

The Simplest Non-Regular Deterministic Context-Free Language

Jiří Šíma

sima@cs.cas.cz

Institute of Computer Science Czech Academy of Sciences, Prague, Czechia

joint work with

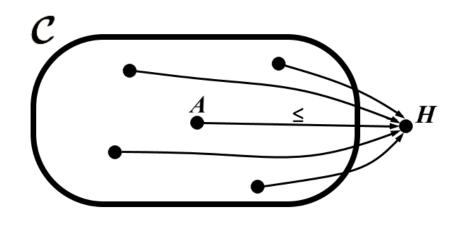
Petr Jančar

pj.jancar@gmail.com

Department of Computer Science Palacký University Olomouc, Czechia

C-Hard Problems

- *C* is a complexity class of decision problems (i.e. formal languages)
- $A \leq B$ is a reduction transforming a problem A to a problem B (a preorder), which is assumed not to have a higher computational complexity than C
- H is a \mathcal{C} -hard problem (under the reduction \leq) if for every $A \in \mathcal{C}$, $A \leq H$

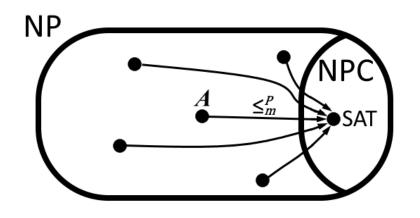


- If a C-hard problem has a (computationally) "easy" solution, then each problem in C has an "easy" solution (via the reduction).
- If a C-hard problem H is in C (a so-called C-complete problem), then H belongs to the hardest problems in the class C.

The Most Prominent Example: NP-Hard Problems

 $\mathcal{C} = \mathsf{NP}$ is the class of decision problems solvable in polynomial time by a nondeterministic Turing machine

 $A \leq_m^P B$ is a polynomial-time many-one reduction (Karp reduction) from A to Bthe satisfiability problem SAT is NP-hard: for every $A \in NP$, $A \leq_m^P SAT$

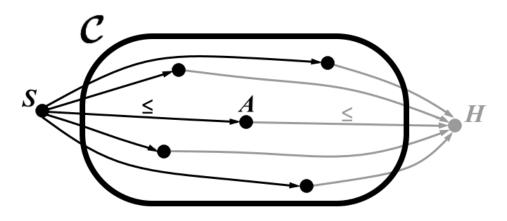


- If an NP-hard problem is polynomial-time solvable, then each NP problem would be solved in polynomial time.
- The NP-hard problem SAT is in NP (i.e. SAT is NP-complete), that is, SAT belongs to the hardest problems (NPC) in the class NP.

C-Simple Problems

a conceptual counterpart to \mathcal{C} -hard problems:

S is a \mathcal{C} -simple problem (under the reduction \leq) if for every $A \in \mathcal{C}$, $S \leq A$



• If a \mathcal{C} -simple problem S proves to be not "easy",

e.g. S is not solvable by a machine M (M can compute the reduction \leq), then all problems in C are not "easy", i.e. C cannot be solved by M.

 \longrightarrow a new proof technique: a lower bound known for one ${\mathcal C}$ -simple problem S extends to the whole class of problems ${\mathcal C}$

• If a \mathcal{C} -simple problem S is in \mathcal{C} , then S is the simplest problem in the class \mathcal{C} .

A Trivial Example: SAT is simple for the class of NP-hard problems under \leq_m^P

A Nontrivial Example of a C-Simple Problem

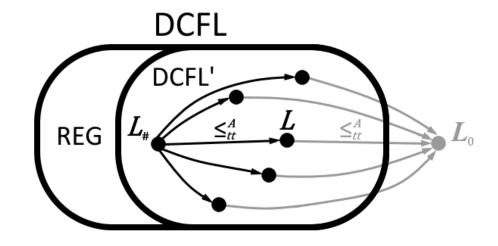
$\mathcal{C} = \mathsf{DCFL'} = \mathsf{DCFL} \setminus \mathsf{REG}$

is the class of non-regular deterministic context-free languages

 $L_1 \leq_{tt}^A L_2$ is a truth-table reduction (a stronger Turing reduction) from L_1 to L_2 implemented by a Mealy machine with the oracle L_2

