Chomsky-Like Neural Network Hierarchy

Jiří Šíma
www.cs.cas.cz/~sima
Institute of Computer Science
The Czech Academy of Sciences
joint work with

$$
\begin{aligned}
& \text { Petr Savický (ICS, Czech Academy of Sciences) } \\
& \text { Petr Jančar (FSC, Palacký University Olomouc) } \\
& \text { Martin Plátek (FMP, Charles University) }
\end{aligned}
$$

References

This lecture surveys selected computability results of the project
FoNeCo: Analytical Foundations of Neurocomputing (Czech Science Foundation, GA22-02067S, 2019-2021), published in the following papers (two won the Best ICS Paper Award):

- J. Šíma: Subrecursive neural networks. Neural Networks 116:208-223, 2019.
- J. Šíma: Analog neuron hierarchy. Neural Networks 128:199-218, 2020.
- J. Šíma, P. Savický: Quasi-periodic β-expansions and cut languages. Theoretical Computer Science 720:1-23, 2018.
- P. Jančar, J. Šíma: The simplest non-regular deterministic context-free language. Proceedings of the MFCS 2021, LIPIcs 202, pp. 63:1-63:18, Dagstuhl, 2021.
- J. Šíma: Stronger separation of analog neuron hierarchy by deterministic context-free languages. Neurocomputing 493:605-612, 2022.

Outline of Talk

1. The Neural Network Model
2. The Computational Power of Neural Networks
3. A Chomsky-Like Neural Network Hierarchy
4. Periodic Numbers in Positional Systems with Non-Integer Base
5. \mathcal{C}-Simple Problems

The Neural Network Model - Architecture

s computational units (neurons), indexed as $V=\{1, \ldots, s\}$, connected into a directed graph $(\boldsymbol{V}, \boldsymbol{E})$ where $\boldsymbol{E} \subseteq \boldsymbol{V} \times \boldsymbol{V}$

The Neural Network Model - Weights

each edge $(\boldsymbol{i}, \boldsymbol{j}) \in \boldsymbol{E}$ from unit \boldsymbol{i} to \boldsymbol{j} is labeled with a real weight $\boldsymbol{w}_{\boldsymbol{j} i} \in \mathbb{R}$

The Neural Network Model - Zero Weights

each edge $(\boldsymbol{i}, \boldsymbol{j}) \in \boldsymbol{E}$ from unit \boldsymbol{i} to \boldsymbol{j} is labeled with a real weight $\boldsymbol{w}_{j i} \in \mathbb{R}$ $\left(w_{k i}=0\right.$ iff $\left.(i, k) \notin E\right)$

The Neural Network Model - Biases

each neuron $\boldsymbol{j} \in \boldsymbol{V}$ is associated with a real bias $\boldsymbol{w}_{j 0} \in \mathbb{R}$
(i.e. a weight of $(\mathbf{0}, \boldsymbol{j}) \in \boldsymbol{E}$ from an additional formal neuron $\mathbf{0} \in \boldsymbol{V}$)

Discrete-Time Computational Dynamics - Network State

the evolution of global network state (output) $\mathbf{y}^{(t)}=\left(\boldsymbol{y}_{1}^{(t)}, \ldots, \boldsymbol{y}_{s}^{(t)}\right) \in[0,1]^{s}$ at discrete time instant $t=0,1,2, \ldots$

Discrete-Time Computational Dynamics - Initial State

$t=0$: initial network state $\mathbf{y}^{(0)} \in\{0,1\}^{s}$

Discrete-Time Computational Dynamics: $\quad t=1$

$t=1$: network state $\mathbf{y}^{(1)} \in[0,1]^{s}$

Discrete-Time Computational Dynamics: $\quad t=2$
$t=2$: network state $\mathbf{y}^{(2)} \in[0,1]^{s}$

Discrete-Time Computational Dynamics - Excitations

at discrete time instant $t \geq 0$, an excitation is computed as

where unit $0 \in V$ has constant output $\boldsymbol{y}_{0}^{(t)} \equiv \mathbf{1}$ for every $t \geq 0$

Discrete-Time Computational Dynamics - Outputs

at the next time instant $t+1$, every neuron $j \in \boldsymbol{V}$ updates its state in parallel (a so-called fully parallel mode):

$$
y_{j}^{(t+1)}=\sigma\left(\xi_{j}^{(t)}\right) \text { for every } j=1, \ldots, s
$$

$$
\text { where } \sigma: \mathbb{R} \longrightarrow[0,1]
$$ is an activation function, e.g.

$$
\sigma(\xi)= \begin{cases}1 & \text { for } \xi \geq 1 \\ \xi & \text { for } 0<\xi<1 \\ 0 & \text { for } \xi \leq 0\end{cases}
$$

the saturated-linear function

The Computational Power of NNs - Motivations

- the potential and limits of general-purpose computation with NNs:

What is ultimately or efficiently computable by particular NN models?

- idealized mathematical models of practical NNs which abstract away from implementation issues, e.g. analog numerical parameters are true real numbers
- methodology: the computational power and efficiency of NNs is investigated by comparing formal NNs to traditional computational models such as finite automata, Turing machines, Boolean circuits, etc.
- NNs may serve as reference models for analyzing alternative computational resources (other than time or memory space) such as analog state, continuous time, energy, temporal coding, etc.
- NNs capture basic characteristics of biological nervous systems (plenty of densely interconnected simple unreliable computational units)
\longrightarrow computational principles of mental processes

Neural Networks As Formal Language Acceptors

a language $\boldsymbol{L} \subseteq \boldsymbol{\Sigma}^{*}$ over finite alphabet $\boldsymbol{\Sigma}$ represents a decision problem

The Computational Power of NNs - Integer Weights

depends on the information content of weight parameters:

1. integer weights: finite automaton (FA) (Minsky, 1967)
$\boldsymbol{w}_{j i} \in \mathbb{Z} \longrightarrow$ excitations $\boldsymbol{\xi}_{j} \in \mathbb{Z} \longrightarrow$ states $\boldsymbol{y}_{j} \in\{0,1\}$ $\longrightarrow \quad 2^{s}$ global NN states $\mathrm{y} \in\{0,1\}^{s} \sim$ FA states
size-optimal implementations:

- $\Theta(\sqrt{m})$ neurons for a deterministic FA with \boldsymbol{m} states (Indyk, 1995; Horne, Hush, 1995)
- $\Theta(\boldsymbol{m})$ neurons for a regular expression of length \boldsymbol{m} (Šíma, Wiedermann 1998)

The Computational Power of NNs - Rational Weights

depends on the information content of weight parameters:
2. rational weights: Turing machine (Siegelmann, Sontag, 1995)

