim 4.3. The minimal number of semigroup generators of Zn(+) is n + 1.
Proof. The observation above gives us the set of n + 1 generators. It suffices to
show that any n vectors do not generate Zn. For contradiction, suppose that
the set V = {v1, . . . , vn} generates Zn. Thus, we can find non-negative integers
a1, . . . , an such that:

a1 · v1 + · · · + an · vn = 0. (4.1)

It is easy to see that V generates the vector field Qn over Q. Because V consists
of n vectors and the dimension of Qn over Q is n, it follows that V is a basis
of Qn. But we have found a non-trivial linear combination of the zero vector
(Equation 4.1) showing that V is not linearly independent, contradiction.

4.1 Isolated vertices
In order to bound m(F, R), one needs to start with a base case, when the depth
of F equals 1. We thus consider rooted forests (F, R), which are formed by n
isolated vertices (and clearly R = F , because each tree component consists of
exactly one vertex). We will denote such forests by Zn and give the exact value
of m(Zn) in this section.

In other words, we are looking for the minimal set G of vectors from Zn

such that G generates the whole Zn together with addition and maximum (both
applied coordinate-wise). We will start with an easier case, when n ≤ 2.
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Claim 4.4. Let n ∈ {1, 2}. Then m(Zn) = 2.

Proof. It is clear that one generator can not be sufficient, as the sign is preserved
under both operations, i.e., every coordinate would stay either positive or negative
and the whole Zn could not be generated.

We finish the proof by finding the generating set G of size two. If n = 1, we
let G = {(1), (−1)} and we simply generate Z1 (addition suffices).

For n = 2, we define G to be {(1, −2), (−2, 1)}. It suffices to generate the fol-
lowing three vectors {(1, 0), (0, 1), (−1, −1)} since they generate the whole Zn

with coordinate-wise addition (Observation 4.2). We obtain the first one of them
as follows:

(5, −2) = (1, −2) ∨ (5 · (1, −2))
(1, 0) = (5, −2) + 2 · (−2, 1),

the second one is obtained in a similar manner:

(−2, 5) = (−2, 1) ∨ (5 · (−2, 1))
(0, 1) = (−2, 5) + 2 · (1, −2)

and we get the last one by adding (1, −2) and (−2, 1).

Let us now consider the case when n ≥ 3. Surprisingly, it turns out that
m(Zn) = 3, regardless on the value of n. In order to show that two generators do
not suffice, we need to state an auxiliary observation.

Observation 4.5. Let 1 ≤ j ̸= k ≤ n be natural numbers and let us take two
vectors u, v ∈ Zn satisfying that uj ≥ a · uk and vj ≥ a · vk for some positive real
number a. Then the same inequality holds for vectors u + v and u ∨ v.

Proof. The inequality for u + v is verified by an easy computation:

(u + v)j = uj + vj ≥ a · uk + a · vk = a · (u + v)k.

Let m = u ∨ v. It holds that mj ≥ uj ≥ a · uk and that mj ≥ vj ≥ a · vk. Since
mk = uk or mk = vk, the observation follows.

Corollary 4.6. Let G = {g1, . . . , gm} be a set of vectors in Zn. Let 1 ≤ j ̸= k ≤
n be natural numbers and let a ∈ R+ such that gi,j ≥ a · gi,k for every gi ∈ G.
Then G does not generate Zn.

Proof. As a result of the observation above, the inequality holds for all generated
vectors, the corollary follows.

We are now ready to prove the following theorem.

Theorem 4.7. Let n ∈ N, n ≥ 3. Then m(Zn) = 3.
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Proof. Let n be fixed. We will start with showing that two generators do not
suffice. For contradiction, suppose that the set G = {u, v} generates Zn.

We are going to distinguish two cases. First, let us suppose that we can find
a coordinate i such that ui, vi ≥ 0. Both operations preserve the sign, thus we can
not generate any vector that has negative i-th coordinate. Similarly for ui, vi ≤ 0.

Let us suppose the opposite, i.e., for every i ∈ [n] we have either ui > 0, vi < 0
or ui < 0, vi > 0. Since n ≥ 3, we can use pigeonhole principle to find two
coordinates j ̸= k such that uj has the same sign as uk and vj has also the same
sign as vk (because there are only two possible combinations of signs).

Without loss of generality, we assume that uj, uk > 0, vj, vk < 0. Let us
denote the positive real number uj/uk by a. If vj/vk ≤ a, then both inequalities
uj ≥ a · uk and vj ≥ a · vk are satisfied. On the other hand, if vj/vk ≥ a, then
both uk ≥ (1/a) ·uj and vk ≥ (1/a) ·vj are satisfied. In either case, we have found
an inequality satisfied by both vectors from G, contradiction with Corollary 4.6.