The Main Result:

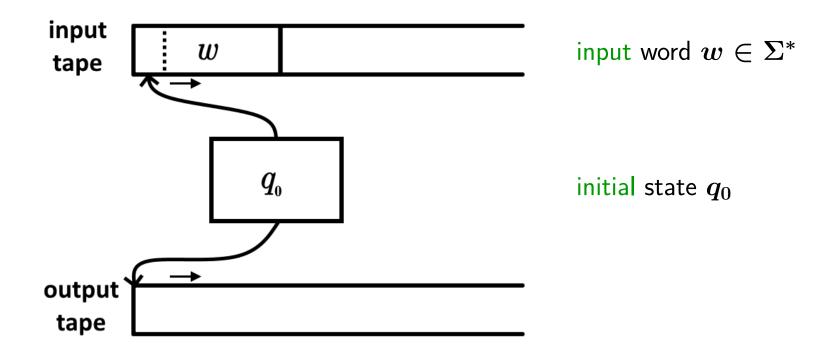
- the language $L_{\#} = \{0^n 1^n \mid n \ge 1\}$ over the binary alphabet $\{0, 1\}$ is DCFL'-simple under the reduction \leq_{tt}^A : for every $L \in \mathsf{DCFL'}$, $L_{\#} \leq_{tt}^A L$
- $\longrightarrow L_{\#} \in \mathsf{DCFL'}$ is the *simplest* non-regular deterministic context-free languages
- cf. the *hardest* context-free language L_0 due to S. Greibach (1973) is CFL-hard



Mealy Machines

 ${\cal A}\,$ is a Mealy Machine with an input/output alphabet $\Sigma/\Delta\,$

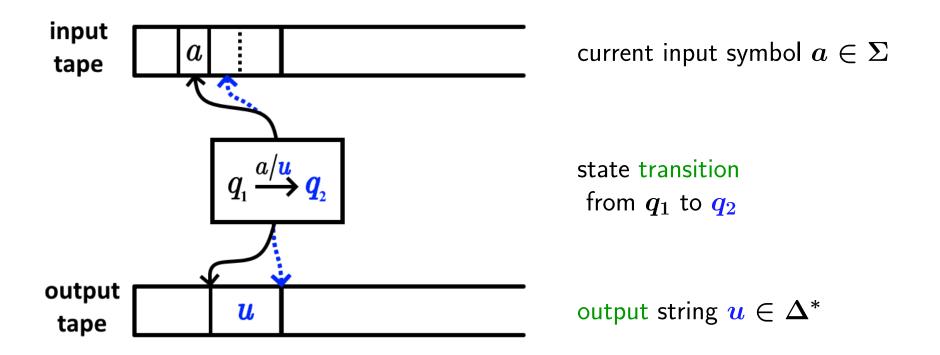
i.e. a deterministic finite automaton with an output tape:



Mealy Machines

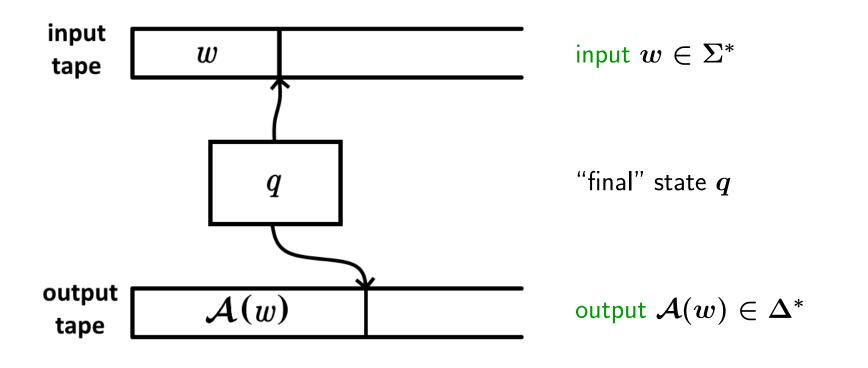
 ${\cal A}\,$ is a Mealy Machine with an input/output alphabet $\Sigma/\Delta\,$

i.e. a deterministic finite automaton with an output tape:



