The Simplest Non-Regular Deterministic Context-Free Language

joint work with
Petr Jančar
pj.jancar@gmail.com
Department of Computer Science
Palacký University Olomouc, Czechia

\mathcal{C}-Hard Problems

\mathcal{C} is a complexity class of decision problems (i.e. formal languages)
$\boldsymbol{A} \leq \boldsymbol{B}$ is a reduction transforming a problem \boldsymbol{A} to a problem \boldsymbol{B} (a preorder), which is assumed not to have a higher computational complexity than \mathcal{C}
\boldsymbol{H} is a \mathcal{C}-hard problem (under the reduction \leq) if for every $\boldsymbol{A} \in \mathcal{C}, \boldsymbol{A} \leq \boldsymbol{H}$

- If a \mathcal{C}-hard problem has a (computationally) "easy" solution, then each problem in \mathcal{C} has an "easy" solution (via the reduction).
- If a \mathcal{C}-hard problem \boldsymbol{H} is in \mathcal{C} (a so-called \mathcal{C}-complete problem), then \boldsymbol{H} belongs to the hardest problems in the class \mathcal{C}.

The Most Prominent Example: NP-Hard Problems

$\mathcal{C}=\mathrm{NP}$ is the class of decision problems solvable in polynomial time by a nondeterministic Turing machine
$\boldsymbol{A} \leq_{m}^{P} \boldsymbol{B}$ is a polynomial-time many-one reduction (Karp reduction) from \boldsymbol{A} to \boldsymbol{B} the satisfiability problem SAT is NP-hard: for every $\boldsymbol{A} \in \mathrm{NP}, \boldsymbol{A} \leq_{m}^{P}$ SAT

- If an NP-hard problem is polynomial-time solvable, then each NP problem would be solved in polynomial time.
- The NP-hard problem SAT is in NP (i.e. SAT is NP-complete), that is, SAT belongs to the hardest problems (NPC) in the class NP.

\mathcal{C}-Simple Problems

a conceptual counterpart to \mathcal{C}-hard problems:
S is a \mathcal{C}-simple problem (under the reduction \leq) if for every $A \in \mathcal{C}, S \leq A$

- If a \mathcal{C}-simple problem S proves to be not "easy",
e.g. S is not solvable by a machine M (M can compute the reduction $\leq)$, then all problems in \mathcal{C} are not "easy", i.e. \mathcal{C} cannot be solved by M.
\longrightarrow a new proof technique: a lower bound known for one \mathcal{C}-simple problem S extends to the whole class of problems \mathcal{C}
- If a \mathcal{C}-simple problem \boldsymbol{S} is in \mathcal{C}, then \boldsymbol{S} is the simplest problem in the class \mathcal{C}.

A Trivial Example: SAT is simple for the class of NP-hard problems under \leq_{m}^{P}

A Nontrivial Example of a \mathcal{C}-Simple Problem

$\mathcal{C}=$ DCFL' $^{\prime}=$ DCFL \backslash REG
is the class of non-regular deterministic context-free languages
$L_{1} \leq_{t t}^{A} \boldsymbol{L}_{2}$ is a truth-table reduction (a stronger Turing reduction) from \boldsymbol{L}_{1} to \boldsymbol{L}_{2} implemented by a Mealy machine with the oracle \boldsymbol{L}_{2}

The Main Result:

the language $L_{\#}=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$ over the binary alphabet $\{0,1\}$ is
DCFL'-simple under the reduction $\leq_{t t}^{A}$: for every $L \in$ DCFL', $^{\prime} L_{\#} \leq_{t t}^{A} L$ $\longrightarrow \boldsymbol{L}_{\#} \in$ DCFL' is the simplest non-regular deterministic context-free languages cf. the hardest context-free language \boldsymbol{L}_{0} due to S . Greibach (1973) is CFL-hard

Mealy Machines

\mathcal{A} is a Mealy Machine with an input/output alphabet $\Sigma / \boldsymbol{\Delta}$
i.e. a deterministic finite automaton with an output tape:

Mealy Machines

\mathcal{A} is a Mealy Machine with an input/output alphabet $\Sigma / \boldsymbol{\Delta}$
i.e. a deterministic finite automaton with an output tape:

current input symbol $\boldsymbol{a} \in \Sigma$
state transition from \boldsymbol{q}_{1} to \boldsymbol{q}_{2}
output string $u \in \Delta^{*}$

