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Petr Jančar (FSC, Palacký University Olomouc)
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• J. Š́ıma: Stronger separation of analog neuron hierarchy by deterministic
context-free languages. Neurocomputing 493:605-612, 2022.

2/54



Outline of Talk

1. The Neural Network Model

2. The Computational Power of Neural Networks

3. A Chomsky-Like Neural Network Hierarchy

4. Periodic Numbers in Positional Systems with Non-Integer Base

5. C-Simple Problems

3/54



The Neural Network Model – Architecture

s computational units (neurons), indexed as V = {1, . . . , s}, connected into
a directed graph (V,E) where E ⊆ V × V
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The Neural Network Model – Weights

each edge (i, j) ∈ E from unit i to j is labeled with a real weight wji ∈ R
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The Neural Network Model – Zero Weights

each edge (i, j) ∈ E from unit i to j is labeled with a real weight wji ∈ R
(wki = 0 iff (i, k) /∈ E)
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The Neural Network Model – Biases

each neuron j ∈ V is associated with a real bias wj0 ∈ R
(i.e. a weight of (0, j) ∈ E from an additional formal neuron 0 ∈ V )
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Discrete-Time Computational Dynamics – Network State

the evolution of global network state (output) y(t) = (y
(t)
1 , . . . , y

(t)
s ) ∈ [0, 1]s

at discrete time instant t = 0, 1, 2, . . .
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Discrete-Time Computational Dynamics – Initial State

t = 0 : initial network state y(0) ∈ {0, 1}s
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Discrete-Time Computational Dynamics: t = 1

t = 1 : network state y(1) ∈ [0, 1]s
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Discrete-Time Computational Dynamics: t = 2

t = 2 : network state y(2) ∈ [0, 1]s
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Discrete-Time Computational Dynamics – Excitations

at discrete time instant t ≥ 0, an excitation is computed as

ξ
(t)
j = wj0+

s∑
i=1

wjiy
(t)
i =

s∑
i=0

wjiy
(t)
i

for every j ∈ {1, . . . , s}

where unit 0 ∈ V has constant output y
(t)
0 ≡ 1 for every t ≥ 0
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Discrete-Time Computational Dynamics – Outputs

at the next time instant t+ 1, every neuron j ∈ V updates its state in parallel

(a so-called fully parallel mode):

y
(t+1)
j = σ

(
ξ

(t)
j

)
for every j = 1, . . . , s

where σ : R −→ [0, 1]

is an activation function, e.g.

σ(ξ) =

 1 for ξ ≥ 1
ξ for 0 < ξ < 1
0 for ξ ≤ 0

the saturated-linear function
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The Computational Power of NNs – Motivations

• the potential and limits of general-purpose computation with NNs:

What is ultimately or efficiently computable by particular NN models?

• idealized mathematical models of practical NNs which abstract away from
implementation issues, e.g. analog numerical parameters are true real numbers

• methodology: the computational power and efficiency of NNs is investigated
by comparing formal NNs to traditional computational models such as finite
automata, Turing machines, Boolean circuits, etc.

• NNs may serve as reference models for analyzing alternative computational
resources (other than time or memory space) such as analog state, continuous
time, energy, temporal coding, etc.

• NNs capture basic characteristics of biological nervous systems (plenty of
densely interconnected simple unreliable computational units)

−→ computational principles of mental processes
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Neural Networks As Formal Language Acceptors

a language L ⊆ Σ∗ over finite alphabet Σ represents a decision problem

y
(T (n))
out =

{
1 if x ∈ L
0 if x /∈ L y

(t)
val =

{
1 if t = T (n)
0 if t 6= T (n)

Y = {out, val} output neurons

T (n) is the computation time
in terms of input length n ≥ 0

d ≥ 1 is the time overhead for
processing a single input symbol

X = enum(Σ) input neurons
one-hot encodingx y(d(i−1)+k)

j = 1 iff j = enum(xi)

x = x1 . . . xi−1 ←− xi ←− xi+1 . . . xn ∈ Σ∗ input word
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The Computational Power of NNs – Integer Weights

depends on the information content of weight parameters:

1. integer weights: finite automaton (FA) (Minsky, 1967)

wji ∈ Z −→ excitations ξj ∈ Z −→ states yj ∈ {0, 1}

−→ 2s global NN states y ∈ {0, 1}s ∼ FA states

size-optimal implementations:

• Θ
(√
m
)

neurons for a deterministic FA with m states
(Indyk, 1995; Horne, Hush, 1995)

• Θ(m) neurons for a regular expression of length m
(Šı́ma, Wiedermann 1998)
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The Computational Power of NNs – Rational Weights

depends on the information content of weight parameters:

2. rational weights: Turing machine (Siegelmann, Sontag, 1995)

• wji ∈ Q are fractions p
q

where p ∈ Z , q ∈ N

• NNs compute algorithmically solvable problems

• real-time simulation of TMs −→ polynomial time ≡ complexity class P

• a universal NN with 25 neurons (Indyk, 1995)

−→ the halting problem of whether a small NN terminates its computation,

is algorithmically undecidable
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The Computational Power of NNs – Real Weights

depends on the information content of weight parameters:

3. arbitrary real weights: “super-Turing” computation (Siegelmann, Sontag, 1994)

•wji ∈ R, e.g. irrational weights
√

2, π

• infinite precision of ONE real weight (vs. an algorithm has a finite description)

can encode any function f : 0 . code(C1) code(C2) code(C3) . . .

(code(Cn) encodes the circuit Cn computing f for inputs of length n)

−→ exponential time ≡ any I/O mapping

(including algorithmically undecidable problems)

• polynomial time ≡ nonuniform complexity class P/poly:

problems solvable by a polynomial-time (P) algorithm that for input x ∈ Σ∗

of length n = |x|, receives an external advise: a string s(n) ∈ Σ∗ of
polynomial length |s(n)| = O(nc) (poly), which depends only on n
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The Computational Power of NNs – A Summary

depends on the information content of weight parameters:

1. integer weights: finite automaton

2. rational weights: Turing machine

polynomial time ≡ complexity class P

3. arbitrary real weights: “super-Turing” computation

polynomial time ≡ nonuniform complexity class P/poly

exponential time ≡ any I/O mapping
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Neural Networks Between Rational and Real Weights

1. integer weights: finite automaton

2. rational weights: Turing machine

polynomial time ≡ P

polynomial time & increasing Kolmogorov complexity of real weights:

the length of the shortest program (in a fixed programming language) that

produces a real weight,

e.g. K
(

“
√

2 ”
)

= O(1), K(“random strings”) = n+ O(1)

≡ a proper hierarchy of nonuniform complexity classes between P and P/poly

(Balcázar, Gavaldà, Siegelmann, 1997)

3. arbitrary real weights: “super-Turing” computation

polynomial time ≡ P/poly
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Neural Networks Between Integer and Rational Weights

from integer to rational weights

αANN = a binary-state NN with integer weights

+ α extra analog-state neurons with rational weights

wji ∈
{

Q j = 1, . . . , α

Z j = α+ 1, . . . , s

i ∈ {0, . . . , s}

α = 2

21/54



Neural Networks with Increasing Analogicity

from binary ({0, 1}) to analog ([0, 1]) states of neurons

αANN = a binary-state NN with integer weights

+ α extra analog-state neurons with rational weights

y
(t+1)
j = σj

(
s∑
i=0

wjiy
(t)
i

)
j = 1, . . . , s updating the states of neurons

σj(ξ) =


σ(ξ) =

 1 for ξ ≥ 1
ξ for 0 < ξ < 1
0 for ξ ≤ 0

j = 1, . . . , α
saturated-linear
function

H(ξ) =

{
1 for ξ ≥ 0
0 for ξ < 0

j = α+ 1, . . . , s
Heaviside
function
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The Chomsky Formal Language Hierarchy

from finite automata to Turing machines

Type 0

Type 1

Type 2

Type 3

RE TM

CSL LBA

CFL PDA

REG FA
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The Analog Neuron Hierarchy (ANH)

the computational power of αANNs

increases with the number α of extra analog-state neurons:

integer weights rational weights

↓ ↓
FA ≡ REG = 0ANN ⊆ 1ANN ⊆ 2ANN ⊆ 3ANN ⊆ . . . = RE ≡ TM

↑ × ↑
Type 3 Chomsky hierarchy Type 0

Type 1, 2 ?