Mealy Machines

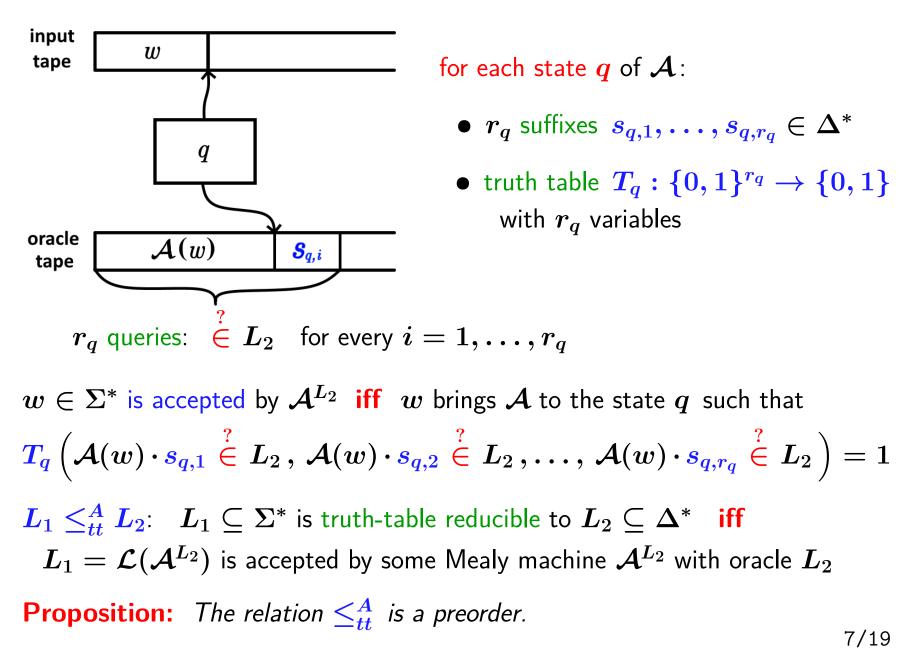
 \mathcal{A} is a Mealy Machine with an input/output alphabet Σ/Δ i.e. a deterministic finite automaton with an output tape:



 \longrightarrow a deterministic finite-state transducer: $w\in \Sigma^*\longmapsto \mathcal{A}(w)\in \Delta^*$

The Truth-Table Reduction by Oracle Mealy Machines

 \mathcal{A}^{L_2} is a Mealy Machine \mathcal{A} with an oracle $L_2 \subseteq \Delta^*$:



Why $L_{\#} = \{0^n 1^n \mid n \ge 1\}$ Is the Simplest DCFL' language?

any reduced context-free grammar G generating a non-regular language $L\subseteq \Delta^*$ is self-embedding: there is a self-embedding nonterminal A admitting the derivation

 $A \Rightarrow^* xAy$ for some non-empty strings $x,y \in \Delta^+$ (Chomsky, 1959)

G is reduced \longrightarrow $S \Rightarrow^* vAz$ and $A \Rightarrow^* w$ for some $v, w, z \in \Delta^*$

 $\longrightarrow \quad S \Rightarrow^* v x^m w y^m z \in L \text{ for every } m \ge 0$ (1)

??? a conceivable (one-one) reduction from $L_{\#}$ to L: for every $m,n\geq 1$, $0^m1^n\in\{0,1\}^*\longmapsto vx^mwy^nz\in\Delta^*$

(the inputs outside 0^+1^+ are mapped onto some fixed string outside L)

since $0^m 1^n \in L_{\#}$ implies $vx^m wy^n z \in L$ by (1)

!!! however, the opposite implication may not be true:

Why $L_{\#}$ is the Simplest DCFL' language? (cont.) **!!!** however, the opposite implication may not be true: for the DCFL' language $L_1 = \{a^m b^n \mid 1 \leq m \leq n\}$ over $\Delta = \{a, b\}$ there are **no** words $v, x, w, y, z \in \Delta^*$ such that for every $m, n \geq 1$, $vx^mwy^nz\in L_1$ would ensure m=nnevertheless, already **two** inputs $a^m b^{n-1} \stackrel{?}{\in} L_1$ and $a^m b^n \stackrel{?}{\in} L_1$ decides $m \stackrel{?}{=} n$ \longrightarrow the truth-table reduction from $L_{\#}$ to L_1 with two queries to the oracle L_1 : $0^m1^n\in\{0,1\}^* \hspace{0.2cm}\longmapsto \hspace{0.2cm} vx^mwy^{n-1}z\in\Delta^*\,, \hspace{0.2cm} vx^mwy^nz\in\Delta^*$ where x = a, y = b, v = w = z = arepsilon is the empty string satisfying $0^m1^n \in L_{\#}$ iff $(vx^mwy^{n-1}z \notin L_1$ and $vx^mwy^nz \in L_1$) this can be generalized to any DCFL' language L:

The Main Technical Result

Theorem: Let $L \subseteq \Delta^*$ be a non-regular deterministic context-free language over an alphabet Δ . There exist non-empty words $v, x, w, y, z \in \Delta^+$ and a language $L' \in \{L, \overline{L}\}$ (where $\overline{L} = \Delta^* \setminus L$ is the complement of L) such that

1. either for all $m,n\geq 0$, $vx^mwy^nz\in L'$ iff m=n ,

2. or for all $m,n\geq 0$, $vx^mwy^nz\in L'$ iff $m\leq n$.

	1.					2.					
m^n	0	1	2	3	•••	m^n	0	1	2	3	•••
0	$\in L'$	∉ <i>L′</i>	$\notin L'$	∉ <i>L</i> ′		0	∈ <i>L</i> ′	$\in L'$	$\in L'$	$\in L'$	
1	∉ <i>L</i> ′	$\in L'$	∉ <i>L</i> ′	∉ <i>L′</i>		1	∉ <i>L</i> ′	$\in L'$	$\in L'$	∈ <i>L</i> ′	
2	∉ <i>L</i> ′	∉L′	∉ L' ∉ L' € L' ∉ L'	∉ <i>L</i> ′		2	∈ L' ∉ L' ∉ L' ∉ L'	∉L′	<i>∈L</i> ′	∈ <i>L</i> ′	
3	∉ <i>L</i> ′	$\notin L'$	$\notin L'$	$\in L'$		3	$\notin L'$	∉ <i>L</i> ′	$\notin L'$	$\in L'$	
÷					•••	•					••.

In particular, for all $m \geq 0$ and n > 0,

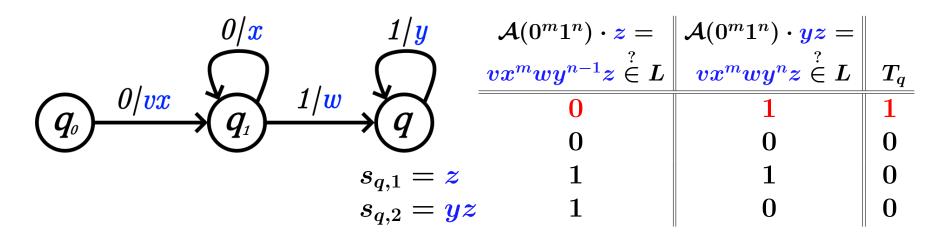
 $(vx^mwy^{n-1}z
otin L' ext{ and } vx^mwy^nz\in L')$ iff m=n .

10/19

The Truth-Table Reduction From $L_{\#}$ to Any DCFL' Limplemented by a Mealy machine \mathcal{A}^L with two queries to the oracle L:

For any DCFL' language $L \subseteq \Delta^*$, Theorem provides $v, x, w, y, z \in \Delta^+$ and $L' \in \{L, \overline{L}\}$, say L' = L (analogously for $L' = \overline{L}$), such that $(vx^mwy^{n-1}z \notin L \text{ and } vx^mwy^nz \in L)$ iff m = n. (2)

 \mathcal{A}^L transforms the input $0^m 1^n$ to the output $\mathcal{A}(0^m 1^n) = vx^m wy^{n-1} \in \Delta^+$ (the inputs outside 0^+1^+ are rejected), while moving to the state qwith $r_q = 2$ suffixes $s_{q,1}, s_{q,2}$ and the truth table $T_q : \{0,1\}^2 \longrightarrow \{0,1\}$



