
Parsing and Syntactic Analysis Seminar, Charles University, Prague, November 30, 2023

Chomsky-Like Neural Network Hierarchy

Jǐŕı Š́ıma
www.cs.cas.cz/~sima

Institute of Computer Science
The Czech Academy of Sciences

joint work with

Petr Savický (ICS, Czech Academy of Sciences)

Petr Jančar (FSC, Palacký University Olomouc)

Martin Plátek (FMP, Charles University)

References

This lecture surveys selected computability results of the project

FoNeCo: Analytical Foundations of Neurocomputing
(Czech Science Foundation, GA22-02067S, 2019-2021),

published in the following papers (two won the Best ICS Paper Award):

• J. Š́ıma: Subrecursive neural networks. Neural Networks 116:208-223, 2019.

• J. Š́ıma: Analog neuron hierarchy. Neural Networks 128:199-218, 2020.

• J. Š́ıma, P. Savický: Quasi-periodic β-expansions and cut languages.
Theoretical Computer Science 720:1-23, 2018.

• P. Jančar, J. Š́ıma: The simplest non-regular deterministic context-free language.
Proceedings of the MFCS 2021, LIPIcs 202, pp. 63:1-63:18, Dagstuhl, 2021.

• J. Š́ıma: Stronger separation of analog neuron hierarchy by deterministic
context-free languages. Neurocomputing 493:605-612, 2022.

2/54

Outline of Talk

1. The Neural Network Model

2. The Computational Power of Neural Networks

3. A Chomsky-Like Neural Network Hierarchy

4. Periodic Numbers in Positional Systems with Non-Integer Base

5. C-Simple Problems

3/54

The Neural Network Model – Architecture

s computational units (neurons), indexed as V = {1, . . . , s}, connected into
a directed graph (V,E) where E ⊆ V × V

4/54

The Neural Network Model – Weights

each edge (i, j) ∈ E from unit i to j is labeled with a real weight wji ∈ R

5/54

The Neural Network Model – Zero Weights

each edge (i, j) ∈ E from unit i to j is labeled with a real weight wji ∈ R
(wki = 0 iff (i, k) /∈ E)

6/54

The Neural Network Model – Biases

each neuron j ∈ V is associated with a real bias wj0 ∈ R
(i.e. a weight of (0, j) ∈ E from an additional formal neuron 0 ∈ V)

7/54

Discrete-Time Computational Dynamics – Network State

the evolution of global network state (output) y(t) = (y
(t)
1 , . . . , y

(t)
s) ∈ [0, 1]s

at discrete time instant t = 0, 1, 2, . . .

8/54

Discrete-Time Computational Dynamics – Initial State

t = 0 : initial network state y(0) ∈ {0, 1}s

9/54

Discrete-Time Computational Dynamics: t = 1

t = 1 : network state y(1) ∈ [0, 1]s

10/54

Discrete-Time Computational Dynamics: t = 2

t = 2 : network state y(2) ∈ [0, 1]s

11/54

Discrete-Time Computational Dynamics – Excitations

at discrete time instant t ≥ 0, an excitation is computed as

ξ
(t)
j = wj0+

s∑
i=1

wjiy
(t)
i =

s∑
i=0

wjiy
(t)
i

for every j ∈ {1, . . . , s}

where unit 0 ∈ V has constant output y
(t)
0 ≡ 1 for every t ≥ 0

12/54

Discrete-Time Computational Dynamics – Outputs

at the next time instant t+ 1, every neuron j ∈ V updates its state in parallel

(a so-called fully parallel mode):

y
(t+1)
j = σ

(
ξ

(t)
j

)
for every j = 1, . . . , s

where σ : R −→ [0, 1]

is an activation function, e.g.

σ(ξ) =

 1 for ξ ≥ 1
ξ for 0 < ξ < 1
0 for ξ ≤ 0

the saturated-linear function

13/54

The Computational Power of NNs – Motivations

• the potential and limits of general-purpose computation with NNs:

What is ultimately or efficiently computable by particular NN models?

• idealized mathematical models of practical NNs which abstract away from
implementation issues, e.g. analog numerical parameters are true real numbers

• methodology: the computational power and efficiency of NNs is investigated
by comparing formal NNs to traditional computational models such as finite
automata, Turing machines, Boolean circuits, etc.