- $\boldsymbol{w}_{j i} \in \mathbb{Q}$ are fractions $\frac{p}{q}$ where $\boldsymbol{p} \in \mathbb{Z}, \boldsymbol{q} \in \mathbb{N}$
- NNs compute algorithmically solvable problems
- real-time simulation of TMs \longrightarrow polynomial time \equiv complexity class P
- a universal NN with 25 neurons (Indyk, 1995)
\longrightarrow the halting problem of whether a small NN terminates its computation, is algorithmically undecidable

The Computational Power of NNs - Real Weights

depends on the information content of weight parameters:
3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994)

- $\boldsymbol{w}_{j i} \in \mathbb{R}$, e.g. irrational weights $\sqrt{2}, \pi$
- infinite precision of ONE real weight (vs. an algorithm has a finite description) can encode any function f : $0 . \operatorname{code}\left(C_{1}\right) \operatorname{code}\left(C_{2}\right) \operatorname{code}\left(C_{3}\right) \ldots$ (code $\left(\boldsymbol{C}_{n}\right)$ encodes the circuit $\boldsymbol{C}_{\boldsymbol{n}}$ computing \boldsymbol{f} for inputs of length \boldsymbol{n})
\longrightarrow exponential time \equiv any I/O mapping
(including algorithmically undecidable problems)
- polynomial time \equiv nonuniform complexity class $\mathrm{P} /$ poly:
problems solvable by a polynomial-time (P) algorithm that for input $\boldsymbol{x} \in \boldsymbol{\Sigma}^{*}$ of length $n=|\boldsymbol{x}|$, receives an external advise: a string $\boldsymbol{s}(\boldsymbol{n}) \in \Sigma^{*}$ of polynomial length $|s(n)|=\boldsymbol{O}\left(\boldsymbol{n}^{c}\right)$ (poly), which depends only on \boldsymbol{n}

The Computational Power of NNs - A Summary

depends on the information content of weight parameters:

1. integer weights: finite automaton
2. rational weights: Turing machine polynomial time \equiv complexity class P
3. arbitrary real weights: "super-Turing" computation polynomial time \equiv nonuniform complexity class $\mathrm{P} /$ poly exponential time \equiv any I / O mapping

Neural Networks Between Rational and Real Weights

1. integer weights: finite automaton
2. rational weights: Turing machine polynomial time $\equiv \mathbf{P}$
polynomial time \& increasing Kolmogorov complexity of real weights: the length of the shortest program (in a fixed programming language) that produces a real weight,
e.g. $K(" \sqrt{2} ")=O(1), K($ "random strings" $)=n+O(1)$
\equiv a proper hierarchy of nonuniform complexity classes between P and $P /$ poly (Balcázar, Gavaldà, Siegelmann, 1997)
3. arbitrary real weights: "super-Turing" computation polynomial time $\equiv \mathrm{P} /$ poly

Neural Networks Between Integer and Rational Weights

from integer to rational weights
α ANN $=$ a binary-state NN with integer weights
$+\alpha$ extra analog-state neurons with rational weights

Neural Networks with Increasing Analogicity

from binary $(\{0,1\})$ to analog $([0,1])$ states of neurons
α ANN $=$ a binary-state NN with integer weights
$+\alpha$ extra analog-state neurons with rational weights
$\boldsymbol{y}_{j}^{(t+1)}=\sigma_{j}\left(\sum_{i=0}^{s} \boldsymbol{w}_{j i} \boldsymbol{y}_{i}^{(t)}\right) \quad j=1, \ldots, s \quad$ updating the states of neurons
$\sigma_{j}(\xi)=\left\{\begin{array}{lll}\sigma(\xi)=\left\{\begin{array}{lll}\mathbf{1} & \text { for } \boldsymbol{\xi} \geq \mathbf{1} \\ \boldsymbol{\xi} & \text { for } 0<\boldsymbol{\xi}<\mathbf{1} \\ \mathbf{0} & \text { for } \boldsymbol{\xi} \leq \mathbf{0}\end{array}\right. & j=1, \ldots, \alpha & \text { saturated-linear } \\ \boldsymbol{H}(\xi)=\left\{\begin{array}{lll}\mathbf{1} & \text { for } \boldsymbol{\xi} \geq 0 \\ \mathbf{0} & \text { for } \boldsymbol{\xi}<0 & j=\alpha+1, \ldots, s\end{array}\right. & \text { Heaviside } & \text { function }\end{array}\right.$

The Chomsky Formal Language Hierarchy

from finite automata to Turing machines

The Analog Neuron Hierarchy (ANH)

the computational power of α ANNs increases with the number α of extra analog-state neurons:

(the notation α ANN is also used for the class of languages accepted by α ANNs)

The Analog Neuron Hierarchy as a Chomsky-Like NN Hierarchy

the separation of the first two levels 0ANN $\stackrel{L_{1}}{\varsubsetneqq} 1$ ANN $\stackrel{L_{\#}}{\neq} 2$ ANN :

- LBA simulates 1 ANN: 1ANN \subset CSL (Type 1)
- 1 ANN accepts a non-CFL $\boldsymbol{L}_{\mathbf{1}}$: 1ANN $\not \subset \mathrm{CFL}$ (Type 2)

$$
L_{1}=\left\{x_{1} \ldots x_{n} \in\{0,1\}^{*} \left\lvert\, \sum_{k=1}^{n} x_{n-k+1}\left(\frac{3}{2}\right)^{-k}<1\right.\right\} \in 1 \mathrm{ANN} \backslash \mathrm{CFL}
$$

- 2ANN simulates deterministic PDA (DPDA \equiv DCFL): DCFL $\subset 2 A N N$
- 1ANN cannot count up to n (even with real weights): DCFL $\not \subset 1 A N N$

$$
L_{\#}=\left\{0^{n} 1^{n} \mid n \geq 1\right\} \in \mathrm{DCFL} \backslash 1 \mathrm{ANN}
$$

the collapse to the third level 3 ANN $=4 A N N=\ldots=$ RE \equiv TM (Type 0):

- 3ANN simulates TM

The Chomsky Hierarchy vs. the Analog Neuron Hierarchy

the separation of some classes is still open, e.g. 2 ANN $\stackrel{?}{\ddagger} 3$ ANN, 1 ANN \cap CFL $\stackrel{?}{=}$ REG the intermediate levels of the ANH and the Chomsky hierarchy seem incomparable

Positional Numeral Systems With Non-Integer Base

generalization of decimal expansions, which uses also non-integer numbers as the base and digits of a positional numeral system:

- $\boldsymbol{\beta} \in \mathbb{R}$ is a real base (radix) such that $|\boldsymbol{\beta}|>\mathbf{1}$
- $A \subset \mathbb{R}$ is a finite set of real digits such that $|A| \geq 2$
a finite $\boldsymbol{\beta}$-expansion represents a number \boldsymbol{x} in base $\boldsymbol{\beta}$ with digits $\boldsymbol{a}_{\boldsymbol{i}}$ from \boldsymbol{A} as
$x=\left(0 . a_{1} \ldots a_{n}\right)_{\beta}=a_{1} \beta^{-1}+a_{2} \beta^{-2}+a_{3} \beta^{-3}+\cdots+a_{n} \beta^{-n}=\sum_{k=1}^{n} a_{k} \beta^{-k}$