(the notation αANN is also used for the class of languages accepted by αANNs)
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The Analog Neuron Hierarchy as a Chomsky-Like NN Hierarchy

the separation of the first two levels 0ANN
L1

$ 1ANN
L#

$ 2ANN :

• LBA simulates 1ANN: 1ANN ⊂ CSL (Type 1)

• 1ANN accepts a non-CFL L1: 1ANN 6⊂ CFL (Type 2)

L1 =
{
x1 . . . xn ∈ {0, 1}∗

∣∣∣ ∑n
k=1 xn−k+1

(
3
2

)−k
< 1

}
∈ 1ANN \ CFL

• 2ANN simulates deterministic PDA (DPDA ≡ DCFL): DCFL ⊂ 2ANN

• 1ANN cannot count up to n (even with real weights): DCFL 6⊂ 1ANN

L# =
{
0n1n

∣∣n ≥ 1
}
∈ DCFL \ 1ANN

the collapse to the third level 3ANN = 4ANN = . . . = RE ≡ TM (Type 0):

• 3ANN simulates TM 25/54



The Chomsky Hierarchy vs. the Analog Neuron Hierarchy

the separation of some classes is still open, e.g. 2ANN
?

$ 3ANN, 1ANN∩ CFL
?
= REG

the intermediate levels of the ANH and the Chomsky hierarchy seem incomparable
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Positional Numeral Systems With Non-Integer Base

generalization of decimal expansions, which uses also non-integer numbers as the
base and digits of a positional numeral system:

• β ∈ R is a real base (radix) such that |β| > 1

• A ⊂ R is a finite set of real digits such that |A| ≥ 2

a finite β-expansion represents a number x in base β with digits ai from A as

x = (0 . a1 . . . an)β = a1β
−1+a2β

−2+a3β
−3+· · ·+anβ−n =

n∑
k=1

akβ
−k

Examples:

1. β = 10, A = {0, 1, 2, . . . , 9}
decimal expansion of 3

4
= (0 . 75)10 = 7 · 10−1 + 5 · 10−2

2. β = 2, A = {0, 1}
binary expansion of 3

4
= (0 . 11)2 = 1 · 2−1 + 1 · 2−2

3. β = 5
2

, A =
{

5
16
, 7

4

}
5
2

-expansion of 3
4

=
(
0 . 7

4
5
16

)
5
2

= 7
4
·
(

5
2

)−1
+ 5

16
·
(

5
2

)−2
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(Infinite) β-Expansions

introduced by Rényi (1957) and studied by Parry (1960); still an active research
field with applications in coding theory, algorithmic complexity of arithmetic oper-
ations, models of quasicrystals, etc. (e.g. a research group at FNSPE CTU, Prague)

an infinite β-expansion of number x over digits ai from A:

x = (0 . a1a2a3 · · · )β = a1β
−1 + a2β

−2 + a3β
−3 + · · · =

∞∑
k=1

akβ
−k

which is a convergent power series due to |β| > 1

Example: β = 3
2

, A = {0, 1}

3
2

-expansion of 16
45

:
(
0 . 000 10 10 10 10 10 . . .

)
3
2

=
(
0 . 000 10

)
3
2

=

(
3

2

)−4

+

(
3

2

)−6

+

(
3

2

)−8

+ · · · =
∞∑
k=2

(
3

2

)−2k

=
∞∑
k=2

(
4

9

)k
=

16

45

(a geometric series)
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Existence of β-Expansions

Let β > 1 and A = {α1, . . . , αp} where α1 < α1 < · · · < αp .