• NNs may serve as reference models for analyzing alternative computational
resources (other than time or memory space) such as analog state, continuous
time, energy, temporal coding, etc.

• NNs capture basic characteristics of biological nervous systems (plenty of
densely interconnected simple unreliable computational units)

−→ computational principles of mental processes

14/54

Neural Networks As Formal Language Acceptors

a language L ⊆ Σ∗ over finite alphabet Σ represents a decision problem

y
(T (n))
out =

{
1 if x ∈ L
0 if x /∈ L y

(t)
val =

{
1 if t = T (n)
0 if t 6= T (n)

Y = {out, val} output neurons

T (n) is the computation time
in terms of input length n ≥ 0

d ≥ 1 is the time overhead for
processing a single input symbol

X = enum(Σ) input neurons
one-hot encodingx y(d(i−1)+k)

j = 1 iff j = enum(xi)

x = x1 . . . xi−1 ←− xi ←− xi+1 . . . xn ∈ Σ∗ input word
15/54

The Computational Power of NNs – Integer Weights

depends on the information content of weight parameters:

1. integer weights: finite automaton (FA) (Minsky, 1967)

wji ∈ Z −→ excitations ξj ∈ Z −→ states yj ∈ {0, 1}

−→ 2s global NN states y ∈ {0, 1}s ∼ FA states

size-optimal implementations:

• Θ
(√
m
)

neurons for a deterministic FA with m states
(Indyk, 1995; Horne, Hush, 1995)

• Θ(m) neurons for a regular expression of length m
(Šı́ma, Wiedermann 1998)

16/54

The Computational Power of NNs – Rational Weights

depends on the information content of weight parameters:

2. rational weights: Turing machine (Siegelmann, Sontag, 1995)

• wji ∈ Q are fractions p
q

where p ∈ Z , q ∈ N

• NNs compute algorithmically solvable problems

• real-time simulation of TMs −→ polynomial time ≡ complexity class P

• a universal NN with 25 neurons (Indyk, 1995)

−→ the halting problem of whether a small NN terminates its computation,

is algorithmically undecidable

17/54

The Computational Power of NNs – Real Weights

depends on the information content of weight parameters:

3. arbitrary real weights: “super-Turing” computation (Siegelmann, Sontag, 1994)

•wji ∈ R, e.g. irrational weights
√

2, π

• infinite precision of ONE real weight (vs. an algorithm has a finite description)

can encode any function f : 0 . code(C1) code(C2) code(C3) . . .

(code(Cn) encodes the circuit Cn computing f for inputs of length n)

−→ exponential time ≡ any I/O mapping

(including algorithmically undecidable problems)

• polynomial time ≡ nonuniform complexity class P/poly:

problems solvable by a polynomial-time (P) algorithm that for input x ∈ Σ∗

of length n = |x|, receives an external advise: a string s(n) ∈ Σ∗ of
polynomial length |s(n)| = O(nc) (poly), which depends only on n

18/54

The Computational Power of NNs – A Summary

depends on the information content of weight parameters:

1. integer weights: finite automaton

2. rational weights: Turing machine

polynomial time ≡ complexity class P

3. arbitrary real weights: “super-Turing” computation

polynomial time ≡ nonuniform complexity class P/poly

exponential time ≡ any I/O mapping

19/54

Neural Networks Between Rational and Real Weights

1. integer weights: finite automaton

2. rational weights: Turing machine

polynomial time ≡ P

polynomial time & increasing Kolmogorov complexity of real weights:

the length of the shortest program (in a fixed programming language) that

produces a real weight,

e.g. K
(

“
√

2 ”
)

= O(1), K(“random strings”) = n+ O(1)

≡ a proper hierarchy of nonuniform complexity classes between P and P/poly

(Balcázar, Gavaldà, Siegelmann, 1997)