We finish the proof by finding the set of three generators of Zn. We let
k = n2 + 1 and we define G = {a, b, c} by setting ai = i, bi = k − i2, ci = −1.
Note that k was chosen such that b is a positive vector.

We will start by generating n positive vectors u1, . . . , un such that i-th co-
ordinate of ui is strictly maximal. We define ui to be 2i · a + b. Then the j-th
coordinate of ui is ui,j = 2i · aj + bj = 2ij + k − j2 = k + j(2i − j). It is easy
to see that this expression attains maximum for j = i, which gives us that i-th
coordinate of ui is indeed maximal, i.e., ui,i > ui,j for all j ̸= i.

For every i ∈ [n], let us generate vi = ui + ((ui,i) − 1) · c. Note that i-th
coordinate of vi equals 1 and all the other coordinates are non-positive.

Now it is the time to apply our second operation, which is coordinate-wise
maximum (denoted by ∨). We obtain the zero vector as 0 = (v1∨v2∨· · ·∨vn)+c.
Finally, we get ei as vi ∨ 0.

As a result of Observation 4.2, all canonical vectors ei together with the neg-
ative vector c generate the whole Zn (with coordinate-wise addition).

4.2 Ordering
We introduce a partial ordering ⪯ on the set of rooted forests, which is compatible
with the function m, in a sense that (F, R) ⪯ (E, S) implies m(F, R) ≤ m(E, S).

Definition 4.8. We define a relation ⪯ on the set of rooted forests. Let (F, R)
and (E, S) be two rooted forests. We say that (F, R) ⪯ (E, S) if and only if (F, R)
can be obtained from (E, S) by deleting leaves from the forest E one by one. Note
that R ⊆ S is the set of roots from S, which were not deleted.

Observation 4.9. Let ⪯ be the relation on the set of rooted forests defined as
above. Then:

(a) the relation ⪯ is a partial ordering

(b) (F, R) ⪯ (E, S) implies that m(F, R) ≤ m(E, S)

Proof. The reflexivity and the transitivity of ⪯ is obvious. For anti-symmetry, we
suppose that (F, R) ⪯ (E, S) and (E, S) ⪯ (F, R). From the definition of ⪯ we
have that V (F ) ⊆ V (G) and V (G) ⊆ V (F ) and it follows that (F, R) = (E, S).
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For the part (b), it suffices to observe that deleting a leaf l from (E, S) does not
increase the minimal number of generators. If G = {g1, . . . , gk} is the minimal
generating set of G(E, S), then we can obtain the generating set of size k for
G((E, S) \ {l}) by simply deleting the coordinate, which corresponds to the leaf
l, from all generators in G.

4.3 Paths
This short section is devoted to determine the minimal number of semiring gen-
erators for parasemifields, which correspond to rooted paths.
Claim 4.10. Let Pn

def= v1, . . . , vn be a rooted path with the root v1. Then m(Pn) =
n + 1.
Proof. It follows from the definition of the operation ∨ that we have either v∨w =
v or v∨w = w for any v, w ∈ G(Pn). Therefore, the minimal number of semiring
generators of G(Pn) equals the minimal number of semigroup generators of Zn,
which is n + 1 (see Claim 4.3).
Corollary 4.11. Let (F, R) be a rooted forest of depth l. Then m(F, R) ≥ l + 1.
Proof. From the definition of the depth, we can find w ∈ V (F ) and v ∈ R
such that there is a path P from v to w consisting of l vertices. It follows that
(F, R) ⪰ (P, v). Combining Observation 4.9(b) and Claim 4.10, we obtain that
m(F, R) ≥ m(P, v) = l + 1.

4.4 General forests
Let (F, R) be a general rooted forest. The aim of this section is to give bounds
on m(F, R), as tight as possible.

We have two parameters how to measure the size of (F, R), namely its depth
and its arity. As we have seen in the previous sections, m(F, R) grows at least
linearly with the depth of (F, R) (see Corollary 4.11) but, on the other hand,
rooted forests of arbitrary large arity can still have constant m(F, R) (for example
m(Zn) = 3 for any n ≥ 3, see Theorem 4.7). These thoughts led us to define
a ’universal’ rooted forest of arity k and depth l.
Definition 4.12. Let k, l be natural numbers. We define Tkl to be a unique rooted
forest satisfying that it has k roots, every internal vertex has exactly k children
and every leaf has depth exactly l.

For better understanding of the definition above, we give the following picture
containing two examples of how Tkl looks like.