Mealy Machines

\mathcal{A} is a Mealy Machine with an input/output alphabet Σ / Δ
i.e. a deterministic finite automaton with an output tape:

\longrightarrow a deterministic finite-state transducer: $w \in \Sigma^{*} \longmapsto \mathcal{A}(w) \in \Delta^{*}$

The Truth-Table Reduction by Oracle Mealy Machines

 $\mathcal{A}^{L_{2}}$ is a Mealy Machine \mathcal{A} with an oracle $L_{2} \subseteq \Delta^{*}$:
for each state q of \mathcal{A} :

- r_{q} suffixes $s_{q, 1}, \ldots, s_{q, r_{q}} \in \Delta^{*}$
- truth table $T_{q}:\{0,1\}^{r_{q}} \rightarrow\{0,1\}$ with $\boldsymbol{r}_{\boldsymbol{q}}$ variables

$$
r_{q} \text { queries: } \stackrel{L_{2}}{\in} \quad \text { for every } i=1, \ldots, r_{q}
$$

$\boldsymbol{w} \in \Sigma^{*}$ is accepted by $\mathcal{A}^{L_{2}}$ iff \boldsymbol{w} brings \mathcal{A} to the state \boldsymbol{q} such that
$T_{q}\left(\mathcal{A}(\boldsymbol{w}) \cdot s_{q, 1} \stackrel{?}{\in} L_{2}, \mathcal{A}(\boldsymbol{w}) \cdot s_{q, 2} \stackrel{?}{\in} L_{2}, \ldots, \mathcal{A}(\boldsymbol{w}) \cdot s_{q, r_{q}} \stackrel{?}{\in} L_{2}\right)=1$
$L_{1} \leq_{t t}^{A} L_{2}: \quad L_{1} \subseteq \Sigma^{*}$ is truth-table reducible to $L_{2} \subseteq \Delta^{*}$ iff
$L_{1}=\mathcal{L}\left(\mathcal{A}^{L_{2}}\right)$ is accepted by some Mealy machine $\mathcal{A}^{L_{2}}$ with oracle \boldsymbol{L}_{2}
Proposition: The relation $\leq_{t t}^{A}$ is a preorder.

Why $L_{\#}=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$ Is the Simplest DCFL' language?

any reduced context-free grammar G generating a non-regular language $L \subseteq \Delta^{*}$
is self-embedding: there is a self-embedding nonterminal \boldsymbol{A} admitting the derivation

$$
A \Rightarrow^{*} x A y \text { for some non-empty strings } x, y \in \Delta^{+} \quad(\text { Chomsky, 1959) }
$$

G is reduced $\longrightarrow \boldsymbol{S} \Rightarrow^{*} \boldsymbol{v} \boldsymbol{A} \boldsymbol{z}$ and $\boldsymbol{A} \Rightarrow^{*} \boldsymbol{w}$ for some $\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{z} \in \Delta^{*}$

$$
\begin{equation*}
\longrightarrow \quad S \Rightarrow^{*} \boldsymbol{v} \boldsymbol{x}^{m} \boldsymbol{w} \boldsymbol{y}^{m} \boldsymbol{z} \in \boldsymbol{L} \text { for every } \boldsymbol{m} \geq \mathbf{0} \tag{1}
\end{equation*}
$$

??? a conceivable (one-one) reduction from $L_{\#}$ to \boldsymbol{L} : for every $\boldsymbol{m}, \boldsymbol{n} \geq \mathbf{1}$,

$$
0^{m} 1^{n} \in\{0,1\}^{*} \longmapsto v x^{m} w y^{n} z \in \Delta^{*}
$$

(the inputs outside $\mathbf{0}^{+} \mathbf{1}^{+}$are mapped onto some fixed string outside \boldsymbol{L})
since $0^{m} 1^{n} \in L_{\#}$ implies $\boldsymbol{v} \boldsymbol{x}^{m} \boldsymbol{w} \boldsymbol{y}^{n} \boldsymbol{z} \in \boldsymbol{L}$ by (1)
!!! however, the opposite implication may not be true:

Why $L_{\#}$ Is the Simplest DCFL' language? (cont.)