Then every number in the interval
[
α1
β−1

,
αp
β−1

]
has a β-expansion

iff max1<j≤p(αj − αj−1) ≤ αp−α1

β−1
. (Pendicini, 2005)

Examples:

1. β > 1, A = {0, 1, . . . , dβe − 1} containing the standard integer digits

every number in the intervalDβ =
(
0 , dβe−1

β−1

)
(evenDβ) has a β-expansion,

note that (0, 1) ⊆ Dβ, e.g. Dβ = (0, 1) for integer base β

2. β = 3, A = {0, 2} (i.e. 2 6≤ 2−0
3−1

= 1)

any number from the complement of the Cantor ternary set
∞⋃
n=0

3n−1⋃
k=0

(
3k + 1

3n + 1
,

3k + 2

3n + 1

)
⊂ (0 , 1) has no 3-expansion

(including iteratively the open middle third from a set of line segments,

starting with (0,1)) 29/54



Uniqueness of β-Expansions for Integer Base β

for an integer base β > 1 and the standard digits, A = {0, 1, . . . , β − 1},

almost any number from the intervalDβ = (0, 1) has a unique β-expansion,

e.g. the unique decimal expansion of
√

2
2

= (0 . 70710678118 . . . )10 ,

except for numbers with a finite β-expansion, which have two distinct (infinite)
β-expansions,

e.g. two (infinite) decimal expansions of

3

4
= (0 . 75)10 = (0 . 75000 . . . )10 = (0 . 74999 . . . )10
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Uniqueness of β-Expansions for Non-Integer Base β

for a non-integer base, almost every number has infinitely (uncountably)
many distinct β-expansions (Sidorov, 2003)

Example: 1 < β < 2, A = {0, 1}, Dβ =
(
0 , 1

β−1

)
• 1 < β < ϕ where ϕ = (1 +

√
5)/2 ≈ 1.618034 is the golden ratio:

every x ∈ Dβ has uncountably many distinct β-expansions (Erdös et al.,1990)

• ϕ ≤ β < q where q ≈ 1.787232 is the Komornik-Loreti constant(
i.e.
∑∞

k=1 tkq
−k = 1 where tk = parity(bin(k)) is the Thue-Morse sequence

)
:

countably many x ∈ Dβ have unique β-expansions (Glendinning,Sidorov,2001),

e.g. the unique 5
3

-expansions of 9
16

(
3
5

)k−1
=
(
0 . (0)k 10

)
5
3

for k ≥ 0

vs. countably many distinct ϕ-expansions of 1 =
(
0 . (10)k 01

)
ϕ

for k ≥ 0

• q ≤ β < 2: uncountably many x ∈ Dβ have unique β-expansions

partially generalizes to β > 2 and arbitraryA: two critical bases 1 < ϕA ≤ qA
such that the number of unique β-expansions is finite if 1 < β < ϕA, countable
if ϕA < β < qA, and uncountable if β > qA (Komornik,Pedicini,2016) 31/54



Eventually Periodic β-Expansions(
0 . a1a2 . . . ak1 ak1+1ak1+2 . . . ak2

)
β

= (0 . a1a2 . . . ak1)β + β−k1%

where

• a1a2 . . . ak1 ∈ Ak1 is a preperiodic part of length k1 ≥ 0

(purely periodic β-expansions for k1 = 0)

• ak1+1ak1+2 . . . ak2 ∈ Am is a repetend of m = k2 − k1 > 0 repeating digits

• % = (0 . ak1+1ak1+2 . . . ak2)β =

∑m
k=1 ak1+k β

−k

1− β−m
is a periodic point

Example: β = 3
2

, A = {0, 1}

22

15
=
(
0 . 1 10

)
3
2

= (0 . 1)3
2
+

(
3

2

)−1

· % =

(
3

2

)−1

+

(
3

2

)−1

·
(
0 . 10

)
3
2

where % =
(
0 . 10

)
3
2

=
∞∑
k=0

(
3

2

)−2k−1

=
1 ·
(

3
2

)−1
+ 0 ·

(
3
2

)−2

1−
(

3
2

)−2 =
6

5
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Eventually Quasi-Periodic β-Expansions(
0 . a1 . . . ak1 ak1+1 . . . ak2 ak2+1 . . . ak3 ak3+1 . . . ak4 . . .

