
46th International Symposium on
Mathematical Foundations of Computer Science
August 23-27, 2021, Tallinn (Estonia)

The Simplest Non-Regular Deterministic
Context-Free Language

Jǐŕı Š́ıma
sima@cs.cas.cz

Institute of Computer Science
Czech Academy of Sciences, Prague, Czechia

joint work with Petr Jančar
pj.jancar@gmail.com

Department of Computer Science
Palacký University Olomouc, Czechia

C-Hard Problems
C is a complexity class of decision problems (i.e. formal languages)

A ≤ B is a reduction transforming a problem A to a problem B (a preorder),
which is assumed not to have a higher computational complexity than C

H is a C-hard problem (under the reduction ≤) if for every A ∈ C, A ≤ H

• If a C-hard problem has a (computationally) “easy” solution,
then each problem in C has an “easy” solution (via the reduction).

• If a C-hard problem H is in C (a so-called C-complete problem),
then H belongs to the hardest problems in the class C.

2/19

The Most Prominent Example: NP-Hard Problems
C = NP is the class of decision problems solvable in polynomial time by

a nondeterministic Turing machine

A≤PmB is a polynomial-time many-one reduction (Karp reduction) fromA toB

the satisfiability problem SAT is NP-hard: for every A ∈ NP, A ≤Pm SAT

• If an NP-hard problem is polynomial-time solvable,
then each NP problem would be solved in polynomial time.

• The NP-hard problem SAT is in NP (i.e. SAT is NP-complete),
that is, SAT belongs to the hardest problems (NPC) in the class NP.

3/19

C-Simple Problems
a conceptual counterpart to C-hard problems:

S is a C-simple problem (under the reduction ≤) if for every A ∈ C, S ≤ A

• If a C-simple problem S proves to be not “easy”,
e.g. S is not solvable by a machine M (M can compute the reduction ≤),

then all problems in C are not “easy”, i.e. C cannot be solved by M .
−→ a new proof technique: a lower bound known for one C-simple
problem S extends to the whole class of problems C

• If a C-simple problem S is in C, then S is the simplest problem in the class C.

A Trivial Example: SAT is simple for the class of NP-hard problems under ≤Pm
4/19

A Nontrivial Example of a C-Simple Problem
C = DCFL’ = DCFL \ REG

is the class of non-regular deterministic context-free languages
L1≤Att L2 is a truth-table reduction (a stronger Turing reduction) fromL1 toL2

implemented by a Mealy machine with the oracle L2

The Main Result:
the language L# = {0n1n | n ≥ 1} over the binary alphabet {0, 1} is

DCFL’-simple under the reduction ≤Att : for every L ∈ DCFL’, L# ≤Att L

−→ L# ∈ DCFL’ is the simplest non-regular deterministic context-free languages

cf. the hardest context-free languageL0 due to S. Greibach (1973) is CFL-hard

5/19

Mealy Machines

A is a Mealy Machine with an input/output alphabet Σ/∆
i.e. a deterministic finite automaton with an output tape:

input word w ∈ Σ∗

initial state q0

6/19

Mealy Machines

A is a Mealy Machine with an input/output alphabet Σ/∆
i.e. a deterministic finite automaton with an output tape:

current input symbol a ∈ Σ

state transition
from q1 to q2

output string u ∈ ∆∗

6/19

Mealy Machines

A is a Mealy Machine with an input/output alphabet Σ/∆
i.e. a deterministic finite automaton with an output tape:

input w ∈ Σ∗

“final” state q

output A(w) ∈ ∆∗

−→ a deterministic finite-state transducer: w ∈ Σ∗ 7−→ A(w) ∈ ∆∗

6/19

The Truth-Table Reduction by Oracle Mealy Machines
AL2 is a Mealy Machine A with an oracle L2 ⊆ ∆∗ :

rq queries:
?
∈ L2 for every i = 1, . . . , rq

for each state q of A :

• rq suffixes sq,1, . . . , sq,rq ∈ ∆∗

• truth table Tq : {0, 1}rq → {0, 1}
with rq variables

w ∈ Σ∗ is accepted by AL2 iff w brings A to the state q such that

Tq

(
A(w) ·sq,1

?
∈ L2 , A(w) ·sq,2

?
∈ L2 , . . . , A(w) ·sq,rq

?
∈ L2

)
= 1

L1 ≤Att L2: L1 ⊆ Σ∗ is truth-table reducible to L2 ⊆ ∆∗ iff
L1 = L(AL2) is accepted by some Mealy machine AL2 with oracle L2

Proposition: The relation ≤Att is a preorder.
7/19

Why L# = {0n1n | n ≥ 1} Is the Simplest DCFL’ language?

any reduced context-free grammarG generating a non-regular language L ⊆ ∆∗

is self-embedding: there is a self-embedding nonterminal A admitting the derivation

A⇒∗ xAy for some non-empty strings x, y ∈ ∆+ (Chomsky, 1959)

G is reduced −→ S ⇒∗ vAz and A⇒∗ w for some v, w, z ∈ ∆∗

−→ S ⇒∗ vxmwymz ∈ L for every m ≥ 0 (1)

??? a conceivable (one-one) reduction from L# to L : for every m,n ≥ 1,
0m1n ∈ {0, 1}∗ 7−→ vxmwynz ∈ ∆∗

(the inputs outside 0+1+ are mapped onto some fixed string outside L)

since 0m1n ∈ L# implies vxmwynz ∈ L by (1)

!!! however, the opposite implication may not be true:

8/19

Why L# Is the Simplest DCFL’ language? (cont.)