3. arbitrary real weights: “super-Turing” computation

polynomial time ≡ P/poly

20/54

Neural Networks Between Integer and Rational Weights

from integer to rational weights

αANN = a binary-state NN with integer weights

+ α extra analog-state neurons with rational weights

wji ∈
{

Q j = 1, . . . , α

Z j = α+ 1, . . . , s

i ∈ {0, . . . , s}

α = 2

21/54

Neural Networks with Increasing Analogicity

from binary ({0, 1}) to analog ([0, 1]) states of neurons

αANN = a binary-state NN with integer weights

+ α extra analog-state neurons with rational weights

y
(t+1)
j = σj

(
s∑
i=0

wjiy
(t)
i

)
j = 1, . . . , s updating the states of neurons

σj(ξ) =

σ(ξ) =

 1 for ξ ≥ 1
ξ for 0 < ξ < 1
0 for ξ ≤ 0

j = 1, . . . , α
saturated-linear
function

H(ξ) =

{
1 for ξ ≥ 0
0 for ξ < 0

j = α+ 1, . . . , s
Heaviside
function

22/54

The Chomsky Formal Language Hierarchy

from finite automata to Turing machines

Type 0

Type 1

Type 2

Type 3

RE TM

CSL LBA

CFL PDA

REG FA

23/54

The Analog Neuron Hierarchy (ANH)

the computational power of αANNs

increases with the number α of extra analog-state neurons:

integer weights rational weights

↓ ↓
FA ≡ REG = 0ANN ⊆ 1ANN ⊆ 2ANN ⊆ 3ANN ⊆ . . . = RE ≡ TM

↑ × ↑
Type 3 Chomsky hierarchy Type 0

Type 1, 2 ?

(the notation αANN is also used for the class of languages accepted by αANNs)

24/54

The Analog Neuron Hierarchy as a Chomsky-Like NN Hierarchy

the separation of the first two levels 0ANN
L1

$ 1ANN
L#

$ 2ANN :

• LBA simulates 1ANN: 1ANN ⊂ CSL (Type 1)

• 1ANN accepts a non-CFL L1: 1ANN 6⊂ CFL (Type 2)

L1 =
{
x1 . . . xn ∈ {0, 1}∗

∣∣∣ ∑n
k=1 xn−k+1

(
3
2

)−k
< 1

}
∈ 1ANN \ CFL

• 2ANN simulates deterministic PDA (DPDA ≡ DCFL): DCFL ⊂ 2ANN

• 1ANN cannot count up to n (even with real weights): DCFL 6⊂ 1ANN

L# =
{
0n1n

∣∣n ≥ 1
}
∈ DCFL \ 1ANN

the collapse to the third level 3ANN = 4ANN = . . . = RE ≡ TM (Type 0):

• 3ANN simulates TM 25/54

The Chomsky Hierarchy vs. the Analog Neuron Hierarchy

the separation of some classes is still open, e.g. 2ANN
?

$ 3ANN, 1ANN∩ CFL
?
= REG

the intermediate levels of the ANH and the Chomsky hierarchy seem incomparable

26/54

Positional Numeral Systems With Non-Integer Base

generalization of decimal expansions, which uses also non-integer numbers as the
base and digits of a positional numeral system:

• β ∈ R is a real base (radix) such that |β| > 1

• A ⊂ R is a finite set of real digits such that |A| ≥ 2

a finite β-expansion represents a number x in base β with digits ai from A as

x = (0 . a1 . . . an)β = a1β
−1+a2β

−2+a3β
−3+· · ·+anβ−n =

n∑
k=1

akβ
−k

Examples:

1. β = 10, A = {0, 1, 2, . . . , 9}
decimal expansion of 3

4
= (0 . 75)10 = 7 · 10−1 + 5 · 10−2

2. β = 2, A = {0, 1}
binary expansion of 3

4
= (0 . 11)2 = 1 · 2−1 + 1 · 2−2

3. β = 5
2

, A =
{

5
16
, 7

4

}
5
2

-expansion of 3
4

=
(
0 . 7

4
5
16

)
5
2

= 7
4
·
(

5
2

)−1
+ 5

16
·
(

5
2

)−2

27/54

(Infinite) β-Expansions

introduced by Rényi (1957) and studied by Parry (1960); still an active research
field with applications in coding theory, algorithmic complexity of arithmetic oper-
ations, models of quasicrystals, etc. (e.g. a research group at FNSPE CTU, Prague)

an infinite β-expansion of number x over digits ai from A:

x = (0 . a1a2a3 · · ·)β = a1β
−1 + a2β

−2 + a3β
−3 + · · · =

∞∑
k=1

akβ
−k

which is a convergent power series due to |β| > 1

Example: β = 3
2

, A = {0, 1}

3
2

-expansion of 16
45

:
(
0 . 000 10 10 10 10 10 . . .