)
β

= (0 . a1a2 . . . ak1)β + β−k1%
where

• a1a2 . . . ak1 ∈ Ak1 is a preperiodic part of length

(purely quasi-periodic β-expansions for k1 = 0)

• aki+1 . . . aki+1
∈ Ami is a quasi-repetend of length mi = ki+1 − ki > 0

• % = (0 . aki+1 . . . aki+1
)β =

∑mi
k=1 aki+k β

−k

1− β−mi
is the same periodic point

for every i ≥ 1

−→ quasi-repetends can be interchanged with each other arbitrarily

• a generalization of eventually periodic β-expansions

ak1+1 . . . ak2 = ak2+1 . . . ak3 = ak3+1 . . . ak4 = · · ·

Example: β ≈ 1.220744 satisfying β4 − β − 1 = 0 (?) , A = {0, 1}
1 = (0 . 00 010 1000 1000 010 . . .)β = (0 . 00)β + β−2%

where 00 is a preperiodic part and 010, 1000 are two quasi-repetends with same

periodic point % =
(
0 . 010

)
β

= β−2

1−β−3

?
= β2 ?

= β−1

1−β−4 =
(
0 . 1000

)
β
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An Example of Repetends With Unbounded Length

base β = 5
2

, digits A =
{
0 , 1

2
, 7

4

}
for every n ≥ 0, the quasi-repetends 7

4
1
2
· · · 1

2︸ ︷︷ ︸
n times

0 ∈ An+2 have

the same periodic point % = 3
4

:0 .
7

4

1

2
· · ·

1

2︸ ︷︷ ︸
n times

0


5
2

=
7
4
·
(

5
2

)−1
+
∑n+1

i=2
1
2
·
(

5
2

)−i
+ 0 ·

(
5
2

)−n−2

1−
(

5
2

)−n−2 =
3

4

−→ 3
4

has uncountably many distinct quasi-periodic 5
2

-expansions:

3

4
=

0 .
7

4

1

2
· · ·

1

2︸ ︷︷ ︸
n1 times

0
7

4

1

2
· · ·

1

2︸ ︷︷ ︸
n2 times

0
7

4

1

2
· · ·

1

2︸ ︷︷ ︸
n3 times

0
7

4

1

2
· · ·

1

2︸ ︷︷ ︸
n4 times

0 · · ·


5
2

where n1, n2, n3, . . . is any infinite sequence of nonnegative integers

(there are examples of exponentially many quasi-repetends in terms of their length)
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Eventually Quasi-Periodic β-Expansions and Tail Sequences

(rn)
∞
n=0 is a tail sequence of β-expansion ε =

(
0 . a1 a2 a3 . . .

)
β

if

rn = (0 . an+1an+2 . . .)β =
∞∑
k=1

an+kβ
−k for every n ≥ 0

denote by Rε = {rn |n ≥ 0} its range

Lemma. If Rε is finite (i.e. the tail sequence contains a constant infinite
subsequence), then the β-expansion ε is eventually quasi-periodic.

Theorem. Let β be a real algebraic number (|β| > 1) whose all conju-
gates β′ (i.e. the other roots of minimal polynomial of β) meet |β′| 6= 1.
Then a β-expansion ε is eventually quasi-periodic iff Rε is finite.

Theorem. Let β be a real algebraic number (|β| > 1) whose conjugate β′

meets |β′| = 1. Then there exists a finite set A ⊂ Z of integer digits and
a quasi-periodic β-expansion ε over A of the number 0 that has infinite Rε.