Figure 4.1: Rooted forests T23 and T32
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Observe that G(F, R) ⪯ Tkl for every k-ary rooted forest (F, R) of depth l,
which implies that m(F, R) ≤ m(Tkl) (Observation 4.9(b)). In order to give
the upper bound on m(F, R), we would like to estimate m(Tkl) from above.
The first step is the following quite powerful theorem.

Theorem 4.13. Let (F, R) be a rooted forest and let us construct a rooted forest
(E, S) by a union of m ≥ 2 disjoint copies of (F, R). Furthermore, let k =
m(F, R).

(a) If m = 2, we have that m(E, S) ≤ k + 1.

(b) For m ≥ 3, we have that m(E, S) ≤ k + 2.

Proof. Let n = |V (F )| and G = {g1, . . . , gk} ∈ Zn be the minimal set of gen-
erators of G(F, R). Throughout the proof, we are going to work with vectors
from (Zn)m and we will denote v ∈ (Zn)m by (v1, . . . , vn | vn+1, . . . , v2n | · · · |
v(m−1)n+1, . . . , vmn).

We shall start with the part (a), when m = 2. Let us take a natural constant
C such that C > |gi,j| for all i ∈ [k], j ∈ [n]. We are now ready to define the set
H = {h1, . . . , hk+1} consisting of k + 1 vectors from Z2n. The first k of them are
defined as hi = (gi + 2C | gi − 4C) and we let hk+1 = (−C | 2C).

Our goal will be to show that we are able to generate any vector from Z2n

from the set H. By adding 2 · hk+1 to each hi, we obtain (gi | gi). Since G
generates G(F, R), we are able to obtain all vectors of the form (v | v) for any
v ∈ Zn, especially the vector (−2C | −2C).

Since C is large enough, we have that hi ∨ hk+1 = (gi + 2C | 2C). Adding
(−2C | −2C) to (gi + 2C | 2C), we obtain (gi | 0) for each i ∈ [k], which suffices
to generate (v | 0) for each v ∈ Zn.

Any vector (v | w) ∈ Z2n can be constructed by adding (v − w | 0) to (w | w),
we are done with the first part.

For the part (b), we define the set H = {h1, . . . , hk+2} of k + 2 vectors from
(Zn)m as follows:

hi = (gi | gi | gi | · · · | gi), i ∈ [k]
hk+1 = (1 | 2 | 3 | · · · | m)
hk+2 = (m2 + 1 − 12 | m2 + 1 − 22 | m2 + 1 − 32 | · · · | m2 + 1 − m2)

= (m2 | m2 − 3 | m2 − 8 | . . . | 1).

Our goal will be to prove that H is a generating set of (Zn)m. As in the first part,
we can use vectors h1, . . . , hk to generate (v | · · · | v) for any v ∈ Zn, especially
the vector c = (−1 | · · · | −1).

Since vectors {(1, 2, . . . , m), (m2, m2−3, m2−8, . . . , 1), (−1, −1, . . . , −1)} were
used to generate Zm (see the proof of Theorem 4.7), we are able to use vectors
hk+1, hk+2, c to generate (c1 | c2 | · · · | cm) for any integers c1, . . . , cm.

We finish the proof by generating any canonical vector eni+j for i ∈ {0, . . . , m−
1}, j ∈ [n] and applying Observation 4.2. Let us take such arbitrary i and j. We
generate a vector ti = (−1 | · · · | −1 | 0 | −1 | · · · | −1) such that 0 lies in
the i-th copy of G(F, R). We obtain the vector ui,j = ti + (ej | · · · | ej) that has
all n-tuples non-positive except for i-th tuple, which contains ej. We obtain eni+j
as ui,j ∨ 0.
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Theorem 4.13 plays an important role in constructing the upper bound for
m(Tkl) in the following theorem.

Theorem 4.14. Let k, l be natural numbers. Then:

(a) m(T1l) = l + 1

(b) l + 1 ≤ m(T2l) ≤ 2l

(c) l + 1 ≤ m(Tkl) ≤ 3l for k ≥ 3

Proof. For the part (a), it is enough to observe that T1l is actually a path of
length l and we know that m(T1l) = m(Pl) = l + 1 (Claim 4.10).

Let us proof parts (b) and (c) together. The lower bound follows from Corol-
lary 4.11, provided that the depth of Tkl is defined to be l.

We are going to proof the upper bound by an induction on l. If l = 1,
then Tk1 is formed by k isolated vertices (Zk). We have already argued (Claim
4.4 and Theorem 4.7) that m(Z2) = 2 and m(Zk) = 3 for k ≥ 3, which gives
the upper bound for the base case, when l = 1.