)
3
2

=
(
0 . 000 10

)
3
2

=

(
3

2

)−4

+

(
3

2

)−6

+

(
3

2

)−8

+ · · · =
∞∑
k=2

(
3

2

)−2k

=
∞∑
k=2

(
4

9

)k
=

16

45

(a geometric series)

28/54

Existence of β-Expansions

Let β > 1 and A = {α1, . . . , αp} where α1 < α1 < · · · < αp .

Then every number in the interval
[
α1
β−1

,
αp
β−1

]
has a β-expansion

iff max1<j≤p(αj − αj−1) ≤ αp−α1

β−1
. (Pendicini, 2005)

Examples:

1. β > 1, A = {0, 1, . . . , dβe − 1} containing the standard integer digits

every number in the intervalDβ =
(
0 , dβe−1

β−1

)
(evenDβ) has a β-expansion,

note that (0, 1) ⊆ Dβ, e.g. Dβ = (0, 1) for integer base β

2. β = 3, A = {0, 2} (i.e. 2 6≤ 2−0
3−1

= 1)

any number from the complement of the Cantor ternary set
∞⋃
n=0

3n−1⋃
k=0

(
3k + 1

3n + 1
,

3k + 2

3n + 1

)
⊂ (0 , 1) has no 3-expansion

(including iteratively the open middle third from a set of line segments,

starting with (0,1)) 29/54

Uniqueness of β-Expansions for Integer Base β

for an integer base β > 1 and the standard digits, A = {0, 1, . . . , β − 1},

almost any number from the intervalDβ = (0, 1) has a unique β-expansion,

e.g. the unique decimal expansion of
√

2
2

= (0 . 70710678118 . . .)10 ,

except for numbers with a finite β-expansion, which have two distinct (infinite)
β-expansions,

e.g. two (infinite) decimal expansions of

3

4
= (0 . 75)10 = (0 . 75000 . . .)10 = (0 . 74999 . . .)10

30/54

Uniqueness of β-Expansions for Non-Integer Base β

for a non-integer base, almost every number has infinitely (uncountably)
many distinct β-expansions (Sidorov, 2003)

Example: 1 < β < 2, A = {0, 1}, Dβ =
(
0 , 1

β−1

)
• 1 < β < ϕ where ϕ = (1 +

√
5)/2 ≈ 1.618034 is the golden ratio:

every x ∈ Dβ has uncountably many distinct β-expansions (Erdös et al.,1990)

• ϕ ≤ β < q where q ≈ 1.787232 is the Komornik-Loreti constant(
i.e.
∑∞

k=1 tkq
−k = 1 where tk = parity(bin(k)) is the Thue-Morse sequence

)
:

countably many x ∈ Dβ have unique β-expansions (Glendinning,Sidorov,2001),

e.g. the unique 5
3

-expansions of 9
16

(
3
5

)k−1
=
(
0 . (0)k 10

)
5
3

for k ≥ 0

vs. countably many distinct ϕ-expansions of 1 =
(
0 . (10)k 01

)
ϕ

for k ≥ 0

• q ≤ β < 2: uncountably many x ∈ Dβ have unique β-expansions

partially generalizes to β > 2 and arbitraryA: two critical bases 1 < ϕA ≤ qA
such that the number of unique β-expansions is finite if 1 < β < ϕA, countable
if ϕA < β < qA, and uncountable if β > qA (Komornik,Pedicini,2016) 31/54

Eventually Periodic β-Expansions(
0 . a1a2 . . . ak1 ak1+1ak1+2 . . . ak2

)
β

= (0 . a1a2 . . . ak1)β + β−k1%

where

• a1a2 . . . ak1 ∈ Ak1 is a preperiodic part of length k1 ≥ 0

(purely periodic β-expansions for k1 = 0)

