The Computational Power of Neural Networks and
 Representations of Numbers in Non-Integer Bases

Jiří Šíma

Tif Institute of Computer Science

Outline of Talk

1. The Neural Network Model
2. A Brief Overview of the Computational Power of Neural Networks
3. Integer-Weight Neural Networks with an Extra Rational-Weight Analog Neuron (1ANN)
4. Representations of Numbers in Non-Integer Bases
5. Quasi-Periodic Numbers
6. Classifying the 1ANNs Within the Chomsky Hierarchy
7. Conclusions

(Artificial) Neural Networks (NNs)

1. mathematical models of biological neural networks

- simulating and understanding the brain (The Human Brain Project)
- modeling cognitive functions

2. computing devices alternative to conventional computers

already first computer designers sought their inspiration in the human brain (e.g., neurocomputer due to Minsky, 1951)

- common tools in machine learning or data mining (learning from training data)
- professional software implementations (e.g. Matlab, Statistica modules)
- successful commercial applications in Al (e.g. deep learning): pattern recognition, control, prediction, decision-making, signal analysis, fault detection, diagnostics, etc.

The Neural Network Model - Architecture

s computational units (neurons), indexed as $V=\{1, \ldots, s\}$, connected into a directed graph $(\boldsymbol{V}, \boldsymbol{A})$ where $\boldsymbol{A} \subseteq \boldsymbol{V} \times \boldsymbol{V}$

The Neural Network Model - Weights

each edge $(\boldsymbol{i}, \boldsymbol{j}) \in \boldsymbol{A}$ from unit \boldsymbol{i} to \boldsymbol{j} is labeled with a real weight $\boldsymbol{w}_{\boldsymbol{j} i} \in \mathbb{R}$

The Neural Network Model - Zero Weights

each edge $(i, j) \in \boldsymbol{A}$ from unit \boldsymbol{i} to \boldsymbol{j} is labeled with a real weight $\boldsymbol{w}_{\boldsymbol{j} i} \in \mathbb{R}$ ($w_{k i}=0$ iff $\left.(i, k) \notin A\right)$

The Neural Network Model - Biases

each neuron $\boldsymbol{j} \in \boldsymbol{V}$ is associated with a real bias $\boldsymbol{w}_{j 0} \in \mathbb{R}$ (i.e. a weight of $(0, j) \in \boldsymbol{A}$ from an additional formal neuron $0 \in \boldsymbol{V}$)

Discrete-Time Computational Dynamics - Network State

the evolution of global network state (output) $\mathbf{y}^{(t)}=\left(\boldsymbol{y}_{1}^{(t)}, \ldots, \boldsymbol{y}_{s}^{(t)}\right) \in[0,1]^{s}$ at discrete time instant $\boldsymbol{t}=\mathbf{0}, \mathbf{1}, 2, \ldots$

Discrete-Time Computational Dynamics - Initial State

$t=0$: initial network state $\mathbf{y}^{(0)} \in\{0,1\}^{s}$

Discrete-Time Computational Dynamics: $\quad t=1$

$t=1$: network state $\mathbf{y}^{(1)} \in[0,1]^{s}$

Discrete-Time Computational Dynamics: $\quad t=2$
$t=2$: network state $\mathbf{y}^{(2)} \in[0,1]^{s}$

Discrete-Time Computational Dynamics - Excitations

at discrete time instant $t \geq 0$, an excitation is computed as

where unit $\mathbf{0} \in \boldsymbol{V}$ has constant output $\boldsymbol{y}_{0}^{(t)} \equiv \mathbf{1}$ for every $\boldsymbol{t} \geq \mathbf{0}$

Discrete-Time Computational Dynamics - Outputs

at the next time instant $t+1$, only the neurons $j \in \alpha_{t+1}$ from a selected subset $\alpha_{t+1} \subseteq \boldsymbol{V}$ update their states:

$$
y_{j}^{(t+1)}= \begin{cases}\sigma\left(\xi_{j}^{(t)}\right) & \text { for } j \in \alpha_{t+1} \\ y_{j}^{(t)} & \text { for } j \in V \backslash \alpha_{t+1}\end{cases}
$$

where $\sigma: \mathbb{R} \longrightarrow[0,1]$
is an activation function, e.g.