(solves an important open problem in algebraic number theory)
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Quasi-Periodic Numbers

a real number x ∈ R is β-quasi-periodic within A if every infinite β-expansion
of x over A, is eventually quasi-periodic

Examples:

• x with no β-expansion at all, is formally quasi-periodic (e.g. any number from
the complement of the Cantor ternary set is 3-quasi-periodic within A = {0, 2} )

• x = 3
4

is 5
2

-quasi-periodic within A =
{
0 , 1

2
, 7

4

}
:

all the 5
2

-expansions of 3
4

using the digits from A, are eventually quasi-periodic

• x = 40
57

= (0 . 0 011)3
2

is not 3
2

-quasi-periodic within A = {0, 1} :

the greedy (i.e. lexicographically maximal) 3
2

-expansion (0 . 100000001 . . . )3
2

of 40
57

is not eventually quasi-periodic

Theorem. Let β > 1 be a Pisot number (i.e. a real algebraic integer whose
all conjugates β′ meet |β′| < 1) and A ⊂ Q(β). Then any x ∈ Q(β) is
β-quasi-periodic within A.

• x = 1 is β-quasi-periodic within A = {0, 1} for the plastic constant
β ≈ 1.324718 (i.e. the minimal Pisot number satisfying β3− β− 1 = 0)
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Quasi-Periodic 1ANN (QP-1ANN): for a 1ANN, denote:

• β = 1/w11 is the base ( |β| > 1) where
w11 is the self-loop weight of the one analog-state neuron ( 0 < |w11| < 1)

• A =
{∑s

i=0 ; i6=1
w1i
w11
yi

∣∣∣ y2, . . . , ys ∈ {0, 1}
}
∪ {0, β} are the digits

• X =
{∑s

i=0 ; i6=1

wji
wj1
yi

∣∣∣ j 6= 1 , wj1 6= 0 , y2, . . . , ys ∈ {0, 1}
}
∪ {0, 1}

we say that 1ANN (even with real weights) is quasi-periodic and denote QP-1ANN

if every x ∈ X is β-quasi-periodic within A

Example: 1ANN with rational weights + the self-loop weight w11 = 1/β
where β is an integer or the plastic constant or the golden ratio

Theorem. QP-1ANN = REG = 0ANN ≡ FA (Type 3)
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C-Hard Problems

C is a complexity class of decision problems (i.e. formal languages)

A ≤ B is a reduction transforming a problem A to a problem B (a preorder),

which is assumed not to have a higher computational complexity than C

H is a C-hard problem (under the reduction ≤) if for every A ∈ C, A ≤ H

• If a C-hard problem has a (computationally) “easy” solution,

then each problem in C has an “easy” solution (via the reduction).

• If a C-hard problem H is in C (a so-called C-complete problem),

then H belongs to the hardest problems in the class C.
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The Most Prominent Example: NP-Hard Problems

C = NP is the class of decision problems solvable in polynomial time by
a nondeterministic Turing machine

A≤PmB is a polynomial-time many-one reduction (Karp reduction) fromA toB

the satisfiability problem SAT is NP-hard: for every A ∈ NP, A ≤Pm SAT

• If an NP-hard problem is polynomial-time solvable,

then each NP problem would be solved in polynomial time (i.e. P = NP)

• The NP-hard problem SAT is in NP (i.e. SAT is NP-complete),

that is, SAT belongs to the hardest problems (NPC) in the class NP.
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C-Simple Problems
a conceptual counterpart to C-hard problems:

S is a C-simple problem (under the reduction ≤) if for every A ∈ C, S ≤ A

• If a C-simple problem S proves to be not “easy”,

e.g. S is not solvable by a machine M that can compute the reduction ≤,

then all problems in C are not “easy”, i.e. C cannot be solved by M .

−→ New Proof Technique: a lower bound known for one C-simple
problem S extends to the whole class of problems C

• If a C-simple problem S is in C, then S is the simplest problem in the class C.