!!! however, the opposite implication may not be true:
for the DCFL' language $L_{1}=\left\{a^{m} b^{n} \mid 1 \leq m \leq n\right\}$ over $\Delta=\{a, b\}$ there are no words $v, x, w, y, z \in \Delta^{*}$ such that for every $m, n \geq 1$,

$$
\boldsymbol{v} \boldsymbol{x}^{m} \boldsymbol{w} \boldsymbol{y}^{n} \boldsymbol{z} \in L_{1} \text { would ensure } \boldsymbol{m}=\boldsymbol{n}
$$

nevertheless, already two inputs $a^{m} b^{n-1} \stackrel{?}{\in} L_{1}$ and $a^{m} b^{n} \stackrel{?}{\in} L_{1}$ decides $m \stackrel{?}{=} n$
\longrightarrow the truth-table reduction from $\boldsymbol{L}_{\#}$ to \boldsymbol{L}_{1} with two queries to the oracle \boldsymbol{L}_{1} :

$$
0^{m} 1^{n} \in\{0,1\}^{*} \longmapsto v x^{m} w y^{n-1} z \in \Delta^{*}, \quad v x^{m} w y^{n} z \in \Delta^{*}
$$ where $\boldsymbol{x}=\boldsymbol{a}, \quad \boldsymbol{y}=\boldsymbol{b}, \quad \boldsymbol{v}=\boldsymbol{w}=\boldsymbol{z}=\varepsilon$ is the empty string

satisfying $0^{m} 1^{n} \in L_{\#}$ iff $\left(v x^{m} w y^{n-1} z \notin L_{1}\right.$ and $\left.\boldsymbol{v} \boldsymbol{x}^{m} \boldsymbol{w} \boldsymbol{y}^{n} z \in L_{1}\right)$
this can be generalized to any DCFL' language L :

The Main Technical Result

Theorem: Let $\boldsymbol{L} \subseteq \Delta^{*}$ be a non-regular deterministic context-free language over an alphabet Δ. There exist non-empty words $v, x, w, y, z \in \Delta^{+}$and a language $L^{\prime} \in\{L, \bar{L}\}$ (where $\bar{L}=\Delta^{*} \backslash L$ is the complement of L) such that

1. either for all $m, n \geq 0, v x^{m} w y^{n} z \in L^{\prime}$ iff $m=n$,
2. or for all $m, n \geq 0, v \boldsymbol{x}^{m} \boldsymbol{w} \boldsymbol{y}^{n} z \in L^{\prime}$ iff $\boldsymbol{m} \leq \boldsymbol{n}$.

In particular, for all $\boldsymbol{m} \geq \mathbf{0}$ and $\boldsymbol{n}>\mathbf{0}$,

$$
\left(v x^{m} w y^{n-1} z \notin L^{\prime} \text { and } v x^{m} w y^{n} z \in L^{\prime}\right) \text { iff } m=n
$$

The Truth-Table Reduction From $L_{\#}$ to Any DCFL' L

 implemented by a Mealy machine \mathcal{A}^{L} with two queries to the oracle L :For any DCFL' language $L \subseteq \Delta^{*}$, Theorem provides $v, x, w, y, z \in \Delta^{+}$ and $L^{\prime} \in\{L, \bar{L}\}$, say $L^{\prime}=L$ (analogously for $L^{\prime}=\bar{L}$), such that

$$
\begin{equation*}
\left(v x^{m} \boldsymbol{w} y^{n-1} z \notin L \text { and } \quad v x^{m} w y^{n} z \in L\right) \quad \text { iff } \quad \boldsymbol{m}=\boldsymbol{n} \tag{2}
\end{equation*}
$$

\mathcal{A}^{L} transforms the input $0^{m} 1^{n}$ to the output $\mathcal{A}\left(0^{m} 1^{n}\right)=v x^{m} w y^{n-1} \in \Delta^{+}$
(the inputs outside $\mathbf{0}^{+} \mathbf{1}^{+}$are rejected), while moving to the state \boldsymbol{q} with $r_{q}=2$ suffixes $s_{q, 1}, s_{q, 2}$ and the truth table $\boldsymbol{T}_{q}:\{0,1\}^{2} \longrightarrow\{0,1\}$

It follows from (2) that $\mathcal{L}\left(\mathcal{A}^{L}\right)=L_{\#}$, i.e. $L_{\#} \leq_{t t}^{A} L$.