We proof the inductive step only for the case (c), the other case (b) is proven
in a similar manner. Let us suppose that m(Tkl) ≤ 3l and we want to show that
m(Tk(l+1)) ≤ 3l + 3.

As you can see on the following picture, we can construct Tk(l+1) from Tkl in
two simple steps. First, we connect all roots of Tkl to a new single root r creating
the rooted tree Ukl and we obtain Tk(l+1) as k disjoint copies of Ukl.

Figure 4.2: Construction of Tk(l+1) from Tkl.

Let n = |V (Tkl)|. We use the assumption m(Tkl) ≤ 3l to find a set G =
{g1, . . . , g3l} ⊆ Zn that generates G(Tkl) as a semiring. We are going to show
that m(Ukl) ≤ 3l + 1 by finding its generating set H = {h1, . . . , h3l+1} ⊆ Zn+1

consisting of 3l + 1 vectors. We can assume that the first coordinate of these
vectors corresponds to the root r of Ukl.

For any i ∈ [3l], we let hi = (−1, gi) and we let h3l+1 = e1. Adding the vector
h3l+1 to each hi, we obtain (0, gi), which we can be used to generate (0, w) for
any w ∈ Zn (since G generates G(Tkl)).
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Let (c, v) ∈ Zn+1 be an arbitrary vector, c ∈ Z, v ∈ Zn. If c ≥ 0, we can
obtain (c, v) as c · h3l+1 + (0, v). On the other hand, if c < 0, then we generate
(c, v) as (−c) · h1 + (0, v − c · g1), which finishes the proof that m(Ukl) ≤ 3l + 1.

Since Tk(l+1) is constructed by k disjoint copies of Ukl, the desired bound
m(Tk(l+1)) ≤ 3l+3 follows from Theorem 4.13 and already proven bound m(Ukl) ≤
3l + 1.

Now it only takes one last step to give bounds on m(F, R) for a general rooted
forest (F, R). We obtain a tighter upper bound for binary forests.

Theorem 4.15. Let (F, R) be a rooted forest of depth l.

(a) l + 1 ≤ m(F, R) ≤ 3l

(b) If (F, R) is a binary forest, we even have l + 1 ≤ m(F, R) ≤ 2l.

Proof. We proof both parts together. The lower bound follows from Corollary
4.11. Let us denote the arity of (F, R) by k. It is easy to see that (F, R) ⪯ Tkl

and Observation 4.9(b) gives us that m(F, R) ≤ m(Tkl). Combining that with
the bounds on Tkl from Theorem 4.14, we obtain the result.

4.5 Remarks
We are aware of a simpler proof of the upper bound in Theorem 4.15(a) from
Theorem 4.7. We are going to sketch the construction of a set G generating
G(F, R) such that |G| ≤ 3l, where l is the depth of (F, R).

We split vertices of (F, R) into l disjoint subsets V1, . . . , Vl, where Vi = {v ∈
V (F ) | depth of v is exactly i}. For each Vi, we take (at most) three generators
of G(Zni

), where ni = |Vi| (see Claim 4.4 and Theorem 4.7). We set the other co-
ordinates (corresponding to vertices that do not belong to Vi) of those generators
to zero and add them to G. It can be shown that such G generates G(F, R).

However, we think that Theorem 4.13 is interesting on its own, so we have cho-
sen (possibly) more complicated approach of proving Theorem 4.15 via bounding
m(Tkl). Moreover, we have obtained the tighter bound for binary forests.

Unfortunately, we were not able to obtain the precise value of m(F, R) for all
rooted forests (F, R). The following question remains open for further studies.

Question 4.16. Let (F, R) ̸= Zn be a rooted forest of depth l. Does m(F, R)
equal l + 1?

Note that m(F, R) ≥ l + 1 follows from Corollary 4.11. For Question 4.16 to
hold, it suffices to find a generating set of G(F, R) of size l + 1. We were able
to do so for several classes of rooted forests. We end this chapter by presenting
these partial results.

We give a table of generating sets of parasemifields G(F, R) such that (F, R)
contains less than 5 vertices and (F, R) ̸= Zn.
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Figure 4.3: Generators of G(F, R) for (F, R) ̸= Zn, |V (F )| < 5.

We have shown that Question 4.16 holds for small rooted forests. We are going
to look at rooted forests that are formed by a couple of rooted paths and we will
answer Question 4.16 for some of them.

Notation 4.17. For natural numbers k, n, let us denote by kPn the rooted forest
formed by k disjoint copies of a rooted path Pn.

