MFCS 2021

46th International S I
Mathematical Foundatiens ofCec
August 23-27, 2021, Tallibn

The Simplest Non-Regular Deterministic

Context-Free Language

Jiri Sima
sima@cs.cas.cz

Institute of Computer Science
Czech Academy of Sciences, Prague, Czechia

Joint work with Petr Jancar
pj.jancar@gmail.com

Department of Computer Science
Palacky University Olomouc, Czechia

C-Hard Problems

C is a complexity class of decision problems (i.e. formal languages)

A < B s a reduction transforming a problem A to a problem B (a preorder),
which is assumed not to have a higher computational complexity than C

H is a C-hard problem (under the reduction <) if forevery A € C, A < H

C

e If a C-hard problem has a (computationally) “easy” solution,

then each problem in C has an “easy"” solution (via the reduction).

e If a C-hard problem H is in C (a so-called C-complete problem),

then H belongs to the hardest problems in the class C.
2/19

The Most Prominent Example: NP-Hard Problems

C = NP is the class of decision problems solvable in polynomial time by
a nondeterministic Turing machine

A <P B isa polynomial-time many-one reduction (Karp reduction) from A to B

the satisfiability problem SAT is NP-hard: for every A € NP, A sz SAT

NP

e |f an NP-hard problem is polynomial-time solvable,
then each NP problem would be solved in polynomial time.

e The NP-hard problem SAT is in NP (i.e. SAT is NP-complete),

that is, SAT belongs to the hardest problems (NPC) in the class NP.
3/19

C-Simple Problems

a conceptual counterpart to C-hard problems:

S is a C-simple problem (under the reduction <) if forevery A € C, S < A

e |f a C-simple problem S proves to be not “easy”,
e.g. S is not solvable by a machine M (M can compute the reduction <),

then all problems in C are not “easy”, i.e. C cannot be solved by M.

—— a new proof technique: a lower bound known for one C-simple
problem S extends to the whole class of problems C

e If a C-simple problem S'isin C, then S is the simplest problem in the class C.

A Trivial Example: SAT is simple for the class of NP-hard problems under sz

4/19

A Nontrivial Example of a C-Simple Problem
C = DCFL' = DCFL \ REG

is the class of non-regular deterministic context-free languages

L+ Sé L, is a truth-table reduction (a stronger Turing reduction) from Ly to Lo
implemented by a Mealy machine with the oracle Lo

The Main Result:
the language Ly = {0™1" | n > 1} over the binary alphabet {0,1} is
DCFL'-simple under the reduction Sé: for every L € DCFL', L Sﬁ L

— L € DCFL' is the simplest non-regular deterministic context-free languages

cf. the hardest context-free language Ly dueto S. Greibach (1973) is CFL-hard

5/19

Mealy Machines

A is a Mealy Machine with an input/output alphabet 3/A

i.e. a deterministic finite automaton with an output tape:

input
tape

9

output
tape

input word w € X*

initial state qq

6/19

Mealy Machines

A is a Mealy Machine with an input/output alphabet 3/A

i.e. a deterministic finite automaton with an output tape:

input : |
tape ‘ al : current input symbol a € X
G/Ué state transition
% %, from g1 to qg-
output

tape 1/ output string u € A*

6/19

Mealy Machines

A is a Mealy Machine with an input/output alphabet 3/A

i.e. a deterministic finite automaton with an output tape:

input _ .
tape w input w € X

q “final” state q
output .
wpe | AW output A(w) € A

—> a deterministic finite-state transducer: w € ¥* —— A(w) € A*

6/19

The Truth-Table Reduction by Oracle Mealy Machines
A2 is a Mealy Machine A with an oracle Ly C A*:

input
tape

oracle
tape

—

q

A(wh sq,i

~—

for each state g of A:
® 1y suffixes Sg15...58q¢r, € A¥

e truth table Tj, : {0,1}"2 — {0,1}
with 74 variables

?
rq queries: € Lo foreveryt =1,...,7,

w € X* is accepted by AL2 iff w brings A to the state g such that

T, (A(w)-sq,l € Ly, A(w)-5¢2 € Lay..., A(w)- g, € Lz) =1

L4 S;j Ly Lq C X% is truth-table reducible to Ly C A* iff
L, = L(AL?) is accepted by some Mealy machine A2 with oracle L

Proposition: The relation §é is a preorder.