A Trivial Example: SAT is simple for the class of NP-hard problems under ≤Pm
40/54



A Nontrivial Example of a C-Simple Problem

C = DCFL’ = DCFL \ REG
is the class of non-regular deterministic context-free languages

L1≤Att L2 is a truth-table reduction (a stronger Turing reduction) fromL1 toL2

implemented by a Mealy machine with the oracle L2

The Technical Result:

the language L# = {0n1n | n ≥ 1} over the binary alphabet {0, 1} is

DCFL’-simple under the reduction ≤Att : for every L ∈ DCFL’, L# ≤Att L

−→ L# ∈ DCFL’ is the simplest non-regular deterministic context-free languages

cf. the hardest context-free languageL0 due to S. Greibach (1973) is CFL-hard

41/54



Mealy Machines

A is a Mealy Machine with an input/output alphabet Σ/∆

i.e. a deterministic finite automaton with an output tape:

input word w ∈ Σ∗

initial state q0
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Mealy Machines

A is a Mealy Machine with an input/output alphabet Σ/∆

i.e. a deterministic finite automaton with an output tape:

current input symbol a ∈ Σ

state transition
from q1 to q2

output string u ∈ ∆∗
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Mealy Machines

A is a Mealy Machine with an input/output alphabet Σ/∆

i.e. a deterministic finite automaton with an output tape:

input w ∈ Σ∗

“final” state q

output A(w) ∈ ∆∗

−→ a deterministic finite-state transducer: w ∈ Σ∗ 7−→ A(w) ∈ ∆∗
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The Truth-Table Reduction by Oracle Mealy Machines

AL2 is a Mealy Machine A with an oracle L2 ⊆ ∆∗ :

rq queries:
?
∈ L2 for every i = 1, . . . , rq

for each state q of A :

• rq suffixes sq,1, . . . , sq,rq ∈ ∆∗

• truth table Tq : {0, 1}rq → {0, 1}
with rq variables

w ∈ Σ∗ is accepted by AL2 iff w brings A to the state q such that

Tq

(
A(w) ·sq,1

?
∈ L2 , A(w) ·sq,2

?
∈ L2 , . . . , A(w) ·sq,rq

?
∈ L2

)
= 1

L1 ≤Att L2: L1 ⊆ Σ∗ is truth-table reducible to L2 ⊆ ∆∗ iff

L1 = L(AL2) is accepted by some Mealy machine AL2 with oracle L2

Proposition: The relation ≤Att is a preorder.
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Why L# = {0n1n | n ≥ 1} Is the Simplest DCFL’ language?

any reduced context-free grammarG generating a non-regular language L ⊆ ∆∗

is self-embedding: there is a self-embedding nonterminal A admitting the derivation

A⇒∗ xAy for some non-empty strings x, y ∈ ∆+ (Chomsky, 1959)

G is reduced −→ S ⇒∗ vAz and A⇒∗ w for some v, w, z ∈ ∆∗

−→ S ⇒∗ vxmwymz ∈ L for every m ≥ 0 (1)

??? a conceivable (one-one) reduction from L# to L : for every m,n ≥ 1,

0m1n ∈ {0, 1}∗ 7−→ vxmwynz ∈ ∆∗

(the inputs outside 0+1+ are mapped onto some fixed string outside L)

since 0m1n ∈ L# implies vxmwynz ∈ L by (1)

!!! however, the opposite implication may not be true:
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Why L# Is the Simplest DCFL’ language? (cont.)

!!! however, the opposite implication may not be true:

for the DCFL’ language L1 = {ambn | 1 ≤ m ≤ n} over ∆ = {a, b}

there are no words v, x, w, y, z ∈ ∆∗ such that for every m,n ≥ 1,

vxmwynz ∈ L1 would ensure m = n

nevertheless, already two inputs ambn−1
?
∈ L1 and ambn

?
∈ L1 decides m

?
= n

−→ the truth-table reduction from L# to L1 with two queries to the oracle L1 :

0m1n ∈ {0, 1}∗ 7−→ vxmwyn−1z ∈ ∆∗ , vxmwynz ∈ ∆∗

where x = a, y = b, v = w = z = ε is the empty string

satisfying 0m1n ∈ L# iff (vxmwyn−1z /∈ L1 and vxmwynz ∈ L1 )

this can be generalized to any DCFL’ language L :
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The Main Technical Result

Theorem: Let L ⊆ ∆∗ be a non-regular deterministic context-free language
over an alphabet ∆. There exist non-empty words v, x, w, y, z ∈ ∆+ and
a language L′ ∈ {L,L} (where L = ∆∗ r L is the complement of L)
such that

1. either for all m,n ≥ 0, vxmwynz ∈ L′ iff m = n ,

2. or for all m,n ≥ 0, vxmwynz ∈ L′ iff m ≤ n .