• ak1+1ak1+2 . . . ak2 ∈ Am is a repetend of m = k2 − k1 > 0 repeating digits

• % = (0 . ak1+1ak1+2 . . . ak2)β =

∑m
k=1 ak1+k β

−k

1− β−m
is a periodic point

Example: β = 3
2

, A = {0, 1}

22

15
=
(
0 . 1 10

)
3
2

= (0 . 1)3
2
+

(
3

2

)−1

· % =

(
3

2

)−1

+

(
3

2

)−1

·
(
0 . 10

)
3
2

where % =
(
0 . 10

)
3
2

=
∞∑
k=0

(
3

2

)−2k−1

=
1 ·
(

3
2

)−1
+ 0 ·

(
3
2

)−2

1−
(

3
2

)−2 =
6

5

32/54

Eventually Quasi-Periodic β-Expansions(
0 . a1 . . . ak1 ak1+1 . . . ak2 ak2+1 . . . ak3 ak3+1 . . . ak4 . . .

)
β

= (0 . a1a2 . . . ak1)β + β−k1%
where

• a1a2 . . . ak1 ∈ Ak1 is a preperiodic part of length

(purely quasi-periodic β-expansions for k1 = 0)

• aki+1 . . . aki+1
∈ Ami is a quasi-repetend of length mi = ki+1 − ki > 0

• % = (0 . aki+1 . . . aki+1
)β =

∑mi
k=1 aki+k β

−k

1− β−mi
is the same periodic point

for every i ≥ 1

−→ quasi-repetends can be interchanged with each other arbitrarily

• a generalization of eventually periodic β-expansions

ak1+1 . . . ak2 = ak2+1 . . . ak3 = ak3+1 . . . ak4 = · · ·

Example: β ≈ 1.220744 satisfying β4 − β − 1 = 0 (?) , A = {0, 1}
1 = (0 . 00 010 1000 1000 010 . . .)β = (0 . 00)β + β−2%

where 00 is a preperiodic part and 010, 1000 are two quasi-repetends with same

periodic point % =
(
0 . 010

)
β

= β−2

1−β−3

?
= β2 ?

= β−1

1−β−4 =
(
0 . 1000

)
β
33/54

An Example of Repetends With Unbounded Length

base β = 5
2

, digits A =
{
0 , 1

2
, 7

4

}
for every n ≥ 0, the quasi-repetends 7

4
1
2
· · · 1

2︸ ︷︷ ︸
n times

0 ∈ An+2 have

the same periodic point % = 3
4

:0 .
7

4

1

2
· · ·

1

2︸ ︷︷ ︸
n times

0

5
2

=
7
4
·
(

5
2

)−1
+
∑n+1

i=2
1
2
·
(

5
2

)−i
+ 0 ·

(
5
2

)−n−2

1−
(

5
2

)−n−2 =
3

4

−→ 3
4

has uncountably many distinct quasi-periodic 5
2

-expansions:

3

4
=

0 .
7

4

1

2
· · ·

1

2︸ ︷︷ ︸
n1 times

0
7

4

1

2
· · ·

1

2︸ ︷︷ ︸
n2 times

0
7

4

1

2
· · ·

1

2︸ ︷︷ ︸
n3 times

0
7

4

1

2
· · ·

1

2︸ ︷︷ ︸
n4 times

0 · · ·

5
2

where n1, n2, n3, . . . is any infinite sequence of nonnegative integers

(there are examples of exponentially many quasi-repetends in terms of their length)
34/54

Eventually Quasi-Periodic β-Expansions and Tail Sequences

(rn)
∞
n=0 is a tail sequence of β-expansion ε =

(
0 . a1 a2 a3 . . .

)
β

if

rn = (0 . an+1an+2 . . .)β =
∞∑
k=1

an+kβ
−k for every n ≥ 0

denote by Rε = {rn |n ≥ 0} its range

Lemma. If Rε is finite (i.e. the tail sequence contains a constant infinite
subsequence), then the β-expansion ε is eventually quasi-periodic.

Theorem. Let β be a real algebraic number (|β| > 1) whose all conju-
gates β′ (i.e. the other roots of minimal polynomial of β) meet |β′| 6= 1.
Then a β-expansion ε is eventually quasi-periodic iff Rε is finite.

Theorem. Let β be a real algebraic number (|β| > 1) whose conjugate β′

meets |β′| = 1. Then there exists a finite set A ⊂ Z of integer digits and
a quasi-periodic β-expansion ε over A of the number 0 that has infinite Rε.