Examples:

1. $\beta=10, A=\{0,1,2, \ldots, 9\}$
decimal expansion of $\frac{3}{4}=(0.75)_{10}=7 \cdot 10^{-1}+5 \cdot 10^{-2}$
2. $\beta=2, A=\{0,1\}$
binary expansion of $\frac{3}{4}=(0.11)_{2}=1 \cdot 2^{-1}+1 \cdot 2^{-2}$
3. $\beta=\frac{5}{2}, \quad A=\left\{\frac{5}{16}, \frac{7}{4}\right\}$
$\frac{5}{2}$-expansion of $\frac{3}{4}=\left(0 \cdot \frac{7}{4} \frac{5}{16}\right)_{\frac{5}{2}}=\frac{7}{4} \cdot\left(\frac{5}{2}\right)^{-1}+\frac{5}{16} \cdot\left(\frac{5}{2}\right)^{-2}$

(Infinite) $\boldsymbol{\beta}$-Expansions

introduced by Rényi (1957) and studied by Parry (1960); still an active research field with applications in coding theory, algorithmic complexity of arithmetic operations, models of quasicrystals, etc. (e.g. a research group at FNSPE CTU, Prague)
an infinite $\boldsymbol{\beta}$-expansion of number \boldsymbol{x} over digits $\boldsymbol{a}_{\boldsymbol{i}}$ from \boldsymbol{A} :

$$
x=\left(0 . a_{1} a_{2} a_{3} \cdots\right)_{\beta}=a_{1} \beta^{-1}+a_{2} \beta^{-2}+a_{3} \beta^{-3}+\cdots=\sum_{k=1}^{\infty} a_{k} \beta^{-k}
$$

which is a convergent power series due to $|\beta|>1$

Example: $\beta=\frac{3}{2}, A=\{0,1\}$
$\frac{3}{2}$-expansion of $\frac{16}{45}:(0.0001010101010 \ldots)_{\frac{3}{2}}=(0.000 \overline{10})_{\frac{3}{2}}$
$=\left(\frac{3}{2}\right)^{-4}+\left(\frac{3}{2}\right)^{-6}+\left(\frac{3}{2}\right)^{-8}+\cdots=\sum_{k=2}^{\infty}\left(\frac{3}{2}\right)^{-2 k}=\sum_{k=2}^{\infty}\left(\frac{4}{9}\right)^{k}=\frac{16}{45}$
(a geometric series)

Existence of $\boldsymbol{\beta}$-Expansions

Let $\beta>1$ and $A=\left\{\alpha_{1}, \ldots, \alpha_{p}\right\}$ where $\alpha_{1}<\alpha_{1}<\cdots<\alpha_{p}$.
Then every number in the interval $\left[\frac{\alpha_{1}}{\beta-1}, \frac{\alpha_{p}}{\beta-1}\right]$ has a $\boldsymbol{\beta}$-expansion

$$
\text { iff } \max _{1<j \leq p}\left(\alpha_{j}-\alpha_{j-1}\right) \leq \frac{\alpha_{p}-\alpha_{1}}{\beta-1} . \quad \text { (Pendicini, 2005) }
$$

Examples:

1. $\beta>1, A=\{0,1, \ldots,\lceil\beta\rceil-1\}$ containing the standard integer digits every number in the interval $D_{\beta}=\left(0, \frac{\lceil\beta\rceil-1}{\beta-1}\right)\left(\right.$ even $\left.\overline{\boldsymbol{D}_{\boldsymbol{\beta}}}\right)$ has a $\boldsymbol{\beta}$-expansion, note that $(0,1) \subseteq \boldsymbol{D}_{\beta}, \quad$ e.g. $\boldsymbol{D}_{\beta}=(0,1)$ for integer base $\boldsymbol{\beta}$
2. $\beta=3, A=\{0,2\} \quad$ (i.e. $2 \not \subset \frac{2-0}{3-1}=1$)
any number from the complement of the Cantor ternary set

$$
\bigcup_{n=0}^{\infty} \bigcup_{k=0}^{3^{n}-1}\left(\frac{3 k+1}{3^{n}+1}, \frac{3 k+2}{3^{n}+1}\right) \subset(0,1) \text { has no } 3 \text {-expansion }
$$

(including iteratively the open middle third from a set of line segments, starting with $(0,1))$

Uniqueness of $\boldsymbol{\beta}$-Expansions for Integer Base $\boldsymbol{\beta}$

for an integer base $\beta>1$ and the standard digits, $A=\{0,1, \ldots, \beta-1\}$,
almost any number from the interval $\boldsymbol{D}_{\boldsymbol{\beta}}=(0,1)$ has a unique β-expansion,
e.g. the unique decimal expansion of $\frac{\sqrt{2}}{2}=(0.70710678118 \ldots)_{10}$,
except for numbers with a finite $\boldsymbol{\beta}$-expansion, which have two distinct (infinite) $\boldsymbol{\beta}$-expansions,
e.g. two (infinite) decimal expansions of

$$
\frac{3}{4}=(0.75)_{10}=(0.75000 \ldots)_{10}=(0.74999 \ldots)_{10}
$$

Uniqueness of $\boldsymbol{\beta}$-Expansions for Non-Integer Base $\boldsymbol{\beta}$

for a non-integer base, almost every number has infinitely (uncountably) many distinct $\boldsymbol{\beta}$-expansions (Sidorov, 2003)
Example: $1<\beta<2, \quad A=\{0,1\}, \quad D_{\beta}=\left(0, \frac{1}{\beta-1}\right)$