!!! however, the opposite implication may not be true:

for the DCFL’ language L1 = {ambn | 1 ≤ m ≤ n} over ∆ = {a, b}

there are no words v, x, w, y, z ∈ ∆∗ such that for every m,n ≥ 1,

vxmwynz ∈ L1 would ensure m = n

nevertheless, already two inputs ambn−1 ?
∈ L1 and ambn

?
∈ L1 decides m ?= n

−→ the truth-table reduction from L# to L1 with two queries to the oracle L1 :

0m1n ∈ {0, 1}∗ 7−→ vxmwyn−1z ∈ ∆∗ , vxmwynz ∈ ∆∗

where x = a, y = b, v = w = z = ε is the empty string

satisfying 0m1n ∈ L# iff (vxmwyn−1z /∈ L1 and vxmwynz ∈ L1)

this can be generalized to any DCFL’ language L :

9/19

The Main Technical Result
Theorem: Let L ⊆ ∆∗ be a non-regular deterministic context-free language
over an alphabet ∆. There exist non-empty words v, x, w, y, z ∈ ∆+ and
a language L′ ∈ {L,L} (where L = ∆∗ r L is the complement of L)
such that
1. either for all m,n ≥ 0, vxmwynz ∈ L′ iff m = n ,
2. or for all m,n ≥ 0, vxmwynz ∈ L′ iff m ≤ n .

1. 2.

In particular, for all m ≥ 0 and n > 0,

(vxmwyn−1z /∈ L′ and vxmwynz ∈ L′) iff m = n .
10/19

The Truth-Table Reduction From L# to Any DCFL’L
implemented by a Mealy machine AL with two queries to the oracle L :

For any DCFL’ language L ⊆ ∆∗ , Theorem provides v, x, w, y, z ∈ ∆+

and L′ ∈ {L,L} , say L′ = L (analogously for L′ = L), such that
(vxmwyn−1z /∈ L and vxmwynz ∈ L) iff m = n . (2)

AL transforms the input 0m1n to the output A(0m1n) = vxmwyn−1 ∈ ∆+

(the inputs outside 0+1+ are rejected), while moving to the state q
with rq = 2 suffixes sq,1, sq,2 and the truth table Tq : {0, 1}2 −→ {0, 1}

A(0m1n) · z = A(0m1n) · yz =

vxmwyn−1z
?
∈ L vxmwynz

?
∈ L Tq

0 1 1
0 0 0
1 1 0
1 0 0

sq,1 = z
sq,2 = yz

It follows from (2) that L(AL) = L# , i.e. L# ≤Att L .
11/19

Ideas of the Proof of the Theorem
(inspired by some ideas on regularity of pushdown processes due to Jančar, 2020)
• any non-regular DCFL language L ⊆ ∆∗ is accepted

by a deterministic pushdown automatonM by the empty stack
• since L /∈ REG, there is a computation byM , reaching configurations with

an arbitrary large stack which is being erased afterwards ,
corresponding to v, x, w, y, z ∈ ∆+ such that vxmwymz ∈ L for all m ≥ 1

• in addition, we aim to ensure that for all m ≥ 0 and n > 0,
(vxmwyn−1z /∈ L′ and vxmwynz ∈ L′) iff m = n

(L′ = L)
12/19

Ideas of the Proof of the Theorem
(inspired by some ideas on regularity of pushdown processes due to Jančar, 2020)
• any non-regular DCFL language L ⊆ ∆∗ is accepted

by a deterministic pushdown automatonM by the empty stack
• since L /∈ REG, there is a computation byM , reaching configurations with

an arbitrary large stack which is being erased afterwards ,
corresponding to v, x, w, y, z ∈ ∆+ such that vxmwymz ∈ L for all m ≥ 1

• in addition, we aim to ensure that for all m ≥ 0 and n > 0,
(vxmwyn−1z /∈ L′ and vxmwynz ∈ L′) iff m = n

• we study the computation ofM on an infinite word that traverses infinitely
many pairwise non-equivalent configurations

• we use a natural congruence property of language equivalence on the set of
configurations (determinism ofM is essential)

• we apply Ramsey’s theorem for extracting the required v, x, w, y, z ∈ ∆+

from the infinite computation

12/19

Basic Properties of DCFL’-Simple Problems

DCFLS is the class of DCFL’-simple problems

Proposition:

• REG (DCFLS (DCFL ,
e.g. L# ∈ DCFLS, LR = {wcwR | w ∈ {a, b}∗} /∈ DCFLS

• The class DCFLS is closed under complement and intersection with regular
languages.