(solves an important open problem in algebraic number theory)

35/54

Quasi-Periodic Numbers

a real number x ∈ R is β-quasi-periodic within A if every infinite β-expansion
of x over A, is eventually quasi-periodic

Examples:

• x with no β-expansion at all, is formally quasi-periodic (e.g. any number from
the complement of the Cantor ternary set is 3-quasi-periodic within A = {0, 2})

• x = 3
4

is 5
2

-quasi-periodic within A =
{
0 , 1

2
, 7

4

}
:

all the 5
2

-expansions of 3
4

using the digits from A, are eventually quasi-periodic

• x = 40
57

= (0 . 0 011)3
2

is not 3
2

-quasi-periodic within A = {0, 1} :

the greedy (i.e. lexicographically maximal) 3
2

-expansion (0 . 100000001 . . .)3
2

of 40
57

is not eventually quasi-periodic

Theorem. Let β > 1 be a Pisot number (i.e. a real algebraic integer whose
all conjugates β′ meet |β′| < 1) and A ⊂ Q(β). Then any x ∈ Q(β) is
β-quasi-periodic within A.

• x = 1 is β-quasi-periodic within A = {0, 1} for the plastic constant
β ≈ 1.324718 (i.e. the minimal Pisot number satisfying β3− β− 1 = 0)

36/54

Quasi-Periodic 1ANN (QP-1ANN): for a 1ANN, denote:

• β = 1/w11 is the base (|β| > 1) where
w11 is the self-loop weight of the one analog-state neuron (0 < |w11| < 1)

• A =
{∑s

i=0 ; i6=1
w1i
w11
yi

∣∣∣ y2, . . . , ys ∈ {0, 1}
}
∪ {0, β} are the digits

• X =
{∑s

i=0 ; i6=1

wji
wj1
yi

∣∣∣ j 6= 1 , wj1 6= 0 , y2, . . . , ys ∈ {0, 1}
}
∪ {0, 1}

we say that 1ANN (even with real weights) is quasi-periodic and denote QP-1ANN

if every x ∈ X is β-quasi-periodic within A

Example: 1ANN with rational weights + the self-loop weight w11 = 1/β
where β is an integer or the plastic constant or the golden ratio

Theorem. QP-1ANN = REG = 0ANN ≡ FA (Type 3)

37/54

C-Hard Problems

C is a complexity class of decision problems (i.e. formal languages)

A ≤ B is a reduction transforming a problem A to a problem B (a preorder),

which is assumed not to have a higher computational complexity than C

H is a C-hard problem (under the reduction ≤) if for every A ∈ C, A ≤ H

• If a C-hard problem has a (computationally) “easy” solution,

then each problem in C has an “easy” solution (via the reduction).

• If a C-hard problem H is in C (a so-called C-complete problem),

then H belongs to the hardest problems in the class C.
38/54

The Most Prominent Example: NP-Hard Problems

C = NP is the class of decision problems solvable in polynomial time by
a nondeterministic Turing machine

A≤PmB is a polynomial-time many-one reduction (Karp reduction) fromA toB

the satisfiability problem SAT is NP-hard: for every A ∈ NP, A ≤Pm SAT

• If an NP-hard problem is polynomial-time solvable,

then each NP problem would be solved in polynomial time (i.e. P = NP)

• The NP-hard problem SAT is in NP (i.e. SAT is NP-complete),

that is, SAT belongs to the hardest problems (NPC) in the class NP.
39/54

C-Simple Problems
a conceptual counterpart to C-hard problems:

S is a C-simple problem (under the reduction ≤) if for every A ∈ C, S ≤ A

• If a C-simple problem S proves to be not “easy”,

e.g. S is not solvable by a machine M that can compute the reduction ≤,

then all problems in C are not “easy”, i.e. C cannot be solved by M .

−→ New Proof Technique: a lower bound known for one C-simple
problem S extends to the whole class of problems C

• If a C-simple problem S is in C, then S is the simplest problem in the class C.