- $1<\beta<\varphi$ where $\varphi=(1+\sqrt{5}) / 2 \approx 1.618034$ is the golden ratio: every $\boldsymbol{x} \in \boldsymbol{D}_{\boldsymbol{\beta}}$ has uncountably many distinct $\boldsymbol{\beta}$-expansions (Erdös et al.,1990)
- $\varphi \leq \beta<q$ where $\boldsymbol{q} \approx 1.787232$ is the Komornik-Loreti constant (i.e. $\sum_{k=1}^{\infty} \boldsymbol{t}_{\boldsymbol{k}} \boldsymbol{q}^{-\boldsymbol{k}}=1$ where $\boldsymbol{t}_{\boldsymbol{k}}=\operatorname{parity}(\operatorname{bin}(\boldsymbol{k}))$ is the Thue-Morse sequence): countably many $\boldsymbol{x} \in \boldsymbol{D}_{\boldsymbol{\beta}}$ have unique $\boldsymbol{\beta}$-expansions (Glendinning, Sidorov, 2001), e.g. the unique $\frac{5}{3}$-expansions of $\frac{9}{16}\left(\frac{3}{5}\right)^{k-1}=\left(0 \cdot(0)^{k} \overline{10}\right)_{\frac{5}{3}}$ for $k \geq 0$ vs. countably many distinct φ-expansions of $\mathbf{1}=\left(\mathbf{0} \cdot(\mathbf{1 0})^{k} \mathbf{0} \overline{\mathbf{1}}\right)_{\varphi}$ for $k \geq 0$
- $q \leq \beta<2$: uncountably many $\boldsymbol{x} \in \boldsymbol{D}_{\boldsymbol{\beta}}$ have unique $\boldsymbol{\beta}$-expansions partially generalizes to $\beta>2$ and arbitrary A : two critical bases $1<\varphi_{A} \leq \boldsymbol{q}_{\boldsymbol{A}}$ such that the number of unique β-expansions is finite if $1<\beta<\varphi_{A}$, countable if $\boldsymbol{\varphi}_{\boldsymbol{A}}<\boldsymbol{\beta}<\boldsymbol{q}_{\boldsymbol{A}}$, and uncountable if $\boldsymbol{\beta}>\boldsymbol{q}_{\boldsymbol{A}}$ (Komornik, Pedicini,2016) 31/54

Eventually Periodic β-Expansions

$$
\left(0 . a_{1} a_{2} \ldots a_{k_{1}} \overline{a_{k_{1}+1} a_{k_{1}+2} \ldots a_{k_{2}}}\right)_{\beta}=\left(0 . a_{1} a_{2} \ldots a_{k_{1}}\right)_{\beta}+\beta^{-k_{1}} \varrho
$$

where

- $a_{1} a_{2} \ldots a_{k_{1}} \in A^{k_{1}}$ is a preperiodic part of length $\boldsymbol{k}_{1} \geq 0$ (purely periodic $\boldsymbol{\beta}$-expansions for $\boldsymbol{k}_{1}=\mathbf{0}$)
- $\boldsymbol{a}_{k_{1}+1} \boldsymbol{a}_{k_{1}+2} \ldots \boldsymbol{a}_{k_{2}} \in \boldsymbol{A}^{\boldsymbol{m}}$ is a repetend of $\boldsymbol{m}=\boldsymbol{k}_{2}-\boldsymbol{k}_{1}>\mathbf{0}$ repeating digits
$\bullet \varrho=\left(0 . \overline{\boldsymbol{a}_{k_{1}+1} \boldsymbol{a}_{k_{1}+2} \ldots \boldsymbol{a}_{k_{2}}}\right)_{\beta}=\frac{\sum_{k=1}^{m} \boldsymbol{a}_{k_{1}+\boldsymbol{k}} \boldsymbol{\beta}^{-k}}{1-\boldsymbol{\beta}^{-m}} \quad$ is a periodic point
Example: $\quad \beta=\frac{3}{2}, \quad A=\{0,1\}$
$\frac{22}{15}=(0.1 \overline{10})_{\frac{3}{2}}=(0.1)_{\frac{3}{2}}+\left(\frac{3}{2}\right)^{-1} \cdot \varrho=\left(\frac{3}{2}\right)^{-1}+\left(\frac{3}{2}\right)^{-1} \cdot(0 . \overline{10})_{\frac{3}{2}}$
where $\varrho=(0 \cdot \overline{\mathbf{1 0}})_{\frac{3}{2}}=\sum_{k=0}^{\infty}\left(\frac{3}{2}\right)^{-2 k-1}=\frac{1 \cdot\left(\frac{3}{2}\right)^{-1}+0 \cdot\left(\frac{3}{2}\right)^{-2}}{1-\left(\frac{3}{2}\right)^{-2}}=\frac{6}{5}$

Eventually Quasi-Periodic $\boldsymbol{\beta}$-Expansions

$$
\begin{gathered}
\left(0 . a_{1} \ldots a_{k_{1}} a_{k_{1}+1} \ldots a_{k_{2}} a_{k_{2}+1} \ldots a_{k_{3}} a_{k_{3}+1} \ldots a_{k_{4}} \ldots\right)_{\beta} \\
=\left(0 . a_{1} a_{2} \ldots a_{k_{1}}\right)_{\beta}+\beta^{-k_{1}} \varrho
\end{gathered}
$$

where

- $a_{1} a_{2} \ldots a_{k_{1}} \in A^{k_{1}}$ is a preperiodic part of length (purely quasi-periodic β-expansions for $\boldsymbol{k}_{1}=0$)
- $\boldsymbol{a}_{k_{i}+1} \ldots \boldsymbol{a}_{k_{i+1}} \in \boldsymbol{A}^{m_{i}}$ is a quasi-repetend of length $\boldsymbol{m}_{i}=\boldsymbol{k}_{i+1}-\boldsymbol{k}_{i}>\mathbf{0}$
- $\varrho=\left(0 . \overline{\boldsymbol{a}_{k_{i}+1} \ldots \boldsymbol{a}_{k_{i+1}}}\right)_{\beta}=\frac{\sum_{k=1}^{m_{i}} \boldsymbol{a}_{\boldsymbol{k}_{i}+\boldsymbol{k}} \boldsymbol{\beta}^{-k}}{1-\boldsymbol{\beta}^{-m_{i}}}$ is the same periodic point for every $i \geq 1$
\longrightarrow quasi-repetends can be interchanged with each other arbitrarily
- a generalization of eventually periodic $\boldsymbol{\beta}$-expansions

$$
\boldsymbol{a}_{k_{1}+1} \ldots \boldsymbol{a}_{k_{2}}=\boldsymbol{a}_{k_{2}+1} \ldots \boldsymbol{a}_{k_{3}}=\boldsymbol{a}_{k_{3}+1} \ldots \boldsymbol{a}_{k_{4}}=\ldots
$$

Example: $\beta \approx 1.220744$ satisfying $\beta^{4}-\beta-1=0(\star), A=\{0,1\}$

$$
1=(0.0001010001000010 \ldots)_{\beta}=(0.00)_{\beta}+\beta^{-2} \varrho
$$

where 00 is a preperiodic part and 010,1000 are two quasi-repetends with same periodic point $\varrho=(0 . \overline{010})_{\beta}=\frac{\beta^{-2}}{1-\beta^{-3}} \stackrel{\star}{=} \beta^{2} \stackrel{\star}{=} \frac{\beta^{-1}}{1-\beta^{-4}}=(0 . \overline{1000})_{\beta}^{33 / 54} ⿵$