• The class DCFLS is not closed under concatenation, intersection, and union.

13/19

An Application of DCFL’-Simple L# in Neural Networks
(this application has originally inspired the concept of a DCFL’-simple problem)
The Computational Power of Neural Networks (NNs)

(discrete-time recurrent NNs with the saturated-linear activation function)
depends on the information contents of weight parameters:

• integer weights: finite automaton (FA) (Minsky, 1967)

• rational weights: Turing machine (TM) (Siegelmann, Sontag, 1995)

polynomial time ≡ the complexity class P

• arbitrary real weights: “super-Turing” computation (Siegelmann, Sontag, 1994)

polynomial time ≡ the nonuniform complexity class P/poly
exponential time ≡ any I/O mapping

• increasing Kolmogorov complexity of real weights
polynomial time ≡ a proper hierarchy of nonuniform complexity classes

between P and P/poly (Balcázar, Gavaldà, Siegelmann, 1997)

??? the gap in the analysis between realistic integer and rational weights
w.r.t. Chomsky hierarchy: regular vs. recursively enumerable languages

14/19

A Neural Network Model with Increasing Analogicity
from integer to rational weights

αANN = a binary-state NN with integer weights
+ α extra analog-state neurons with rational weights

wji ∈
{

Q j = 1, . . . , α
Z j = α+ 1, . . . , s

i ∈ {0, . . . , s}

α = 2

15/19

A Neural Network Model with Increasing Analogicity
from binary ({0, 1}) to analog ([0, 1]) states of neurons

αANN = a binary-state NN with integer weights
+ α extra analog-state neurons with rational weights

y
(t+1)
j = σj

(
s∑
i=0

wjiy
(t)
i

)
j = 1, . . . , s updating the states of neurons

σj(ξ) =

σ(ξ) =

 1 for ξ ≥ 1
ξ for 0 < ξ < 1
0 for ξ ≤ 0

j = 1, . . . , α
saturated-linear
function

H(ξ) =
{

1 for ξ ≥ 0
0 for ξ < 0 j = α+ 1, . . . , s Heaviside

function

16/19

The Analog Neuron Hierarchy (Š́ıma, 2019, 2020)

the computational power of NNs increases with the number α of extra analog neurons:

FA ≡ 0ANN ⊆ 1ANN ⊆ 2ANN ⊆ 3ANN ⊆ . . . ≡ TM
↑ × ↑

integer weights Chomsky hierarchy rational weights

• L# = {0n1n | n ≥ 1} /∈ 1ANN ⊂ CSL (Context-Sensitive Languages)

• L1 =
{
x1 . . . xn ∈ {0, 1}∗

∣∣∣ ∑n
k=1 xn−k+1

(3
2

)−k
< 1

}
∈ 1ANN \ CFL

• DCFL ⊂ 2ANN
• 3ANN ≡ TM

17/19

The Technique of Expanding a Lower Bound
• L# /∈ 1ANN with a nontrivial proof (based on the Bolzano–Weierstrass

theorem) which can hardly be generalized to another DCFL’ language
• L# is DCFL’-simple under ≤Att
• the reduction ≤Att to any L ∈ 1ANN can be implemented by 1ANN

−→ the known lower bound L# /∈ 1ANN for a single DCFL’-simple problem L#

is extended to the whole class DCFL’ ∩ 1ANN = ∅

Comments:
• If any DCFL’ language proves to be CFL’-simple, then CFL’ ∩ 1ANN = ∅ .
• L# is not CSL’-simple since L# ≤Att L1 ∈ 1ANN would imply L# ∈ 1ANN

18/19

A Summary
• We have introduced a new notion of C-simple problems which is a conceptual

counterpart to C-hard problems.

• We have shown L# = {0n1n | n ≥ 1} to be a DCFL’-simple problem
under the truth-table reduction by oracle Mealy machines:

−→ L# is the simplest DCFL’ problem

• We have proposed a new proof technique of expanding a lower bound known
for a single C-simple problem to the whole class of problems C, which has
been illustrated by a nontrivial application to the analysis of neural networks:

DCFL’-simple L# /∈ 1ANN −→ DCFL’ ∩ 1ANN = ∅

Open Problems
• Is L# CFL’-simple or UCFL’-simple (Unambiguous CFL’) ?

(−→ (U)CFL’ ∩ 1ANN ?= ∅)

• Examples of nontrivial C-simple problems for other complexity classes C
under suitable reductions ?

19/19