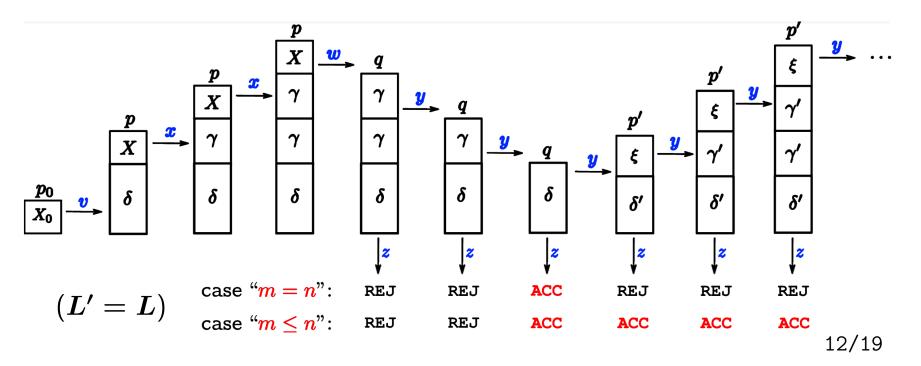
It follows from (2) that $\mathcal{L}(\mathcal{A}^L) = L_{\#}$, i.e. $L_{\#} \leq^A_{tt} L$.

11/19

Ideas of the Proof of the Theorem

(inspired by some ideas on regularity of pushdown processes due to Jančar, 2020)

- any non-regular DCFL language $L \subseteq \Delta^*$ is accepted by a deterministic pushdown automaton $\mathcal M$ by the empty stack
- since $L \notin \mathsf{REG}$, there is a computation by \mathcal{M} , reaching configurations with an arbitrary large stack which is being erased afterwards, corresponding to $v, x, w, y, z \in \Delta^+$ such that $vx^mwy^mz \in L$ for all $m \geq 1$
- in addition, we aim to ensure that for all $m\geq 0$ and n>0, $(vx^mwy^{n-1}z\notin L' ext{ and } vx^mwy^nz\in L')$ iff m=n



Ideas of the Proof of the Theorem

(inspired by some ideas on regularity of pushdown processes due to Jančar, 2020)

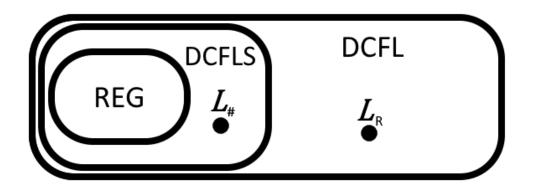
- any non-regular DCFL language $L\subseteq \Delta^*$ is accepted by a deterministic pushdown automaton $\mathcal M$ by the empty stack
- since $L \notin \mathsf{REG}$, there is a computation by \mathcal{M} , reaching configurations with an arbitrary large stack which is being erased afterwards, corresponding to $v, x, w, y, z \in \Delta^+$ such that $vx^mwy^mz \in L$ for all $m \geq 1$
- in addition, we aim to ensure that for all $m\geq 0$ and n>0, $(vx^mwy^{n-1}z\notin L' ext{ and } vx^mwy^nz\in L')$ iff m=n
- we study the computation of \mathcal{M} on an infinite word that traverses infinitely many pairwise non-equivalent configurations
- we use a natural congruence property of language equivalence on the set of configurations (determinism of \mathcal{M} is essential)
- we apply Ramsey's theorem for extracting the required $v,x,w,y,z\in\Delta^+$ from the infinite computation

Basic Properties of DCFL'-Simple Problems

DCFLS is the class of DCFL'-simple problems

Proposition:

- REG \subsetneq DCFLS \subsetneq DCFL,
 - e.g. $L_{\#} \in \mathsf{DCFLS}$, $L_R = \{wcw^R \mid w \in \{a,b\}^*\} \notin \mathsf{DCFLS}$



- The class DCFLS is closed under complement and intersection with regular languages.
- The class DCFLS is not closed under concatenation, intersection, and union.