An Example of Repetends With Unbounded Length

base $\beta=\frac{5}{2}, \quad$ digits $A=\left\{0, \frac{1}{2}, \frac{7}{4}\right\}$
for every $n \geq 0$, the quasi-repetends $\frac{7}{4} \underbrace{\frac{1}{2} \cdots \frac{1}{2}}_{n \text { times }} 0 \in A^{n+2}$ have the same periodic point $\varrho=\frac{3}{4}$:
$(0 \cdot \frac{\overline{7} \frac{1}{4} \underbrace{\frac{1}{2} \cdots \frac{1}{2}}_{n \text { times }} 0}{0})_{\frac{5}{2}}=\frac{\frac{7}{4} \cdot\left(\frac{5}{2}\right)^{-1}+\sum_{i=2}^{n+1} \frac{1}{2} \cdot\left(\frac{5}{2}\right)^{-i}+0 \cdot\left(\frac{5}{2}\right)^{-n-2}}{1-\left(\frac{5}{2}\right)^{-n-2}}=\frac{3}{4}$
$\longrightarrow \frac{3}{4}$ has uncountably many distinct quasi-periodic $\frac{5}{2}$-expansions:
$\frac{3}{4}=(0 \cdot \frac{7}{4} \underbrace{\frac{1}{2} \cdots \frac{1}{2}}_{n_{1} \text { times }} 0 \frac{7}{4} \underbrace{\frac{1}{2} \cdots \frac{1}{2}}_{n_{2} \text { times }} 00 \frac{7}{4} \underbrace{\frac{1}{2} \cdots \frac{1}{2}}_{n_{3} \text { times }} 00_{n_{4} \text { times }}^{\frac{7}{4}} \underbrace{\frac{1}{2} \cdots \frac{1}{2}}_{\frac{5}{2}} 00 \cdots)$
where $n_{1}, n_{2}, n_{3}, \ldots$ is any infinite sequence of nonnegative integers
(there are examples of exponentially many quasi-repetends in terms of their length) 34/54

Eventually Quasi-Periodic $\boldsymbol{\beta}$-Expansions and Tail Sequences

$\left(r_{n}\right)_{n=0}^{\infty}$ is a tail sequence of β-expansion $\varepsilon=\left(0 . a_{1} a_{2} a_{3} \ldots\right)_{\beta}$ if

$$
r_{n}=\left(0 . a_{n+1} a_{n+2} \ldots\right)_{\beta}=\sum_{k=1}^{\infty} a_{n+k} \beta^{-k} \quad \text { for every } n \geq 0
$$

denote by $\boldsymbol{R}_{\varepsilon}=\left\{r_{n} \mid \boldsymbol{n} \geq 0\right\}$ its range
Lemma. If $\boldsymbol{R}_{\varepsilon}$ is finite (i.e. the tail sequence contains a constant infinite subsequence), then the $\boldsymbol{\beta}$-expansion $\boldsymbol{\varepsilon}$ is eventually quasi-periodic.

Theorem. Let $\boldsymbol{\beta}$ be a real algebraic number $(|\boldsymbol{\beta}|>1)$ whose all conjugates $\boldsymbol{\beta}^{\prime}$ (i.e. the other roots of minimal polynomial of $\boldsymbol{\beta}$) meet $\left|\boldsymbol{\beta}^{\prime}\right| \neq \mathbf{1}$. Then a $\boldsymbol{\beta}$-expansion $\boldsymbol{\varepsilon}$ is eventually quasi-periodic iff $\boldsymbol{R}_{\boldsymbol{\varepsilon}}$ is finite.

Theorem. Let $\boldsymbol{\beta}$ be a real algebraic number $(|\boldsymbol{\beta}|>1)$ whose conjugate $\boldsymbol{\beta}^{\prime}$ meets $\left|\boldsymbol{\beta}^{\prime}\right|=\mathbf{1}$. Then there exists a finite set $\boldsymbol{A} \subset \mathbb{Z}$ of integer digits and a quasi-periodic $\boldsymbol{\beta}$-expansion $\boldsymbol{\varepsilon}$ over \boldsymbol{A} of the number $\mathbf{0}$ that has infinite $\boldsymbol{R}_{\boldsymbol{\varepsilon}}$. (solves an important open problem in algebraic number theory)

Quasi-Periodic Numbers

a real number $\boldsymbol{x} \in \mathbb{R}$ is $\boldsymbol{\beta}$-quasi-periodic within \boldsymbol{A} if every infinite $\boldsymbol{\beta}$-expansion of \boldsymbol{x} over \boldsymbol{A}, is eventually quasi-periodic

Examples:

- \boldsymbol{x} with no $\boldsymbol{\beta}$-expansion at all, is formally quasi-periodic (e.g. any number from the complement of the Cantor ternary set is 3 -quasi-periodic within $A=\{0,2\}$)
- $\boldsymbol{x}=\frac{3}{4}$ is $\frac{5}{2}$-quasi-periodic within $A=\left\{0, \frac{1}{2}, \frac{7}{4}\right\}$:
all the $\frac{5}{2}$-expansions of $\frac{3}{4}$ using the digits from \boldsymbol{A}, are eventually quasi-periodic
- $x=\frac{40}{57}=(0.0 \overline{011})_{\frac{3}{2}}$ is not $\frac{3}{2}$-quasi-periodic within $A=\{0,1\}$: the greedy (i.e. lexicographically maximal) $\frac{3}{2}$-expansion ($\left.0.100000001 \ldots\right)_{\frac{3}{2}}$ of $\frac{40}{57}$ is not eventually quasi-periodic

Theorem. Let $\boldsymbol{\beta}>\mathbf{1}$ be a Pisot number (i.e. a real algebraic integer whose all conjugates $\boldsymbol{\beta}^{\prime}$ meet $\left.\left|\boldsymbol{\beta}^{\prime}\right|<\mathbf{1}\right)$ and $\boldsymbol{A} \subset \mathbb{Q}(\boldsymbol{\beta})$. Then any $\boldsymbol{x} \in \mathbb{Q}(\boldsymbol{\beta})$ is $\boldsymbol{\beta}$-quasi-periodic within \boldsymbol{A}.

