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(Artificial) Neural Networks (NNs)

1. mathematical models of biological neural networks
e simulating and understanding the brain (The Human Brain Project)

e modeling cognitive functions

2. computing devices alternative to conventional computers

already first computer designers sought their inspiration in the human brain
(e.g., neurocomputer due to Minsky, 1951)

e common tools in machine learning or data mining (learning from training data)
e professional software implementations (e.g. Matlab, Statistica modules)

e successful commercial applications in Al (e.g. deep learning):
pattern recognition, control, prediction, decision-making, signal analysis, fault
detection, diagnostics, etc.



The Neural Network Model — Architecture

s computational units (neurons), indexed as V' = {1,..., s}, connected into

a directed graph (V, A) where A CV XV




The Neural Network Model — Weights

each edge (¢,7) € A from unit ¢ to j is labeled with a real weight w;; € R
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The Neural Network Model — Zero Weights

each edge (¢,7) € A from unit ¢ to j is labeled with a real weight wj;; € R
(wki = 0 iff (Z, k) ¢ A)
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The Neural Network Model — Biases

each neuron 7 € V is associated with a real bias wjp € R
(i.e. a weight of (0,7) € A from an additional formal neuron 0 € V)
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Discrete-Time Computational Dynamics — Network State

the evolution of global network state (output) y®*) = (yit), .y e 0,18

at discrete time instant £ = 0,1, 2,...
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Discrete-Time Computational Dynamics — Initial State

t = 0: initial network state y(®) € {0,1}*
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Discrete-Time Computational Dynamics: t =1

t = 1: network state y(!) € [0, 1]*
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Discrete-Time Computational Dynamics: t = 2

t = 2: network state y(3) € [0, 1]*

¢ ¢

PRI
B gw‘ i -
o O o




Discrete-Time Computational Dynamics — Excitations

at discrete time instant £ > 0, an excitation is computed as

53(-t) = wjo-l-z 'wjz'yz(t) = Z wjz'yz(t)
i=0

OO

for g =1,...,s
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where unit 0 € V' has constant output y(()t) = 1foreveryt > 0



Discrete-Time Computational Dynamics — Outputs

at the next time instant ¢ 4 1, only the neurons 3 € a1 from a selected subset

a1 © 'V oupdate their states:

D = o (ﬁg('t)) forg € avpy
’ y§t) forg € V \ ayyq
where o0 : R — [0, 1]

is an activation function, e.g.

1 for€>1

o(§) =¢ & for0<E<K1
0 for£ <0

the saturated-linear function

o(§)




The Computational Power of NNs — Motivations

e the potential and limits of general-purpose computation with NNs:

What is ultimately or efficiently computable by particular NN models?

e idealized mathematical models of practical NNs which abstract away from
implementation issues, e.g. analog numerical parameters are true real numbers

e methodology: the computational power and efficiency of NNs is investigated
by comparing formal NNs to traditional computational models such as finite
automata, Turing machines, Boolean circuits, etc.

e NNs may serve as reference models for analyzing alternative computational
resources (other than time or memory space) such as analog state, continuous
time, energy, temporal coding, etc.

e NNs capture basic characteristics of biological nervous systems (plenty of
densely interconnected simple unreliable computational units)

— computational principles of mental processes



Neural Networks As Formal Language Acceptors

language (problem) L C X* over a finite alphabet X

T)) [ 1ifxelL @ | 1ift=T(n)
out 0Oifxg L v =\ 0ift#T(n)

1 4
Y Y = {out,val} output neurons

T'(n) isthe computational time
Q in terms of input length n > 0

@, @

O O d > 1 is the time overhead for
processing a single input symbol

B @ O r-comev

Input neurons

T y§d(i_1)+k) =1 iff 3 = enum(x;)

X = X1T2...Lj—1 — &Tj — Tij11Tj12...Tyn € X*  input word



The Computational Power of NNs — Integer Weights

depends on the information content of weight parameters:

1. integer weights: finite automaton (FA) (Minsky, 1967)

wj; € Z —> excitations §; € Z —> states y; € {0,1}

—> 2% global NN statesy € {0,1}°* ~  FA states

size-optimal implementations:

o O (\/m) neurons for a deterministic FA with m states
(Indyk, 1995; Horne, Hush, 1995)

e O(m) neurons for a regular expression of length m

(Sima, Wiedermann 1998)



The Computational Power of NNs — Rational Weights

depends on the information content of weight parameters:

2. rational weights: Turing machine (Siegelmann, Sontag, 1995)

o w;; € Q are fractions g where p € Z, q € N

e NNs compute algorithmically solvable problems

e real-time simulation of TMs —— polynomial time = complexity class P

e a universal NN with 25 neurons (Indyk, 1995)

— the halting problem of whether a small NN terminates its computation,

is algorithmically undecidable



The Computational Power of NNs — Real Weights

depends on the information content of weight parameters:

3. arbitrary real weights: “super-Turing” computation (Siegelmann, Sontag, 1994)

o wj;; € R, e.g. irrational weights V2

e infinite precision of ONE real weight (vs. an algorithm has a finite description)
can encode any function f: 0.code(C}) code(C:) code(C3) ...

(code(C,) encodes the circuit C,, computing f for inputs of length n)

— exponential time = any |/O mapping

(including algorithmically undecidable problems)

e polynomial time = nonuniform complexity class P /poly:

problems solvable by a polynomial-time (P) algorithm that for input € >*
of length m = |x|, receives an external advise: a string s(n) € X* of
polynomial length |s(n)| = O(n®) (poly), which depends only on n



The Computational Power of NNs — Rough Overview

depends on the information content of weight parameters:

1. integer weights: finite automaton

2. rational weights: Turing machine

polynomial time = complexity class P

3. arbitrary real weights: “super-Turing” computation

polynomial time = nonuniform complexity class P/poly

exponential time = any |/O mapping



Neural Networks Between Rational and Real Weights

1. integer weights: finite automaton

2. rational weights: Turing machine

polynomial time = P

polynomial time & increasing Kolmogorov complexity of real weights:

the length of the shortest program (in a fixed programming language) that

produces a real weight,

eg. K (\/5) = 0O(1), K (“random strings") = n + O(1)

= a proper hierarchy of nonuniform complexity classes between P and P /poly

(Balcdzar, Gavalda, Siegelmann, 1997)

3. arbitrary real weights: “super-Turing” computation
polynomial time = P/poly



Neural Networks Between Integer and Rational Weights
1. integer weights: finite automata = regular (Type-3) languages

a gap between integer and rational weights w.r.t. the Chomsky hierarchy:

pushdown automata = context-free (Type-2) languages

linear-bounded automata (NSPACE(O(n))) = context-sensitive (Type-1) languages

2. rational weights: Turing machines = recursively enumerable (Type-0) lang.

TWO analog neurons with rational weights + a few integer-weight neurons

can implement a 2-stack pushdown automaton = Turing machine

—— What is the computational power of ONE extra analog neuron ?



A Neural Network with an Extra Analog Neuron (1ANN)

all the weights to neurons are integers except for ONE neuron s with rational weights:

173=1,...,s—1




The Representation Theorem for 1ANNs (Sina, 1J0NN 2017)

A language L C X* that is accepted by a 1ANN satisfying 0 < |wss| < 1,
can be written as

*

D Pref
L=nh (U (L<e, ML, )™ Ar> NRy| NR

r=0

(options: L~o, L~c, N Lec, .y Loe, N Lsc, 5y Lec, ML,y Loy)
where

e A= {Zf;& W Y; | Y1y--+5Ys—1 € {0, 1}} U {0,1} C Qs a finite
alphabet of (rational) digits

o h: A* — X is a letter-to-letter morphism

e R, Ry C A* are regular languages

o SPreS denotes the largest prefix-closed subset of S U A U {e}
e Ay,..., A, is a partition of a finite alphabet A

o K denotes the reversal of language K



The Representation Theorem for 1ANNs (5ima, 1J0NN 2017)

A language L C X* that is accepted by a 1ANN satisfying 0 < |wss| < 1,
can be written as

*

D Pref
L=nh (U (L<e, ML, )™ Ar> NRy| NR

r=0

where (continued)

oL_., L., C A" areso-called cut languages over digit alphabet A,

Z a3 F < C}

L_..= {al...an c A*
k=1

e 0 =c; <c3 < -+ < ¢p =1 are (rational) thresholds such that
C={ciy...,cp} = {—Zf;(};‘f,’—j:yz J €V \(XU{s}) st wjs #0,
Yigeee9Ys—1 < {091}} U {071} C @

e 3= -1 € Qiscalled a (rational) base (radix) — |B| > 1

Wss



Representations of Numbers in Non-Integer Bases

non-standard positional numeral systems: a base and/or digits need not be integers

e 3 € R is a real base (radix) such that |3| > 1
e ) # A C Ris a finite set of real digits

a word (string) composed of digits a;...a, € A* (the radix point omitted),
called a finite 3-expansion, represents a number in base 3 as