An Application of DCFL'-Simple $L_{\#}$ in Neural Networks

(this application has originally inspired the concept of a DCFL'-simple problem)

The Computational Power of Neural Networks (NNs)

(discrete-time recurrent NNs with the saturated-linear activation function) depends on the information contents of weight parameters:

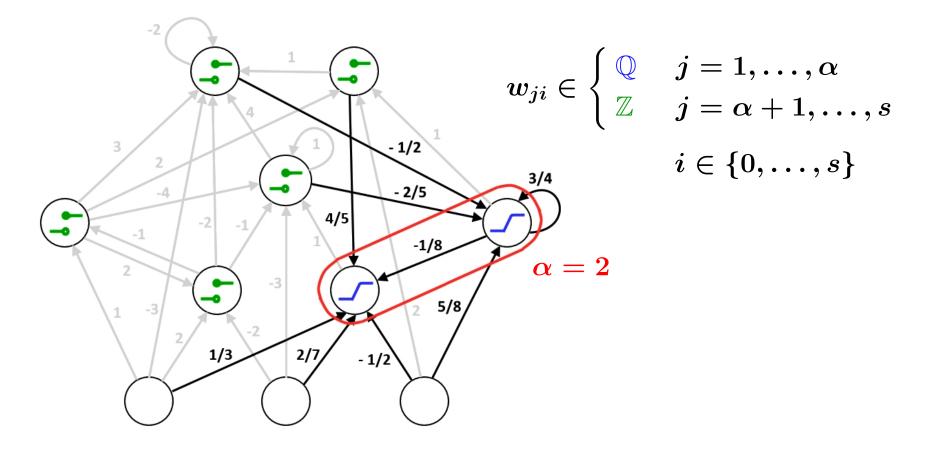
- integer weights: finite automaton (FA) (Minsky, 1967)
- arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time ≡ the nonuniform complexity class P/poly exponential time ≡ any I/O mapping
- increasing Kolmogorov complexity of real weights polynomial time ≡ a proper hierarchy of nonuniform complexity classes
 between P and P/poly (Balcázar, Gavaldà, Siegelmann, 1997)

??? the gap in the analysis between realistic **integer** and **rational** weights w.r.t. **Chomsky hierarchy**: **regular vs. recursively enumerable** languages

A Neural Network Model with Increasing Analogicity

from integer to rational weights

 α ANN = a binary-state NN with integer weights + α extra analog-state neurons with rational weights



A Neural Network Model with Increasing Analogicity

from binary $(\{0,1\})$ to analog ([0,1]) states of neurons

 α **ANN** = a **binary-state** NN with **integer** weights + α **extra analog-state** neurons with **rational** weights

$$y_{j}^{(t+1)} = \sigma_{j} \left(\sum_{i=0}^{s} w_{ji} y_{i}^{(t)} \right) \qquad j = 1, \dots, s \qquad \text{updating the states of neurons}$$

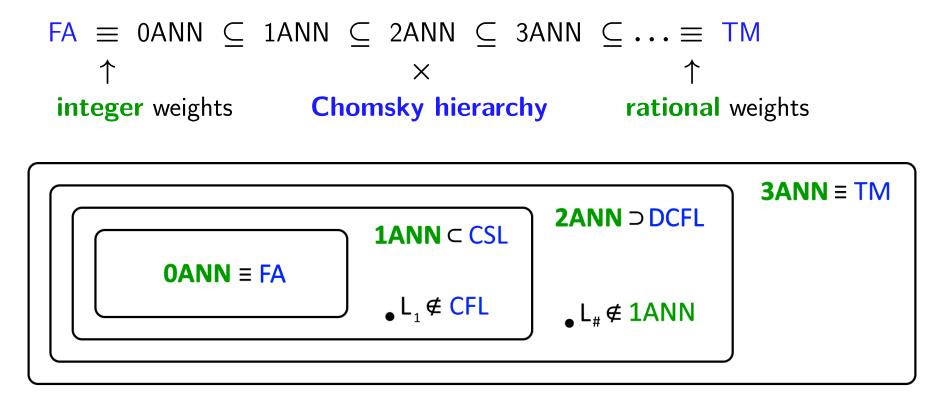
$$\sigma_{j}(\xi) = \begin{cases} \sigma(\xi) = \begin{cases} 1 & \text{for } \xi \geq 1 \\ \xi & \text{for } 0 < \xi < 1 \\ 0 & \text{for } \xi \leq 0 \end{cases} \qquad j = 1, \dots, \alpha \qquad \text{function} \end{cases}$$