1. 2.

In particular, for all m ≥ 0 and n > 0,

(vxmwyn−1z /∈ L′ and vxmwynz ∈ L′ ) iff m = n .
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The Truth-Table Reduction From L# to Any DCFL’L

implemented by a Mealy machine AL with two queries to the oracle L :

For any DCFL’ language L ⊆ ∆∗ , Theorem provides v, x, w, y, z ∈ ∆+

and L′ ∈ {L,L} , say L′ = L (analogously for L′ = L), such that

(vxmwyn−1z /∈ L and vxmwynz ∈ L ) iff m = n . (2)

AL transforms the input 0m1n to the output A(0m1n) = vxmwyn−1 ∈ ∆+

(the inputs outside 0+1+ are rejected), while moving to the state q

with rq = 2 suffixes sq,1, sq,2 and the truth table Tq : {0, 1}2 −→ {0, 1}

A(0m1n) · z = A(0m1n) · yz =

vxmwyn−1z
?
∈ L vxmwynz

?
∈ L Tq

0 1 1
0 0 0
1 1 0
1 0 0

sq,1 = z
sq,2 = yz

It follows from (2) that L(AL) = L# , i.e. L# ≤Att L .
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Ideas of the Proof of the Theorem
(inspired by some ideas on regularity of pushdown processes due to Janar, 2020)

• any non-regular DCFL language L ⊆ ∆∗ is accepted

by a deterministic pushdown automatonM by the empty stack

• since L /∈ REG, there is a computation byM , reaching configurations with
an arbitrary large stack which is being erased afterwards ,

corresponding to v, x, w, y, z ∈ ∆+ such that vxmwymz ∈ L for all m ≥ 1

• in addition, we aim to ensure that for all m ≥ 0 and n > 0,

(vxmwyn−1z /∈ L′ and vxmwynz ∈ L′ ) iff m = n

(L′ = L)
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Ideas of the Proof of the Theorem
(inspired by some ideas on regularity of pushdown processes due to Janar, 2020)

• any non-regular DCFL language L ⊆ ∆∗ is accepted

by a deterministic pushdown automatonM by the empty stack

• since L /∈ REG, there is a computation byM , reaching configurations with
an arbitrary large stack which is being erased afterwards ,

corresponding to v, x, w, y, z ∈ ∆+ such that vxmwymz ∈ L for all m ≥ 1

• in addition, we aim to ensure that for all m ≥ 0 and n > 0,

(vxmwyn−1z /∈ L′ and vxmwynz ∈ L′ ) iff m = n

• we study the computation ofM on an infinite word that traverses infinitely
many pairwise non-equivalent configurations

• we use a natural congruence property of language equivalence on the set of
configurations (determinism ofM is essential)

• we apply Ramsey’s theorem for extracting the required v, x, w, y, z ∈ ∆+

from the infinite computation
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Basic Properties of DCFL’-Simple Problems

DCFLS is the class of DCFL’-simple problems

Proposition:

• REG ( DCFLS ( DCFL ,

e.g. L# ∈ DCFLS, LR = {wcwR | w ∈ {a, b}∗} /∈ DCFLS

• The class DCFLS is closed under complement and intersection with regular

languages.

• The class DCFLS is not closed under concatenation, intersection, and union.
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Application to the Analog Neuron Hierarchy

• L# /∈ 1ANN by a nontrivial proof (based on the Bolzano–Weierstrass theorem)
which can hardly be generalized to another DCFL’ language

• L# is DCFL’-simple under ≤Att

• the reduction ≤Att to any L ∈ 1ANN can be implemented by 1ANN

−→ the known lower bound L# /∈ 1ANN for a single DCFL’-simple problem L#

is expanded to the whole class: DCFL’ ∩ 1ANN = ∅
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−→ DCFL ∩ 1ANN = 0ANN
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