(0.ay...ap)3 = a8 ' +aB *+aB P +---+a,8" = Z apB3 "
k=1

Examples:
1. =10, A={0,1,2,...,9}

decimal expansion 75 represents % = (0.75)10=7-10"'4+5.10""2
2. =2 A=1{0,1}

binary expansion 11 represents % =(0.11); =1-2"141.272
3.8=35, A= {31}

. 7 5 3 _
-expansion ; ;- represents o = (O .
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Finite 3-Expansions & Cut Languages

a cut language L. contains all the finite 3-expansions a;...a, € A* of
numbers that are less than a threshold ¢ € R (similarly for L. ):

L_..= {al...aneA* (O.al...an)g=Zakﬁ_k<C}
k=1

B e Q, ACQ: L..iscomposed of finite 3-expansions of a Dedekind cut



(Infinite) B-Expansions (rényi, 1957; Parry, 1960)

an infinite word composed of digits ajasasz--- € A“ s a [3-expansion of
number

oo
(0.aiaz2a3++-)p = a8 '+ a8 +aB 4+ = Z arB3~F
k=1
which is a convergent power series due to |3| > 1

Example: 3 = % A ={0,1}

3 _expansion 000(10)“ = 0001010101010 ... € {0,1}* represents

(04

the number
o0 —2k o0 k 16
zz<§> :Z@) __m _ 10
Pt 2 9 1—3 45

k=2

(0.0001010101010 ...)
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Uniqueness of 3-Expansions for Integer Base (3

for an integer base 3 > 0 and the standard digits, A = {0, 1,...,3 — 1},

almost any number from the interval (0, 1) has a unique (3-expansion,

e.g. the decimal expansion 70710678118... € {0,1,2,...,9}% of
? = (0.70710678118... )19

except for those with a finite 3-expansion, which have two distinct 3-expansions,

e.g. two decimal expansions 750“ = 75000..., 749% = 74999... of

3
Z: (0.75)10: (0.75000...)10: (0.74999---)10



Uniqueness of 3-Expansions for Non-Integer Base (3

for a non-integer base 3, almost every number has infinitely (uncountably)
many distinct 3-expansions (Sidorov, 2003)

Example: 1 <3<2 A={0,1}, Dg= (O’ ﬁ)

e 1 <3< ¢ where p = (1+1/5)/2 ~ 1.618034 is the golden ratio:
every © € Dg has uncountably many distinct 3-expansions (Erdés et al.,1990)

o o < 3 < qwhere g = 1.787232 is the Komornik-Loreti constant:
countably many & € D have unique (3-expansions (Glendinning,Sidorov,2001)

eg. B=2=1.6=1.666... — Ds = (0, 3)

3 ’ 2
the infinite word 0%(10)“ (k > 0) represents a unique g—expansion of

(0.0...01010101010 ...)s = ()" &

k times
vs. B3=¢ =(1++/5)/2~1.618034 — D, = (0, ¢)
countably many distinct ¢-expansions (10)¥110%, (10)%, (10)*01* (k > 0)
of the number 1, eg. 1= (0.10) = (0.1010101010...),

e g < (3 < 2: uncountably many & € Dg have unique (3-expansions



Eventually Periodic 3-Expansions
a1as ... 0, (Qp+1QK42 -« - Qpy)~

® a1a3...0a), € AP is a preperiodic part of length k; > 0
(purely periodic 3-expansions meet k; = 0)

® A, 1Ak, +2+--Q;, € A" is a repetend of length m = ky — k1 > 0
whose minimum is the period of 3-expansion

e (0.a1az...0;, Qg +10k42---0ry)3 = (0.a1az2...ar,)p + Bk

1— 3™
Example: 8=32 A={0,1}, 1(10)* =11010101010 ...