Theorem 4.18. Let k, n be natural numbers and k ≤ (n + 1). Then there exists
a set of n + 1 generators of G(kPn). Consequently, m(kPn) = n + 1.

Proof. It suffices to proof the theorem for k = n+1. Elements from G((n+1)Pn)
are vectors from (Zn)n+1 which will be denoted as v = (v1, . . . , vn | vn+1 . . . v2n |
· · · | vn2+1 . . . vn2+n).

We define the set G = {g1, . . . , gn+1} of n+1 vectors from (Zn)n+1 as follows:

g1 = (−2 | e1 | e1 | · · · | e1 | e1)
g2 = (e2 | −2 | e2 | · · · | e2 | e2)

... . . .
gn = (en | en | en | · · · | −2 | en)

gn+1 = (e1 | e2 | e3 | · · · | en | −2).

We are going to show that G generates G((n + 1)Pn). Let us start with
generating two important vectors.

−1 = g1 + g2 + · · · + gn+1

0 = (g1 ∨ 2 · g1) + (g2 ∨ 2 · g2) + · · · + (gn+1 ∨ 2 · gn+1)

We will finish the proof by generating all the canonical vectors eni+j (for
i ∈ {0, . . . , n} and j ∈ [n]) and applying Observation 4.2. If i ̸= j, we first
generate the vector vij as follows.
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vij = gi + 3 · gj +
∑︂

k /∈{i,j}
(2 · gk)

= gj − gi + 2
n+1∑︂
k=1

gk

= −2 + gj − gi

Observe that the vector vij contains ej in i-th n-tuple and other n-tuples
contain a non-positive vector. It follows that eni+j = vij ∨ 0.

The approach in the case when i = j is similar. We generate:

wi = gi + 3 · gn+1 +
∑︂

k /∈{i,n+1}
(2 · gk)

eni+i = wi ∨ 0

and we are done.

It can also be shown that m(kP2) = 3 for any k ∈ N, using the generating set
of G(Z2k) from Theorem 4.7. The proof is similar to the proof of Theorem 4.7
but slightly more technical.
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5. The classification of finitely
generated semifields
This chapter is devoted to study semifields that are finitely generated as a semir-
ing (fg-semifields for brevity). Let us restate the classification of semifields (The-
orem 2.18) for the case of finitely generated semifields to obtain four distinct
types of them.

Theorem 5.1. Let S be a fg-semifield. Then one of the following cases occurs:

(1) S is a finite field.

(2) S is constructed from a fg-parasemifield P by adding an element 0 and letting
0 + s = s and 0s = 0 for every s ∈ S.

(3) S is constructed from a finitely generated multiplicative abelian group A(·) by
adding an element 0 and letting s + t = 0 and 0s = 0 for every s, t ∈ S.

(4) S is constructed from a fg-parasemifield P (+, ·) as follows. Let P (·) be
a subgroup of a finitely generated abelian group A(·) and let S = A ∪ {0}
and S0 = {0}. We define addition for any x, y ∈ S as follows:

x + 0 = 0
x−1y /∈ P : x + y = 0
x−1y ∈ P : x + y = (x−1y + 1) · x.

Proof. The statement basically follows from Theorem 2.18. It remains to show
that those structures are finitely generated (and finite in the case (1)).

(1) A field that is finitely generated as a semiring is also finitely generated as
a ring. It is a classical result that such field has to be finite (an elementary
proof is contained in [Ježek et al., 2012, Section 2]).

(2) Let us suppose that S is generated by a finite set G. Since 0+s = s and 0s = 0
for every s ∈ S, we have that T is finitely generated by the set G \ {0}.

(3) The proof that A is a finitely generated group is similar as in the previous
case (2).

(4) It holds that semifield S of type (4) is finitely generated as a semiring if
and only if P is fg-parasemifield and the factorgroup (A/P )(·) is finitely
generated [Kala and Kepka, 2008, Lemma 4.4.5]. From Corollary 3.6, we
have that P (·) ≃ Zn(+) is a finitely generated group. Altogether, we obtain
that A(·) is a finitely generated group (see Observation 1.15).

As a result, we obtain the following corollary, which might be quite surprising.

Corollary 5.2. Let S be an ideal-simple semiring that is finitely generated. Then
S is finitely generated as a multiplicative semigroup.
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Proof. From the first classification of ideal-simple semifields (Theorem 2.8), we
have that S is either isomorphic to Zp with zero-multiplication (which is finite
and thus finitely generated as a multiplicative semigroup), or a fg-parasemifield
or a fg-semifield.