- $\boldsymbol{x}=1$ is β-quasi-periodic within $\boldsymbol{A}=\{0,1\}$ for the plastic constant $\beta \approx 1.324718$ (i.e. the minimal Pisot number satisfying $\beta^{3}-\beta-1=0$)

Quasi-Periodic 1ANN (QP-1ANN): for a 1ANN, denote:

- $\beta=1 / w_{11}$ is the base $(|\beta|>1)$ where
\boldsymbol{w}_{11} is the self-loop weight of the one analog-state neuron $\left(0<\left|\boldsymbol{w}_{11}\right|<1\right)$
- $A=\left\{\left.\sum_{i=0 ; i \neq 1}^{s} \frac{w_{1 i}}{w_{11}} y_{i} \right\rvert\, y_{2}, \ldots, y_{s} \in\{0,1\}\right\} \cup\{0, \beta\}$ are the digits
$\bullet X=\left\{\left.\sum_{i=0 ; i \neq 1}^{s} \frac{w_{j i}}{w_{j 1}} y_{i} \right\rvert\, j \neq 1, w_{j 1} \neq 0, y_{2}, \ldots, y_{s} \in\{0,1\}\right\} \cup\{0,1\}$ we say that 1ANN (even with real weights) is quasi-periodic and denote QP-1ANN if every $\boldsymbol{x} \in \boldsymbol{X}$ is $\boldsymbol{\beta}$-quasi-periodic within \boldsymbol{A}
Example: 1ANN with rational weights + the self-loop weight $w_{11}=1 / \beta$ where β is an integer or the plastic constant or the golden ratio

Theorem. QP-1ANN $=$ REG $=$ OANN \equiv FA (Type 3)

\mathcal{C}-Hard Problems

\mathcal{C} is a complexity class of decision problems (i.e. formal languages)
$\boldsymbol{A} \leq \boldsymbol{B}$ is a reduction transforming a problem \boldsymbol{A} to a problem \boldsymbol{B} (a preorder), which is assumed not to have a higher computational complexity than \mathcal{C}
\boldsymbol{H} is a \mathcal{C}-hard problem (under the reduction \leq) if for every $\boldsymbol{A} \in \mathcal{C}, \boldsymbol{A} \leq \boldsymbol{H}$

- If a \mathcal{C}-hard problem has a (computationally) "easy" solution, then each problem in \mathcal{C} has an "easy" solution (via the reduction).
- If a \mathcal{C}-hard problem \boldsymbol{H} is in \mathcal{C} (a so-called \mathcal{C}-complete problem), then \boldsymbol{H} belongs to the hardest problems in the class \mathcal{C}.

The Most Prominent Example: NP-Hard Problems

$\mathcal{C}=\mathrm{NP}$ is the class of decision problems solvable in polynomial time by a nondeterministic Turing machine
$\boldsymbol{A} \leq_{m}^{P} \boldsymbol{B}$ is a polynomial-time many-one reduction (Karp reduction) from \boldsymbol{A} to \boldsymbol{B} the satisfiability problem SAT is NP-hard: for every $\boldsymbol{A} \in \mathrm{NP}, \boldsymbol{A} \leq_{m}^{P}$ SAT

- If an NP-hard problem is polynomial-time solvable, then each NP problem would be solved in polynomial time (i.e. $P=N P$)
- The NP-hard problem SAT is in NP (i.e. SAT is NP-complete), that is, SAT belongs to the hardest problems (NPC) in the class NP.

\mathcal{C}-Simple Problems

a conceptual counterpart to \mathcal{C}-hard problems:
S is a \mathcal{C}-simple problem (under the reduction \leq) if for every $A \in \mathcal{C}, S \leq A$

- If a \mathcal{C}-simple problem S proves to be not "easy",
e.g. \boldsymbol{S} is not solvable by a machine \boldsymbol{M} that can compute the reduction \leq, then all problems in \mathcal{C} are not "easy", i.e. \mathcal{C} cannot be solved by \boldsymbol{M}.
\longrightarrow New Proof Technique: a lower bound known for one \mathcal{C}-simple problem S extends to the whole class of problems \mathcal{C}
- If a \mathcal{C}-simple problem \boldsymbol{S} is in \mathcal{C}, then \boldsymbol{S} is the simplest problem in the class \mathcal{C}.

A Trivial Example: SAT is simple for the class of NP-hard problems under \leq_{m}^{P}

A Nontrivial Example of a \mathcal{C}-Simple Problem

$\mathcal{C}=$ DCFL' $^{\prime}=$ DCFL \backslash REG is the class of non-regular deterministic context-free languages
$\boldsymbol{L}_{1} \leq_{t t}^{A} \boldsymbol{L}_{2}$ is a truth-table reduction (a stronger Turing reduction) from \boldsymbol{L}_{1} to $\boldsymbol{L}_{\mathbf{2}}$ implemented by a Mealy machine with the oracle \boldsymbol{L}_{2}

The Technical Result:
the language $L_{\#}=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$ over the binary alphabet $\{0,1\}$ is
DCFL'-simple under the reduction $\leq_{t t}^{A}$: for every $L \in$ DCFL', $^{\prime} L_{\#} \leq_{t t}^{A} L$
$\longrightarrow \boldsymbol{L}_{\#} \in$ DCFL' is the simplest non-regular deterministic context-free languages cf. the hardest context-free language \boldsymbol{L}_{0} due to S. Greibach (1973) is CFL-hard

Mealy Machines

\mathcal{A} is a Mealy Machine with an input/output alphabet Σ / Δ i.e. a deterministic finite automaton with an output tape:

Mealy Machines

\mathcal{A} is a Mealy Machine with an input/output alphabet $\Sigma / \boldsymbol{\Delta}$
i.e. a deterministic finite automaton with an output tape:

current input symbol $\boldsymbol{a} \in \Sigma$
state transition
from \boldsymbol{q}_{1} to \boldsymbol{q}_{2}
output string $u \in \Delta^{*}$

Mealy Machines

\mathcal{A} is a Mealy Machine with an input/output alphabet $\Sigma / \boldsymbol{\Delta}$ i.e. a deterministic finite automaton with an output tape:

input $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$
"final" state \boldsymbol{q}

$$
\text { output } \mathcal{A}(w) \in \Delta^{*}
$$

\longrightarrow a deterministic finite-state transducer: $w \in \Sigma^{*} \longmapsto \mathcal{A}(w) \in \Delta^{*}$

The Truth-Table Reduction by Oracle Mealy Machines

$\mathcal{A}^{L_{2}}$ is a Mealy Machine \mathcal{A} with an oracle $L_{2} \subseteq \Delta^{*}$:

for each state \boldsymbol{q} of \mathcal{A} :

- $\boldsymbol{r}_{\boldsymbol{q}}$ suffixes $s_{q, 1}, \ldots, s_{q, r_{q}} \in \Delta^{*}$
- truth table $T_{q}:\{0,1\}^{r_{q}} \rightarrow\{0,1\}$ with $\boldsymbol{r}_{\boldsymbol{q}}$ variables

$$
r_{q} \text { queries: } \stackrel{\stackrel{?}{\in}}{\in} L_{2} \quad \text { for every } i=1, \ldots, r_{q}
$$

$\boldsymbol{w} \in \Sigma^{*}$ is accepted by $\mathcal{A}^{L_{2}}$ iff \boldsymbol{w} brings \mathcal{A} to the state \boldsymbol{q} such that
$\boldsymbol{T}_{q}\left(\mathcal{A}(\boldsymbol{w}) \cdot s_{q, 1} \stackrel{?}{\in} L_{2}, \mathcal{A}(\boldsymbol{w}) \cdot s_{q, 2} \stackrel{?}{\in} L_{2}, \ldots, \mathcal{A}(\boldsymbol{w}) \cdot s_{q, r_{q}} \stackrel{?}{\in} L_{2}\right)=1$
$\boldsymbol{L}_{1} \leq_{t t}^{A} \boldsymbol{L}_{2}: \quad \boldsymbol{L}_{1} \subseteq \Sigma^{*}$ is truth-table reducible to $\boldsymbol{L}_{2} \subseteq \boldsymbol{\Delta}^{*} \quad$ iff
$L_{1}=\mathcal{L}\left(\mathcal{A}^{L_{2}}\right)$ is accepted by some Mealy machine $\mathcal{A}^{L_{2}}$ with oracle \boldsymbol{L}_{2}
Proposition: The relation $\leq_{t t}^{A}$ is a preorder.