_ 3 =(0.1)z+ G)_l. (o.ﬁ)% = <§>_1+ @>_1. 0

where ¢ = (0.@ax, +1Qk 42 -+ Q)3 =

is a periodic point




Eventually Quasi-Periodic 3-Expansions

. w
IB—eXpanS|0n a]_ e o o akl a/k1+1 e o o akz a/k2_|_1 e o o ak3 a/k3+1 e o o ak4 e o o E A

is eventually quasi-periodic if thereis 0 < k; < ks < - -+ such that

O — (O.ak1+1...ak2)5= (O.ak2+1...ak3)3: (O.ak3+1...ak4)5=---

® ajaz...ap, € AP is a preperiodic part of length k;
(purely quasi-periodic 3-expansions meet k1 = 0)

® Ay, y1...Q,,, € A™i is a quasi-repetend of length m; = k;11 — k; > 0

e (0.a1az2az...)3=(0.a1az... akl)g—l—ﬁ_"’lg where for every 7 > 1,

(0.ar, 1---ar, )= — —— = p s a periodic point
— quasi-repetends can be mutually replaced with each other arbitrarily

e a generalization of eventually periodic (3-expansions:

ak1+1...ak2:ak2+1...ak3zak3+1...ak4:---



An Example of Quasi-Periodic 3-Expansion

5 . 1 7 S 3
baseﬁzi, digits A = O’E’Z , periodic point g:Z
7
4

EOREEN
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-1 n — —n—2
o T T SO Q) 0 ()
i
12 - (3)
n times g

— 0= % has uncountably many distinct quasi-periodic g—expansions:

3 7 1 1 7 1 1 7 1 1 7 1 1
—=lo. - ... 0=-Z...20=-Z2....0=-Z2...20 -
4 4 2 2 4 2 2 4 ,2 2 4 2 2

ny, times no times ns times n, times

where 121, 19, N3, . . . is any infinite sequence of nonnegative integers
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Quasi-Periodic Numbers

c € R is (B-quasi-periodic within A if every infinite (3-expansion of ¢ is
eventually quasi-periodic

Examples:

e c from the complement of the Cantor set is 3-quasi-periodic within {0, 2} :

c has no 3-expansion at all

e c—= % is g—quasi—periodic within A = {O, %, % i

5 : 3 . .. . T
all the 3 -expansions of 3 using digits from A, are eventually quasi-periodic
ec=3 = (0. 0011)s is not 2 -quasi-periodic within A = {0, 1} :

greedy (i.e. lexicographically maximal) %—expansion 100000001... of %
is not eventually periodic



Cut Languages Within the Chomsky Hierarchy

(Sima, Savicky, LATA 2017)

L_.= {al...anEA*

(0.ay...ayn)3 = Zakﬁ_k < c}
k=1

Theorem 1 A cut language L . is regular iff ¢ is (3-quasi-periodic within A.

Theorem 2 [et 3 € Q and A C Q. Every cut language L . with threshold
c € Q is context-sensitive.

Theorem 3 If c is not 3-quasi-periodic within A, then the cut language L ..
Is not context-free.

Corollary 1 Any cut language L . is either regular or non-context-free
(depending on whether c is a (3-quasi-periodic number within A).



The Computational Power of 1ANNs (5ima, 130NN 2017)

applying the results on cut languages to the representation theorem for 1ANNs:

L=h ((( P o (Lce, N Lee, )E- Ar)Pref a Ro)* N R)

Theorem 4 Let N be a IANN and assume 0 < |wss| < 1. Define 3 € Q,
A C Q, and C C Q as in the representation theorem using the weights of N :

B = wl , A= {Zf;(} WsiYi | Y19+++9Ys—1 € {07 1}} U {071}7

C:{Cla"'acp}: {_Zf_(}zj Yi

. wjis # 0,
Y1y 9Ys—1 € {O? 1}} U {07 1} .
If every ¢ € C' is [3-quasi-periodic within A, then IN accepts regular language.

Theorem 5 There is a language accepted by a 1IANN, which is not context-free.

Theorem 6 Any language accepted by a 1ANN is context-sensitive.



NNs Between Integer and Rational Weights
& the Chomsky Hierarchy

rational-weight NNs = TMs = recursively enumerable languages (Type-0)
1ANNs C LBA = context-sensitive languages (Type-1)

1ANNs ¢ PDA = context-free languages (Type-2)

integer-weight NNs = “quasi-periodic” 1ANNs = FA = regular languages (Type-3)



Conclusions

e we have presented a brief survey of results on the computational power of NNs

e we have characterized the class of languages accepted by 1ANNs—integer-
weight NNs with an extra rational-weight analog neuron, using cut languages

e we have shown an interesting link to active research on [3-expansions in
non-integer bases

e we have introduced the notion of quasi-periodic numbers

e we have refined the analysis of the computational power of NNs between
integer and rational weights within the Chomsky hierarchy

Open Problems
e a necessary condition when a 1ANN accepts a regular language

e the analysis for w,s € R or |wgs| > 1

e a proper hierarchy of 1ANNs, e.g. with increasing quasi-period of weights