A Trivial Example: SAT is simple for the class of NP-hard problems under ≤Pm
40/54

A Nontrivial Example of a C-Simple Problem

C = DCFL’ = DCFL \ REG
is the class of non-regular deterministic context-free languages

L1≤Att L2 is a truth-table reduction (a stronger Turing reduction) fromL1 toL2

implemented by a Mealy machine with the oracle L2

The Technical Result:

the language L# = {0n1n | n ≥ 1} over the binary alphabet {0, 1} is

DCFL’-simple under the reduction ≤Att : for every L ∈ DCFL’, L# ≤Att L

−→ L# ∈ DCFL’ is the simplest non-regular deterministic context-free languages

cf. the hardest context-free languageL0 due to S. Greibach (1973) is CFL-hard

41/54

Mealy Machines

A is a Mealy Machine with an input/output alphabet Σ/∆

i.e. a deterministic finite automaton with an output tape:

input word w ∈ Σ∗

initial state q0

42/54

Mealy Machines

A is a Mealy Machine with an input/output alphabet Σ/∆

i.e. a deterministic finite automaton with an output tape:

current input symbol a ∈ Σ

state transition
from q1 to q2

output string u ∈ ∆∗

43/54

Mealy Machines

A is a Mealy Machine with an input/output alphabet Σ/∆

i.e. a deterministic finite automaton with an output tape:

input w ∈ Σ∗

“final” state q

output A(w) ∈ ∆∗

−→ a deterministic finite-state transducer: w ∈ Σ∗ 7−→ A(w) ∈ ∆∗

44/54

The Truth-Table Reduction by Oracle Mealy Machines

AL2 is a Mealy Machine A with an oracle L2 ⊆ ∆∗ :

rq queries:
?
∈ L2 for every i = 1, . . . , rq

for each state q of A :

• rq suffixes sq,1, . . . , sq,rq ∈ ∆∗

• truth table Tq : {0, 1}rq → {0, 1}
with rq variables

w ∈ Σ∗ is accepted by AL2 iff w brings A to the state q such that

Tq

(
A(w) ·sq,1

?
∈ L2 , A(w) ·sq,2

?
∈ L2 , . . . , A(w) ·sq,rq

?
∈ L2

)
= 1

L1 ≤Att L2: L1 ⊆ Σ∗ is truth-table reducible to L2 ⊆ ∆∗ iff

L1 = L(AL2) is accepted by some Mealy machine AL2 with oracle L2

Proposition: The relation ≤Att is a preorder.
45/54

Why L# = {0n1n | n ≥ 1} Is the Simplest DCFL’ language?

any reduced context-free grammarG generating a non-regular language L ⊆ ∆∗

is self-embedding: there is a self-embedding nonterminal A admitting the derivation

A⇒∗ xAy for some non-empty strings x, y ∈ ∆+ (Chomsky, 1959)

G is reduced −→ S ⇒∗ vAz and A⇒∗ w for some v, w, z ∈ ∆∗

−→ S ⇒∗ vxmwymz ∈ L for every m ≥ 0 (1)

??? a conceivable (one-one) reduction from L# to L : for every m,n ≥ 1,

0m1n ∈ {0, 1}∗ 7−→ vxmwynz ∈ ∆∗

(the inputs outside 0+1+ are mapped onto some fixed string outside L)

since 0m1n ∈ L# implies vxmwynz ∈ L by (1)

!!! however, the opposite implication may not be true:

46/54

Why L# Is the Simplest DCFL’ language? (cont.)

!!! however, the opposite implication may not be true:

for the DCFL’ language L1 = {ambn | 1 ≤ m ≤ n} over ∆ = {a, b}

there are no words v, x, w, y, z ∈ ∆∗ such that for every m,n ≥ 1,

vxmwynz ∈ L1 would ensure m = n

nevertheless, already two inputs ambn−1
?
∈ L1 and ambn

?
∈ L1 decides m

?
= n

−→ the truth-table reduction from L# to L1 with two queries to the oracle L1 :

0m1n ∈ {0, 1}∗ 7−→ vxmwyn−1z ∈ ∆∗ , vxmwynz ∈ ∆∗

where x = a, y = b, v = w = z = ε is the empty string

satisfying 0m1n ∈ L# iff (vxmwyn−1z /∈ L1 and vxmwynz ∈ L1)

this can be generalized to any DCFL’ language L :

47/54

The Main Technical Result

Theorem: Let L ⊆ ∆∗ be a non-regular deterministic context-free language
over an alphabet ∆. There exist non-empty words v, x, w, y, z ∈ ∆+ and
a language L′ ∈ {L,L} (where L = ∆∗ r L is the complement of L)
such that

1. either for all m,n ≥ 0, vxmwynz ∈ L′ iff m = n ,

2. or for all m,n ≥ 0, vxmwynz ∈ L′ iff m ≤ n .