Why $L_{\#}=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$ Is the Simplest DCFL' language?

any reduced context-free grammar \boldsymbol{G} generating a non-regular language $L \subseteq \Delta^{*}$ is self-embedding: there is a self-embedding nonterminal \boldsymbol{A} admitting the derivation

$$
A \Rightarrow^{*} x A y \text { for some non-empty strings } x, y \in \Delta^{+} \text {(Chomsky, 1959) }
$$

G is reduced $\longrightarrow \boldsymbol{S} \Rightarrow^{*} \boldsymbol{v} \boldsymbol{A} \boldsymbol{z}$ and $\boldsymbol{A} \Rightarrow^{*} \boldsymbol{w}$ for some $\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{z} \in \boldsymbol{\Delta}^{*}$

$$
\begin{equation*}
\longrightarrow \quad S \Rightarrow^{*} \boldsymbol{v} \boldsymbol{x}^{m} \boldsymbol{w} \boldsymbol{y}^{m} \boldsymbol{z} \in L \text { for every } m \geq 0 \tag{1}
\end{equation*}
$$

??? a conceivable (one-one) reduction from $\boldsymbol{L}_{\#}$ to \boldsymbol{L} : for every $\boldsymbol{m}, \boldsymbol{n} \geq \mathbf{1}$,

$$
0^{m} 1^{n} \in\{0,1\}^{*} \longmapsto v x^{m} w y^{n} z \in \Delta^{*}
$$

(the inputs outside $\mathbf{0}^{+} \mathbf{1}^{+}$are mapped onto some fixed string outside \boldsymbol{L})

$$
\text { since } 0^{m} 1^{n} \in \boldsymbol{L}_{\#} \text { implies } \boldsymbol{v} \boldsymbol{x}^{m} \boldsymbol{w} \boldsymbol{y}^{n} \boldsymbol{z} \in \boldsymbol{L} \text { by (1) }
$$

!!! however, the opposite implication may not be true:

Why $L_{\#}$ Is the Simplest DCFL' language? (cont.)

!!! however, the opposite implication may not be true:
for the DCFL' language $L_{1}=\left\{a^{m} b^{n} \mid 1 \leq m \leq n\right\}$ over $\Delta=\{a, b\}$
there are no words $v, x, w, y, z \in \Delta^{*}$ such that for every $m, n \geq 1$,

$$
\boldsymbol{v} \boldsymbol{x}^{m} \boldsymbol{w} \boldsymbol{y}^{n} \boldsymbol{z} \in L_{1} \text { would ensure } \boldsymbol{m}=\boldsymbol{n}
$$

nevertheless, already two inputs $a^{m} b^{n-1} \stackrel{?}{\in} L_{1}$ and $a^{m} b^{n} \stackrel{?}{\in} L_{1}$ decides $m \stackrel{?}{=} n$
\longrightarrow the truth-table reduction from $\boldsymbol{L}_{\#}$ to \boldsymbol{L}_{1} with two queries to the oracle \boldsymbol{L}_{1} :

$$
\begin{gathered}
0^{m} 1^{n} \in\{0,1\}^{*} \longmapsto v x^{m} w y^{n-1} z \in \Delta^{*}, \quad v x^{m} w y^{n} z \in \Delta^{*} \\
\text { where } x=a, \quad y=b, \quad v=w=\boldsymbol{z}=\varepsilon \text { is the empty string }
\end{gathered}
$$

satisfying $\quad 0^{m} 1^{n} \in L_{\#}$ iff $\left(v x^{m} w y^{n-1} z \notin L_{1}\right.$ and $\left.v x^{m} w y^{n} z \in L_{1}\right)$
this can be generalized to any DCFL' language L :

The Main Technical Result

Theorem: Let $\boldsymbol{L} \subseteq \Delta^{*}$ be a non-regular deterministic context-free language over an alphabet Δ. There exist non-empty words $v, x, w, y, z \in \Delta^{+}$and a language $L^{\prime} \in\{L, \bar{L}\}$ (where $\bar{L}=\Delta^{*} \backslash L$ is the complement of L) such that

1. either for all $\boldsymbol{m}, \boldsymbol{n} \geq 0, \boldsymbol{v} \boldsymbol{x}^{m} \boldsymbol{w} \boldsymbol{y}^{n} \boldsymbol{z} \in \boldsymbol{L}^{\prime}$ iff $\boldsymbol{m}=\boldsymbol{n}$,
2. or for all $\boldsymbol{m}, \boldsymbol{n} \geq \mathbf{0}, \boldsymbol{v} \boldsymbol{x}^{m} \boldsymbol{w} \boldsymbol{y}^{n} \boldsymbol{z} \in L^{\prime}$ iff $\boldsymbol{m} \leq \boldsymbol{n}$.
3.

$\boldsymbol{m} \boldsymbol{n}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	\cdots
$\mathbf{0}$	$\in L^{\prime}$	$\notin \boldsymbol{L}^{\prime}$	$\notin \boldsymbol{L}^{\prime}$	$\notin \boldsymbol{L}^{\prime}$	
$\mathbf{1}$	$\notin \boldsymbol{L}^{\prime}$	$\in \boldsymbol{L}^{\prime}$	$\notin \boldsymbol{L}^{\prime}$	$\notin \boldsymbol{L}^{\prime}$	
$\mathbf{2}$	$\notin \boldsymbol{L}^{\prime}$	$\notin \boldsymbol{L}^{\prime}$	$\in \boldsymbol{L}^{\prime}$	$\notin \boldsymbol{L}^{\prime}$	
$\mathbf{3}$	$\notin \boldsymbol{L}^{\prime}$	$\notin \boldsymbol{L}^{\prime}$	$\notin \boldsymbol{L}^{\prime}$	$\in L^{\prime}$	
\vdots					\ddots