Corollary 3.6 states that fg-parasemifields are finitely generated as a multi-
plicative semigroup, implying that fg-semifields of type (3) are also. The state-
ment also holds for fg-semifields of three remaing types, as they are either finite
(type (1)) or obtained by adding one element to a finitely generated abelian group
(type (2) and type (4) from Theorem 5.1).

The fg-semifields of types (1) and (3) are constructed from well-known struc-
tures (finite fields and finitely generated abelian groups), so they are not that
interesting for further study. We are going to study the fg-semifields that arise
from fg-parasemifields (type (2) and type (4)) and apply the classification of
fg-parasemifields described in Chapter 3.

Let us start with an easier case, when S is a fg-semifield of type (2), S =
P ∪ {0} for a fg-parasemifield P . We use Theorem 3.5 (the classification of fg-
parasemifields) to find a rooted forest (F, R) on m vertices such that P ≃ G(F, R).
The element 0 has to satisfy that, for every v ∈ Zm, we have that 0 ∨ v = v
and 0 + v = 0, so 0 plays the role of the vector (−∞, . . . , −∞).

5.1 Finitely-generated semifields of type (4)
We turn our attention to fg-semifields of type (4) that have more complicated
structure. Recall that fg-semifield S(+, ·) of type (4) is constructed from a finitely
generated abelian group A(·) that has fg-parasemifield P (+, ·) as a multiplicative
subgroup.

Our goal will be to modify the structure of A(·) to have the better under-
standing of what is going on. From the classification of finitely generated abelian
groups (Theorem 1.17), we may without loss of generality assume that A = Zn⊕T ,
where T = Zq1 ⊕ · · · ⊕ Zqk

is the torsion part and q1, . . . , qk are prime powers.
We again use Theorem 3.5 to find a rooted forest (F, R) on m vertices such

that P ≃ G(F, R). It follows that P (·) ≃ Zm(+) is a free group of rank m that
is also a multiplicative subgroup of A(·). Thus, we can, for each i ∈ [m], find
bi ∈ Zn and ti ∈ T such that P = ⟨p1, . . . , pm⟩ for pi = (bi | ti) and that pi ∈ P
corresponds to ei ∈ G(F, R). Let us present a useful observation.

Observation 5.3. If (b | t), (b | u) ∈ P , then t = u.

Proof. For contradiction, suppose that t ̸= u and let v = t − u. Since both
(b | t) and (b | u) lie in P , their difference (0 | v) has to lie in P as well. Since
P is generated by the set {p1 . . . , pm}, we can find integers k1, . . . , km such that:

m∑︂
i=1

ki · pi = (0 | v). (5.1)

We have that T = Zq1 ⊕· · ·⊕Zqk
. Let q = q1 · · · · ·qk and observe that q ·v = 0 for

every v ∈ T . Multiplying Equation 5.1 by q, we obtain a non-trivial combination
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of the zero vector:
m∑︂

i=1
qki · pi = (0 | q · v) = 0 (5.2)

which is a contradiction with the fact that P is a free group and the expression
of its elements from the basis should be unique.

Let B
def= {b ∈ Zn | ∃t ∈ T : (b | t) ∈ P} be a subgroup of Zn.

Claim 5.4. We claim that B = ⟨b1, . . . , bm⟩.

Proof. Since P = ⟨(b1 | t1), . . . , (bm | tm)⟩, it is clear that B is a subgroup of
Zn generated by {b1, . . . , bm}.

For contradiction, suppose b ∈ B is not uniquely expressed, i.e., we can find
k ̸= l ∈ Zm such that b = ∑︁m

i=1 ki · bi = ∑︁m
i=1 li · bi. Let (b | t) = ∑︁m

i=1 ki · pi
and (b | u) = ∑︁m

i=1 li · pi be two elements in P . Observation 5.3 gives us that
t = u. Therefore, ∑︁m

i=1 ki · pi and ∑︁m
i=1 li · pi are two expressions of the same

element (b | t) in the free group P , implying that k = l, contradiction.

We have shown that B is a free group of rank m and moreover, B is a sub-
group of Zn. We can now apply Theorem 1.19 to find a basis {a1, . . . , an} of Zn

and natural numbers d1 | d2 | · · · | dm such that B = ⟨d1 · a1, . . . , dm · am⟩.

5.1.1 Simpler case
First, let us consider the case, when d1, . . . , dm = 1, which implies that B =
⟨b1, . . . , bm⟩ = ⟨a1, . . . , am⟩ and that Zn = ⟨a1, . . . , an⟩. We obtain that Zn has
the basis {b1, . . . , bm, am+1, . . . , an} and we can let bi = ai for i ∈ {m+1, . . . , n}.