Ideas of the Proof of the Theorem

(inspired by some ideas on regularity of pushdown processes due to Jančar, 2020)

- any non-regular DCFL language $L \subseteq \Delta^{*}$ is accepted by a deterministic pushdown automaton $\boldsymbol{\mathcal { M }}$ by the empty stack
- since $\boldsymbol{L} \notin$ REG, there is a computation by $\boldsymbol{\mathcal { M }}$, reaching configurations with an arbitrary large stack which is being erased afterwards, corresponding to $\boldsymbol{v}, \boldsymbol{x}, \boldsymbol{w}, \boldsymbol{y}, \boldsymbol{z} \in \boldsymbol{\Delta}^{+}$such that $\boldsymbol{v} \boldsymbol{x}^{m} \boldsymbol{w} \boldsymbol{y}^{m} \boldsymbol{z} \in \boldsymbol{L}$ for all $\boldsymbol{m} \geq \mathbf{1}$
- in addition, we aim to ensure that for all $m \geq 0$ and $n>0$, $\left(\boldsymbol{v} \boldsymbol{x}^{m} \boldsymbol{w} \boldsymbol{y}^{n-1} \boldsymbol{z} \notin \boldsymbol{L}^{\prime}\right.$ and $\left.\boldsymbol{v} \boldsymbol{x}^{m} \boldsymbol{w} \boldsymbol{y}^{n} \boldsymbol{z} \in \boldsymbol{L}^{\prime}\right)$ iff $\boldsymbol{m}=\boldsymbol{n}$

Ideas of the Proof of the Theorem

(inspired by some ideas on regularity of pushdown processes due to Jančar, 2020)

- any non-regular DCFL language $L \subseteq \Delta^{*}$ is accepted by a deterministic pushdown automaton \mathcal{M} by the empty stack
- since $\boldsymbol{L} \notin$ REG, there is a computation by $\boldsymbol{\mathcal { M }}$, reaching configurations with an arbitrary large stack which is being erased afterwards, corresponding to $\boldsymbol{v}, \boldsymbol{x}, \boldsymbol{w}, \boldsymbol{y}, \boldsymbol{z} \in \Delta^{+}$such that $\boldsymbol{v} \boldsymbol{x}^{m} \boldsymbol{w} \boldsymbol{y}^{m} \boldsymbol{z} \in \boldsymbol{L}$ for all $\boldsymbol{m} \geq \mathbf{1}$
- in addition, we aim to ensure that for all $m \geq 0$ and $n>0$, $\left(\boldsymbol{v} \boldsymbol{x}^{m} \boldsymbol{w} \boldsymbol{y}^{n-1} \boldsymbol{z} \notin \boldsymbol{L}^{\prime}\right.$ and $\left.\boldsymbol{v} \boldsymbol{x}^{m} \boldsymbol{w} \boldsymbol{y}^{n} \boldsymbol{z} \in \boldsymbol{L}^{\prime}\right)$ iff $\boldsymbol{m}=\boldsymbol{n}$
- we study the computation of $\boldsymbol{\mathcal { M }}$ on an infinite word that traverses infinitely many pairwise non-equivalent configurations
- we use a natural congruence property of language equivalence on the set of configurations (determinism of $\boldsymbol{\mathcal { M }}$ is essential)
- we apply Ramsey's theorem for extracting the required $\boldsymbol{v}, \boldsymbol{x}, \boldsymbol{w}, \boldsymbol{y}, \boldsymbol{z} \in \Delta^{+}$ from the infinite computation

Basic Properties of DCFL'-Simple Problems

DCFLS is the class of DCFL'-simple problems
Proposition:

- REG $\subsetneq D C F L S \subsetneq D C F L$,
e.g. $\quad L_{\#} \in$ DCFLS, $\quad L_{R}=\left\{w \boldsymbol{c} w^{R} \mid w \in\{a, b\}^{*}\right\} \notin$ DCFLS

- The class DCFLS is closed under complement and intersection with regular languages.
- The class DCFLS is not closed under concatenation, intersection, and union.