$\boldsymbol{m} \boldsymbol{n}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	\ldots
$\mathbf{0}$	$\in \boldsymbol{L}^{\prime}$	$\in \boldsymbol{L}^{\prime}$	$\in \boldsymbol{L}^{\prime}$	$\in \boldsymbol{L}^{\prime}$	
$\mathbf{1}$	$\notin \boldsymbol{L}^{\prime}$	$\in \boldsymbol{L}^{\prime}$	$\in \boldsymbol{L}^{\prime}$	$\in \boldsymbol{L}^{\prime}$	
$\mathbf{2}$	$\notin \boldsymbol{L}^{\prime}$	$\notin \boldsymbol{L}^{\prime}$	$\in \boldsymbol{L}^{\prime}$	$\in \boldsymbol{L}^{\prime}$	
$\mathbf{3}$	$\notin \boldsymbol{L}^{\prime}$	$\notin \boldsymbol{L}^{\prime}$	$\notin \boldsymbol{L}^{\prime}$	$\in \boldsymbol{L}^{\prime}$	
\vdots					\ddots

In particular, for all $\boldsymbol{m} \geq \mathbf{0}$ and $\boldsymbol{n}>\mathbf{0}$,

$$
\left(v x^{m} w y^{n-1} z \notin L^{\prime} \text { and } v x^{m} w y^{n} z \in L^{\prime}\right) \quad \text { iff } \quad m=n
$$

The Truth-Table Reduction From $L_{\#}$ to Any DCFL' L

 implemented by a Mealy machine \mathcal{A}^{L} with two queries to the oracle L :For any DCFL' language $L \subseteq \Delta^{*}$, Theorem provides $v, x, w, y, z \in \Delta^{+}$ and $L^{\prime} \in\{L, \bar{L}\}$, say $L^{\prime}=L$ (analogously for $L^{\prime}=\bar{L}$), such that

$$
\begin{equation*}
\left(v x^{m} w y^{n-1} z \notin L \text { and } v x^{m} w y^{n} z \in L\right) \quad \text { iff } \quad m=n \tag{2}
\end{equation*}
$$

\mathcal{A}^{L} transforms the input $0^{m} 1^{n}$ to the output $\mathcal{A}\left(0^{m} 1^{n}\right)=v x^{m} w y^{n-1} \in \Delta^{+}$ (the inputs outside $\mathbf{0}^{+} \mathbf{1}^{+}$are rejected), while moving to the state \boldsymbol{q} with $r_{q}=2$ suffixes $s_{q, 1}, s_{q, 2}$ and the truth table $\boldsymbol{T}_{q}:\{0,1\}^{2} \longrightarrow\{0,1\}$

It follows from (2) that $\mathcal{L}\left(\mathcal{A}^{L}\right)=L_{\#}$, i.e. $L_{\#} \leq_{t t}^{A} L$.

Ideas of the Proof of the Theorem

(inspired by some ideas on regularity of pushdown processes due to Janar, 2020)

- any non-regular DCFL language $L \subseteq \Delta^{*}$ is accepted
by a deterministic pushdown automaton $\boldsymbol{\mathcal { M }}$ by the empty stack
- since $\boldsymbol{L} \notin$ REG, there is a computation by $\boldsymbol{\mathcal { M }}$, reaching configurations with an arbitrary large stack which is being erased afterwards, corresponding to $\boldsymbol{v}, \boldsymbol{x}, \boldsymbol{w}, \boldsymbol{y}, \boldsymbol{z} \in \Delta^{+}$such that $\boldsymbol{v} \boldsymbol{x}^{m} \boldsymbol{w} \boldsymbol{y}^{m} \boldsymbol{z} \in \boldsymbol{L}$ for all $\boldsymbol{m} \geq \mathbf{1}$
- in addition, we aim to ensure that for all $m \geq 0$ and $n>0$, $\left(v x^{m} w y^{n-1} z \notin L^{\prime}\right.$ and $\left.v x^{m} w y^{n} z \in L^{\prime}\right)$ iff $m=n$

Ideas of the Proof of the Theorem

(inspired by some ideas on regularity of pushdown processes due to Janar, 2020)

- any non-regular DCFL language $L \subseteq \Delta^{*}$ is accepted
by a deterministic pushdown automaton $\boldsymbol{\mathcal { M }}$ by the empty stack
- since $\boldsymbol{L} \notin$ REG, there is a computation by $\boldsymbol{\mathcal { M }}$, reaching configurations with an arbitrary large stack which is being erased afterwards, corresponding to $\boldsymbol{v}, \boldsymbol{x}, \boldsymbol{w}, \boldsymbol{y}, \boldsymbol{z} \in \boldsymbol{\Delta}^{+}$such that $\boldsymbol{v} \boldsymbol{x}^{m} \boldsymbol{w} \boldsymbol{y}^{m} \boldsymbol{z} \in \boldsymbol{L}$ for all $\boldsymbol{m} \geq \mathbf{1}$
- in addition, we aim to ensure that for all $m \geq 0$ and $n>0$, $\left(v x^{m} w y^{n-1} z \notin L^{\prime}\right.$ and $\left.v x^{m} w y^{n} z \in L^{\prime}\right)$ iff $m=n$
- we study the computation of \mathcal{M} on an infinite word that traverses infinitely many pairwise non-equivalent configurations
- we use a natural congruence property of language equivalence on the set of configurations (determinism of \mathcal{M} is essential)
- we apply Ramsey's theorem for extracting the required $\boldsymbol{v}, \boldsymbol{x}, \boldsymbol{w}, \boldsymbol{y}, \boldsymbol{z} \in \Delta^{+}$ from the infinite computation

Basic Properties of DCFL'-Simple Problems

DCFLS is the class of DCFL'-simple problems

Proposition:

- REG $\subsetneq D C F L S \subsetneq D C F L$,

$$
\text { e.g. } \quad L_{\#} \in \text { DCFLS, } \quad L_{R}=\left\{w c w^{R} \mid w \in\{a, b\}^{*}\right\} \notin \text { DCFLS }
$$

- The class DCFLS is closed under complement and intersection with regular languages.
- The class DCFLS is not closed under concatenation, intersection, and union.

Application to the Analog Neuron Hierarchy

- $L_{\#} \notin 1 A N N$ by a nontrivial proof (based on the Bolzano-Weierstrass theorem) which can hardly be generalized to another DCFL' language
- $\boldsymbol{L}_{\#}$ is DCFL'-simple under $\leq_{t t}^{\boldsymbol{A}}$
- the reduction $\leq_{t t}^{A}$ to any $L \in 1$ ANN can be implemented by 1 ANN
\longrightarrow the known lower bound $L_{\#} \notin 1$ ANN for a single DCFL'-simple problem $\boldsymbol{L}_{\#}$ is expanded to the whole class: $\quad \mathrm{DCFL} \cap \mathrm{IANN}=\emptyset$

1ANN $\subset C S L$

OANN \equiv FA

$\longrightarrow \quad D C F L \cap 1 A N N=0 A N N$

54/54