1. 2.

In particular, for all m ≥ 0 and n > 0,

(vxmwyn−1z /∈ L′ and vxmwynz ∈ L′) iff m = n .
48/54

The Truth-Table Reduction From L# to Any DCFL’L

implemented by a Mealy machine AL with two queries to the oracle L :

For any DCFL’ language L ⊆ ∆∗ , Theorem provides v, x, w, y, z ∈ ∆+

and L′ ∈ {L,L} , say L′ = L (analogously for L′ = L), such that

(vxmwyn−1z /∈ L and vxmwynz ∈ L) iff m = n . (2)

AL transforms the input 0m1n to the output A(0m1n) = vxmwyn−1 ∈ ∆+

(the inputs outside 0+1+ are rejected), while moving to the state q

with rq = 2 suffixes sq,1, sq,2 and the truth table Tq : {0, 1}2 −→ {0, 1}

A(0m1n) · z = A(0m1n) · yz =

vxmwyn−1z
?
∈ L vxmwynz

?
∈ L Tq

0 1 1
0 0 0
1 1 0
1 0 0

sq,1 = z
sq,2 = yz

It follows from (2) that L(AL) = L# , i.e. L# ≤Att L .
49/54

Ideas of the Proof of the Theorem
(inspired by some ideas on regularity of pushdown processes due to Janar, 2020)

• any non-regular DCFL language L ⊆ ∆∗ is accepted

by a deterministic pushdown automatonM by the empty stack

• since L /∈ REG, there is a computation byM , reaching configurations with
an arbitrary large stack which is being erased afterwards ,

corresponding to v, x, w, y, z ∈ ∆+ such that vxmwymz ∈ L for all m ≥ 1

• in addition, we aim to ensure that for all m ≥ 0 and n > 0,

(vxmwyn−1z /∈ L′ and vxmwynz ∈ L′) iff m = n

(L′ = L)

50/54

Ideas of the Proof of the Theorem
(inspired by some ideas on regularity of pushdown processes due to Janar, 2020)

• any non-regular DCFL language L ⊆ ∆∗ is accepted

by a deterministic pushdown automatonM by the empty stack

• since L /∈ REG, there is a computation byM , reaching configurations with
an arbitrary large stack which is being erased afterwards ,

corresponding to v, x, w, y, z ∈ ∆+ such that vxmwymz ∈ L for all m ≥ 1

• in addition, we aim to ensure that for all m ≥ 0 and n > 0,

(vxmwyn−1z /∈ L′ and vxmwynz ∈ L′) iff m = n

• we study the computation ofM on an infinite word that traverses infinitely
many pairwise non-equivalent configurations

• we use a natural congruence property of language equivalence on the set of
configurations (determinism ofM is essential)

• we apply Ramsey’s theorem for extracting the required v, x, w, y, z ∈ ∆+

from the infinite computation

51/54

Basic Properties of DCFL’-Simple Problems

DCFLS is the class of DCFL’-simple problems

Proposition:

• REG (DCFLS (DCFL ,

e.g. L# ∈ DCFLS, LR = {wcwR | w ∈ {a, b}∗} /∈ DCFLS

• The class DCFLS is closed under complement and intersection with regular

languages.

• The class DCFLS is not closed under concatenation, intersection, and union.

52/54

Application to the Analog Neuron Hierarchy

• L# /∈ 1ANN by a nontrivial proof (based on the Bolzano–Weierstrass theorem)
which can hardly be generalized to another DCFL’ language

• L# is DCFL’-simple under ≤Att

• the reduction ≤Att to any L ∈ 1ANN can be implemented by 1ANN

−→ the known lower bound L# /∈ 1ANN for a single DCFL’-simple problem L#

is expanded to the whole class: DCFL’ ∩ 1ANN = ∅

53/54

−→ DCFL ∩ 1ANN = 0ANN

54/54