An Application of DCFL'-Simple $L_{\#}$ in Neural Networks

 (this application has originally inspired the concept of a DCFL'-simple problem)
The Computational Power of Neural Networks (NNs)

(discrete-time recurrent NNs with the saturated-linear activation function) depends on the information contents of weight parameters:

- integer weights: finite automaton (FA) (Minsky, 1967)
- rational weights: Turing machine (TM) (Siegelmann, Sontag, 1995) polynomial time \equiv the complexity class P
- arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time \equiv the nonuniform complexity class $\mathrm{P} /$ poly exponential time \equiv any I/O mapping
- increasing Kolmogorov complexity of real weights polynomial time \equiv a proper hierarchy of nonuniform complexity classes between \mathbf{P} and $\mathbf{P} /$ poly (Balcázar, Gavaldà, Siegelmann, 1997)
??? the gap in the analysis between realistic integer and rational weights w.r.t. Chomsky hierarchy: regular vs. recursively enumerable languages

A Neural Network Model with Increasing Analogicity

 from integer to rational weightsα ANN $=$ a binary-state NN with integer weights $+\alpha$ extra analog-state neurons with rational weights

A Neural Network Model with Increasing Analogicity

from binary $(\{0,1\})$ to analog $([0,1])$ states of neurons

α ANN $=$ a binary-state NN with integer weights $+\alpha$ extra analog-state neurons with rational weights
$\boldsymbol{y}_{j}^{(t+1)}=\sigma_{j}\left(\sum_{i=0}^{s} \boldsymbol{w}_{j i} \boldsymbol{y}_{i}^{(t)}\right) \quad j=1, \ldots, s \quad$ updating the states of neurons

The Analog Neuron Hierarchy (Šíma, 2019, 2020)
the computational power of NNs increases with the number $\boldsymbol{\alpha}$ of extra analog neurons:

3ANN \equiv TM

- $L_{\#}=\left\{0^{n} 1^{n} \mid n \geq 1\right\} \notin 1$ ANN \subset CSL (Context-Sensitive Languages)
- $L_{1}=\left\{x_{1} \ldots x_{n} \in\{0,1\}^{*} \left\lvert\, \sum_{k=1}^{n} x_{n-k+1}\left(\frac{3}{2}\right)^{-k}<1\right.\right\} \in 1$ ANN \backslash CFL
- DCFL $\subset 2$ ANN
- 3ANN \equiv TM

The Technique of Expanding a Lower Bound

- $\boldsymbol{L}_{\#} \notin 1$ ANN with a nontrivial proof (based on the Bolzano-Weierstrass theorem) which can hardly be generalized to another DCFL' language
- $\boldsymbol{L}_{\#}$ is DCFL'-simple under $\leq_{t t}^{\boldsymbol{A}}$
- the reduction $\leq_{t t}^{A}$ to any $L \in 1$ ANN can be implemented by 1ANN
\longrightarrow the known lower bound $L_{\#} \notin 1$ ANN for a single DCFL'-simple problem $\boldsymbol{L}_{\#}$ is extended to the whole class DCFL' $\cap 1$ ANN $=\emptyset$

Comments:

- If any DCFL' language proves to be CFL'-simple, then CFL' $\cap 1$ ANN $=\emptyset$.
- $\boldsymbol{L}_{\#}$ is not CSL'-simple since $\boldsymbol{L}_{\#} \leq_{t t}^{\boldsymbol{A}} \boldsymbol{L}_{1} \in 1$ ANN would imply $\boldsymbol{L}_{\#} \in 1$ ANN

A Summary

- We have introduced a new notion of \mathcal{C}-simple problems which is a conceptual counterpart to \mathcal{C}-hard problems.
- We have shown $L_{\#}=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$ to be a DCFL'-simple problem under the truth-table reduction by oracle Mealy machines:

$\longrightarrow \boldsymbol{L}_{\#}$ is the simplest DCFL' problem

- We have proposed a new proof technique of expanding a lower bound known for a single \mathcal{C}-simple problem to the whole class of problems \mathcal{C}, which has been illustrated by a nontrivial application to the analysis of neural networks:

$$
\text { DCFL'-simple } \boldsymbol{L}_{\#} \notin 1 \text { ANN } \quad \longrightarrow \quad D C F L^{\prime} \cap 1 A N N=\emptyset
$$

Open Problems

- Is $\boldsymbol{L}_{\#}$ CFL'-simple or UCFL'-simple (Unambiguous CFL') ?

$$
\left(\longrightarrow(U) C^{\prime} L^{\prime} \cap 1 \mathrm{ANN} \stackrel{?}{=} \emptyset\right)
$$

- Examples of nontrivial \mathcal{C}-simple problems for other complexity classes \mathcal{C} under suitable reductions ?