7/19

Why L = {0"1" | n > 1} Is the Simplest DCFL’ language?

any reduced context-free grammar G generating a non-regular language L C A*
is self-embedding: there is a self-embedding nonterminal A admitting the derivation

A =* x Ay for some non-empty strings &,y € AT (Chomsky, 1959)

Gisreduced — S =* vAz and A =* w for some v, w,z € A*

— S =* ve™wy™z € L forevery m > 0 (1)

7?7 a conceivable (one-one) reduction from Ly to L: for every m,n > 1,
01" € {0,1}" —— vx"wy"z € A*

(the inputs outside 071 are mapped onto some fixed string outside L)

since 01" € Ly implies va™wy"z € L by (1)

1 however, the opposite implication may not be true:

8/19

Why L_. Is the Simplest DCFL' language? (cont.)
1 however, the opposite implication may not be true:

for the DCFL' language Ly = {a™b" | 1 < m < n} over A = {a, b}
there are no words v, x, w,y, z € A* such that for every m,n > 1,

ve"wy"z € L would ensure m = n

? ? ?
nevertheless, already two inputs a™b” ! € L; and a™b™ € L, decides m = n

— the truth-table reduction from L to L; with two queries to the oracle L :
01" € {0,1}* — vx™wy" lz € A*, vrMwy"z € A*
where € = a, y=0>b, v =w = z = ¢ is the empty string
satisfying 0™1™ € Ly iff (va™wy" 'z € L, and va™wy"z € L)

this can be generalized to any DCFL' language L :

9/19

The Main Technical Result

Theorem: Let L C A* be a non-regular deterministic context-free language

over an alphabet A. There exist non-empty words v, x,w,y,z € A" and

a language L' € {L,L} (where L = A* ~ L is the complement of L)
such that

1. either for allm,n > 0, va™wy"z € L' iff m = n,

2. or forallm,n >0, ve™wy"z € L' iff m < n.

1. 2.
N 0 1 2 c S M 0 1 2 3
0 eL’” &L ¢L &L 0 el’ €L €L €L
1 ¢L €L gL ¢L 1 ¢L" €L €L’ €L
2 ¢L ¢L' €L ¢L 2 gL ¢L' €L €L
3 ¢L ¢L" ¢L el 3 ¢L ¢l &L el

In particular, for all m > 0 and n > 0,

(ve"wy" 'z ¢ L’ and vx™wy"z € L') iff m =n. /
10/19

The Truth-Table Reduction From L_ to Any DCFL’ L

implemented by a Mealy machine A% with two queries to the oracle L :

For any DCFL’' language L C A*, Theorem provides v, x, w,y,z € AT
and L’ € {L,L}, say L'’ = L (analogously for L’ = L), such that
(ve"wy" 2 ¢ L and vx™wy"z € L) iff m=mn. (2)

AL transforms the input 01" to the output A(0™1") = vz™wy” ! € AT
(the inputs outside 0717 are rejected), while moving to the state g
with 7, = 2 suffixes s4.1, 8q,2 and the truth table Ty, : {0,1}* — {0,1}

0/x 1]y A(0m17) - z = | A(0™1") - yz =

ver"wy" 'z € L| ve™wy"z € L | T,

O O/U.’E 1/w 0 1 1
Z 7 0 0 0
Sq1 = Z 1 1 0

Sq2 = Yz 1 0 0

It follows from (2) that £L(ALY) = L4, ie Ly </ L

=tt
11/19

Ideas of the Proof of the Theorem
(inspired by some ideas on regularity of pushdown processes due to Jancar, 2020)
e any non-regular DCFL language L C A* is accepted

by a deterministic pushdown automaton M by the empty stack

e since L ¢ REG, there is a computation by M, reaching configurations with
an arbitrary large stack which is being erased afterwards,

corresponding to v, ®, w, Yy, z € AT such that v&e™wy™z € L forall m > 1

e in addition, we aim to ensure that for all 1 > 0 and n > 0,

(ve"wy" 1z ¢ L’ and ve™wy"z € L') iff m=n

P p y
X| ¥, ¢ —
p . v ¢
p X 7 7 Y, q ” ¢ l» ~
iy ' ¥ ¥ Y|y y
X — 4 4 | & | o4 v
Py |6 8 8 § 8 5 P P 5
Xo >
lz lz lz lz lz lz
case “m=mn": REJ REJ ACC REJ REJ REJ
(L/ — L) 13 2
case “‘m <n’”: REJ REJ ACC ACC ACC ACC

12/19

Ideas of the Proof of the Theorem

(inspired by some ideas on regularity of pushdown processes due to Jancar, 2020)

e any non-regular DCFL language L C A* is accepted
by a deterministic pushdown automaton M by the empty stack

e since L ¢ REG, there is a computation by M, reaching configurations with
an arbitrary large stack which is being erased afterwards,

corresponding to v, ®, w, Yy, z € AT such that v&e™wy™z € L forall m > 1

e in addition, we aim to ensure that for all 1 > 0 and n > 0,

(ve"wy" 1z ¢ L’ and ve™wy"z € L') iff m=n

e we study the computation of M on an infinite word that traverses infinitely
many pairwise non-equivalent configurations

e we use a natural congruence property of language equivalence on the set of
configurations (determinism of M is essential)

e we apply Ramsey's theorem for extracting the required v, , w,y,z € AT
from the infinite computation

12/19

Basic Properties of DCFL’-Simple Problems

DCFLS is the class of DCFL'-simple problems

Proposition:

e REG C DCFLS C DCFL,
eg. Ly € DCFLS, Lg = {wcw® | w € {a,b}*} ¢ DCFLS

e The class DCFLS is closed under complement and intersection with regular

languages.

e The class DCFLS is not closed under concatenation, intersection, and union.