Since {b1, . . . , bn} is the basis of Zn, we can apply the following change of
coordinates h : A → A defined as h(b | t) = h(∑︁m

i=1 ki · bi | t) = (k1, . . . , kn | t).
It is easy to observe (from the definition of a basis) that h is a well-defined
isomorphism of groups. Furthermore, note that h(pi) = h(bi | ti) = (ei | ti).
Thus, we will without loss of generality assume that P = ⟨p1, . . . , pm⟩ for pi =
(ei | ti).

We apply one more change of coordinates j : A → A, which is defined as
follows. We view A as Zm ⊕ Z(n−m) ⊕ T and let j(x | y | z) = (x | y | z − t(x)),
where t : Zm → T is the following homomorphism: t(x) = ∑︁m

i=1 xi · ti.

Observation 5.5. The map j : A → A defined above is a group isomorphism.

Proof. Since t is a group homomorphism, j is as well. For the injectivity of j, let
us assume that j(u | v | w) = j(x | y | z). Componentwise, we obtain that:

u = x (5.3)
v = y (5.4)

w − t(u) = z − t(x). (5.5)

From Equation 5.3 we have that t(u) = t(x). Adding that to Equation 5.5, we
have w = z, the injectivity follows.

Let (x | y | z) be an arbitrary element from A. The surjectivity follows from
the following equation: j(x | y | z + t(x)) = (x | y | z).
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We see that j(pi) = j(ei | 0 | ti) = (ei | 0 | 0), so we can without loss
of generality assume that pi = (ei | 0 | 0). Therefore, we have that A =
P ⊕ Z(n−m) ⊕ T and that A is formed by a direct product of P and a finitely
generated abelian group G, in this case G = Z(n−m) ⊕ T . Combining that with
the definition of semifields of type (4) from Theorem 5.1, we obtain the following
classification.

Theorem 5.6. Let S be a fg-semifield of type (4) and moreover suppose that
d1, . . . , dm = 1. Then we can find a fg-parasemifield P ≃ G(F, R) and a finitely
generated abelian group G(+) such that S ≃ P ⊕ G ∪ ∞. We set s + ∞ = ∞
and s · ∞ = ∞. The binary operations on two arbitrary elements (u | g) and (v |
h) from G(F, R) ⊕ G are defined as follows:

g ̸= h : (u | g) + (v | h) = ∞
(u | g) + (v | g) = (u ∨ v | g)
(u | g) · (v | h) = (u + v | g + h).

5.1.2 General case
We assume that (d1, . . . , dm) ̸= 1. Recall that B = ⟨b1, . . . , bm⟩ = ⟨d1·a1, . . . , dm·
am⟩ and that Zn = ⟨a1, . . . , an⟩.

Unfortunately, we are not able to classify semifields of type (4) completely.
We are going to present a partial result concerning semifields of type (4) that
satisfy the following assumption.

Assumption 5.7. Let us assume that we can find natural numbers d1, . . . , dm

and a basis {a1, . . . , an} of Zn such that bi = di · ai for every i ∈ [m].

Note that Assumption 5.7 does not have not be satisfied in general. For
example, let b1 = (2, 1), b2 = (4, 3). Since coordinates of vectors b1, b2 are co-
prime, it holds that d1 = d2 = 1. But {a1, a2} = {b1, b2} is not a basis of Z2, as
the first coordinate is even for all generated vectors.

Similarly as in the simpler case (when d1, . . . , dm = 1), we can apply a change
of coordinates h : A → A defined as h(b | t) = h(∑︁m

i=1 ki ·ai | t) = (k1, . . . , kn | t)
and we can without generality assume that P = ⟨di · ei | ti⟩.

We are able to view a semifield S of type (4) as an abelian group A ≃
Zm ⊕Z(n−m) ⊕T with an added element ∞ (that corresponds to the zero semifield
element). The multiplication in semifields of type (4) is inherited from the group
operation in A which is a coordinate-wise addition on A (denoted by +). More-
over, we insist that ∞ + s = ∞.

The addition in semifields of type (4) will be denoted by ∨ and looks as follows
(see Theorem 5.1): for g = (u | v | w) ∈ A and h = (x | y | z) ∈ A, we should
set g ∨ h = ((h − g) ∨ 0) + g if h − g ∈ P and we set g ∨ h = ∞ otherwise. Note
that (h − g) ∨ 0 is computed in the parasemifield P ≃ G(F, R).