$$H(\xi) = \begin{cases} 1 & \text{for } \xi \geq 0 \\ 0 & \text{for } \xi < 0 \end{cases} \qquad j = \alpha + 1, \dots, s \qquad \text{Heaviside function} \end{cases}$$

16/19

The Analog Neuron Hierarchy (Šíma, 2019, 2020)

the computational power of NNs increases with the number lpha of extra analog neurons:

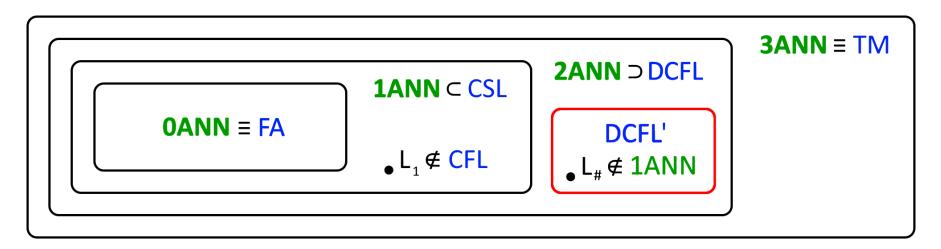


- $L_{\#} = \{0^n 1^n \mid n \geq 1\} \notin 1$ ANN \subset CSL (Context-Sensitive Languages)
- $L_1 = \left\{ x_1 \dots x_n \in \{0,1\}^* \ \Big| \ \sum_{k=1}^n x_{n-k+1} \left(rac{3}{2}
 ight)^{-k} < 1
 ight\} \in 1$ ann \setminus CFL
- DCFL \subset 2ANN
- $3ANN \equiv TM$

17/19

The Technique of Expanding a Lower Bound

- $L_{\#} \notin 1$ ANN with a nontrivial proof (based on the Bolzano–Weierstrass theorem) which can hardly be generalized to another DCFL' language
- $L_{\#}$ is DCFL'-simple under \leq_{tt}^{A}
- the reduction \leq_{tt}^{A} to any $L \in 1$ ANN can be implemented by 1ANN
- \longrightarrow the known lower bound $L_{\#} \notin 1$ ANN for a single DCFL'-simple problem $L_{\#}$ is extended to the whole class DCFL' $\cap 1$ ANN = Ø



Comments:

- If any DCFL' language proves to be CFL'-simple, then CFL' \cap 1ANN = \emptyset .
- $L_{\#}$ is not CSL'-simple since $L_{\#} \leq^A_{tt} L_1 \in 1$ ANN would imply $L_{\#} \in 1$ ANN

A Summary

- We have introduced a new notion of *C*-simple problems which is a conceptual counterpart to *C*-hard problems.
- We have shown $L_{\#} = \{0^n 1^n \mid n \geq 1\}$ to be a DCFL'-simple problem under the truth-table reduction by oracle Mealy machines:

 $\longrightarrow L_{\#}$ is the simplest DCFL' problem

• We have proposed a new proof technique of expanding a lower bound known for a single C-simple problem to the whole class of problems C, which has been illustrated by a nontrivial application to the analysis of neural networks:

 $\mathsf{DCFL'}$ -simple $L_{\#} \notin \mathsf{1ANN} \longrightarrow \mathsf{DCFL'} \cap \mathsf{1ANN} = \emptyset$

Open Problems

- Is $L_{\#}$ CFL'-simple or UCFL'-simple (Unambiguous CFL') ? (\longrightarrow (U)CFL' \cap 1ANN $\stackrel{?}{=} \emptyset$)
- Examples of nontrivial C-simple problems for other complexity classes C under suitable reductions ?