13/19

An Application of DCFL’-Simple L in Neural Networks
(this application has originally inspired the concept of a DCFL'-simple problem)

The Computational Power of Neural Networks (NNs)
(discrete-time recurrent NNs with the saturated-linear activation function)

depends on the information contents of weight parameters:
e integer weights: finite automaton (FA) (Minsky, 1967)

e rational weights: Turing machine (TM) (Siegelmann, Sontag, 1995)

polynomial time = the complexity class P

e arbitrary real weights: “super-Turing” computation (Siegelmann, Sontag, 1994)

polynomial time = the nonuniform complexity class P/poly

exponential time = any |/O mapping
e increasing Kolmogorov complexity of real weights

polynomial time = a proper hierarchy of nonuniform complexity classes
between P and P/poly (Balcazar, Gavalda, Siegelmann, 1997)

??? the gap in the analysis between realistic integer and rational weights

w.r.t. Chomsky hierarchy: regular vs. recursively enumerable languages
14/19

A Neural Network Model with Increasing Analogicity

from integer to rational weights

aANN = a binary-state NN with integer weights

+ o extra analog-state neurons with rational weights

.,S

.5 S}

15/19

A Neural Network Model with Increasing Analogicity
from binary ({0, 1}) to analog ([0, 1]) states of neurons

aANN = a binary-state NN with integer weights
+ o extra analog-state neurons with rational weights

y§t+1) = 0; (Z fwjiyz(t)> 7=1,...,s updating the states of neurons

i=0
(1 for§>1 saturated-linear
o) =< § for0<EE<KCT g=1,...,« function
0 fore<O0
a; (&) = « €<
1 for€ >0 : Heaviside
H() = — = 1,...
\ (&) { 0 for{ <O J=o+d S function
y y A
- . o(§) .4 H(£)
_— V. ——)
— > - >

16/19

The Analog Neuron Hierarchy (Sima, 2019,2020)

the computational power of NNs increases with the number ax of extra analog neurons:

FA = OANN C 1ANN C 2ANN C 3ANN C...= TM
t X t
integer weights Chomsky hierarchy rational weights
(Y 3ANN=TM
1ANN C CSL 2ANN D DCFL

[OANN = FA]

oL, &CFL L. & 1ANN

o Ly ={0"1" | n > 1} ¢ 1ANN C CSL (Context-Sensitive Languages)

o L, = {a:l iy € 0,11 | T @ (B) T < 1} € 1ANN \ CFL
e DCFL C 2ANN
e 3ANN = TM

17/19

The Technique of Expanding a Lower Bound

e L, ¢ 1ANN with a nontrivial proof (based on the Bolzano—Weierstrass
theorem) which can hardly be generalized to another DCFL' language

o L is DCFL'-simple under Sﬁ
e the reduction Sé to any L € 1ANN can be implemented by IANN

— the known lower bound L ¢ 1ANN for a single DCFL'-simple problem L.
is extended to the whole class DCFL' M 1ANN = ()

s a

3ANN=TM

~
J

(1 2ANN D DCFL
1ANN C CSL ¢

[OANN = FA] DCFL'
oL, & CFL L. & 1ANN

N v

. J

. S

Comments:
e If any DCFL’ language proves to be CFL'-simple, then CFL" 1 1ANN = 0.

e L is not CSL'-simple since L §£ L, € 1ANN would imply L4 € 1ANN
18/19

A Summary

e We have introduced a new notion of C-simple problems which is a conceptual
counterpart to C-hard problems.

e We have shown Ly = {0™1" | n > 1} to be a DCFL'-simple problem
under the truth-table reduction by oracle Mealy machines:

— L is the simplest DCFL" problem

e \We have proposed a new proof technique of expanding a lower bound known
for a single C-simple problem to the whole class of problems C, which has
been illustrated by a nontrivial application to the analysis of neural networks:

DCFL'-simple Ly ¢ 1ANN —— DCFL' N 1ANN =0

Open Problems
e Is Ly CFL'-simple or UCFL'-simple (Unambiguous CFL") ?
(— (U)CFL' N 1ANN = 0)

e Examples of nontrivial C-simple problems for other complexity classes C

under suitable reductions ?

19/19