For every i ∈ [m], let us take unique integers ki, li, ri, si such that 0 ≤ ri, si ≤
di − 1 and that the following equations are satisfied:

ui = kidi + ri

xi = lidi + si.
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We are now going to find the conditions for h − g to belong in P = ⟨(di ·
ei | 0 | ti), i ∈ [m])⟩. That is indeed equivalent to finding j ∈ Zm such that
h − g = (j1d1, . . . , jmdm | 0 | ∑︁m

i=1 ji · ti). Note that h − g = (x | y | z) − (u | v |
w) = ((d1(l1 − k1) + r1 − s1), . . . , (dm(lm − km) + rm − sm) | y − v | z − w).

Comparing the coordinates of (j1d1, . . . , jmdm | 0 | ∑︁m
i=1 ji · ti) and (d1(l1 −

k1) + r1 − s1, . . . , dm(lm − km) + rm − sm | y − v | z − w), we demand that:

∀i ∈ [m] : diji = di(li − ki) + ri − si ⇒ ji = ki − li, ri = si

y − v = 0 ⇒ y = v.

Let us define the function t : Zm → T as t(x1, . . . , xm) = ∑︁m
i=1⌊xi

di
⌋ · ti. Finally,

comparing the torsion parts and applying the definition of the map t gives us
that:

z − w =
m∑︂

i=1
ji · ti =

m∑︂
i=1

(li − ki) · ti =
m∑︂

i=1
li · ti −

m∑︂
i=1

ki · ti = t(x) − t(u)

which holds if and only if we can find t ∈ T such that

w = t(u) + t, z = t(x) + t.

Assume that the conditions above are met, i.e., s = r, y = v and w =
t(x) + t, z = t(u) + t. We shall look at the element (h − g) ∨ 0. We have that
h − g = ((l1 − k1)d1, . . . , (lm − km)dm | 0 | ∑︁m

i=1(li − ki) · ti) = ∑︁m
i=1(li − ki) · pi,

which corresponds to the vector l − k ∈ G(F, R) (recall that pi ∈ P was defined
to correspond to ei ∈ G(F, R)).

We use structure of the rooted forest (F, R) to compute m = (l − k) ∨ 0 that
corresponds to (h − g) ∨ 0 = (m1d1, . . . mmdm | 0 | ∑︁m

i=1 mi · ti) in A.
From the definition of ∨ in G(F, R), we have either mi = li − ki or mi = 0,

for each i ∈ [m]. We can thus decompose [m] into two subsets I and J such that
I = {i ∈ [m] | mi = 0} and J = {i ∈ [m] | mi = li − ki}.

We obtain g ∨ h by adding g to ((h − g) ∨ 0). We have observed that:

g =
(︄

k1d1 + r1, . . . , kmdm + rm | v | t +
m∑︂

i=1
ki · ti

)︄

(h − g) ∨ 0 =
(︄

m1d1, . . . , mmdm | 0 |
m∑︂

i=1
mi · ti

)︄
.

Summing these equations up, we obtain that:

g ∨ h = (n | v | t + t(n)) ,

where n is the following vector: ni = ui for i ∈ I and ni = xi for i ∈ J .
Finally, let us observe that for every i ∈ [m] we have that:

ui ≥ xi ⇔ diki + ri ≥ dili + ri ⇔ ki ≥ li

which implies that n = u∨w, when we inherit the structure of rooted forest from
P ≃ G(F, R). Consequently:

g ∨ h = (u | v | t + t(u)) ∨ (x | v | t + t(x)) = (u ∨ x | v | t + t(u ∨ x)).

To sum up, we have just proven the following theorem.
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Theorem 5.8. Let S be a fg-semifield of type (4) and let Assumption 5.7 be
satisfied. Then, we can find a fg-abelian group G = Zn ⊕ T such that T = Zq1 ⊕
· · ·⊕Zqk

, where q1, . . . , qk are prime powers. Moreover, we can find a rooted forest
(F, R) consisting of m vertices, natural numbers d1, . . . , dm and t1, . . . , tm ∈ T
such that S ≃ G(F, R) × G ∪ {∞}.

We set s + ∞ = ∞ and s · ∞ = ∞ for every s ∈ S. The binary operations on
two arbitrary elements g = (u | v | w) and h = (x | y | z) from G(F, R) ⊕Zn ⊕ T
are defined as follows:

g · h = (u + x | v + y | w + z).

If the following three conditions

(1) di divides xi − ui for each i ∈ [m]

(2) v = y

(3) we can find t ∈ T such that w = t + t(u) and z = t + t(x), where t(x) =∑︁m
i=1⌊xi

di
⌋ · ti

are met, then we let

g + h = (u ∨ x | v | t + t(u ∨ x))

and we set g + h = ∞ otherwise.

The theorem above classifies another interesting subclass of semifields of type
(4). The general case remains open for further studies. However, we think that
the resulting classification will be similar to Theorem 5.8.
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