$$
\sigma(\xi)= \begin{cases}\mathbf{1} & \text { for } \boldsymbol{\xi} \geq \mathbf{1} \\ \boldsymbol{\xi} & \text { for } \mathbf{0}<\boldsymbol{\xi}<\mathbf{1} \\ \mathbf{0} & \text { for } \boldsymbol{\xi} \leq \mathbf{0}\end{cases}
$$

the saturated-linear function

The Computational Power of NNs - Motivations

- the potential and limits of general-purpose computation with NNs:

What is ultimately or efficiently computable by particular NN models?

- idealized mathematical models of practical NNs which abstract away from implementation issues, e.g. analog numerical parameters are true real numbers
- methodology: the computational power and efficiency of NNs is investigated by comparing formal NNs to traditional computational models such as finite automata, Turing machines, Boolean circuits, etc.
- NNs may serve as reference models for analyzing alternative computational resources (other than time or memory space) such as analog state, continuous time, energy, temporal coding, etc.
- NNs capture basic characteristics of biological nervous systems (plenty of densely interconnected simple unreliable computational units)
\longrightarrow computational principles of mental processes

Neural Networks As Formal Language Acceptors

language (problem) $\boldsymbol{L} \subseteq \boldsymbol{\Sigma}^{*}$ over a finite alphabet $\boldsymbol{\Sigma}$

$$
y_{\text {out }}^{(T(n))}=\left\{\begin{array}{l}
1 \text { if } \mathrm{x} \in L \\
0 \text { if } \mathrm{x} \notin L
\end{array} \quad y_{\text {val }}^{(t)}=\left\{\begin{array}{l}
1 \text { if } t=\boldsymbol{T}(n) \\
0 \\
\text { if } t \neq \boldsymbol{T}(n)
\end{array}\right.\right.
$$

$\boldsymbol{T}(\boldsymbol{n})$ is the computational time in terms of input length $\boldsymbol{n} \geq \mathbf{0}$
$d \geq 1$ is the time overhead for processing a single input symbol

$$
\mathrm{x}=x_{1} x_{2} \ldots x_{i-1} \longleftarrow x_{i} \longleftarrow x_{i+1} x_{i+2} \ldots x_{n} \in \Sigma^{*} \quad \text { input word }
$$

The Computational Power of NNs - Integer Weights

depends on the information content of weight parameters:

1. integer weights: finite automaton (FA) (Minsky, 1967)
$\boldsymbol{w}_{j i} \in \mathbb{Z} \longrightarrow$ excitations $\boldsymbol{\xi}_{j} \in \mathbb{Z} \longrightarrow$ states $\boldsymbol{y}_{j} \in\{0,1\}$ $\longrightarrow \quad 2^{s}$ global NN states $\mathrm{y} \in\{0,1\}^{s} \sim$ FA states
size-optimal implementations:

- $\Theta(\sqrt{m})$ neurons for a deterministic FA with \boldsymbol{m} states (Indyk, 1995; Horne, Hush, 1995)
- $\Theta(\boldsymbol{m})$ neurons for a regular expression of length \boldsymbol{m} (Šíma, Wiedermann 1998)

The Computational Power of NNs - Rational Weights

depends on the information content of weight parameters:
2. rational weights: Turing machine (Siegelmann, Sontag, 1995)

- $\boldsymbol{w}_{j i} \in \mathbb{Q}$ are fractions $\frac{p}{q}$ where $\boldsymbol{p} \in \mathbb{Z}, \boldsymbol{q} \in \mathbb{N}$
- NNs compute algorithmically solvable problems
- real-time simulation of TMs \longrightarrow polynomial time \equiv complexity class P
- a universal NN with 25 neurons (Indyk, 1995)
\longrightarrow the halting problem of whether a small NN terminates its computation, is algorithmically undecidable

The Computational Power of NNs - Real Weights

depends on the information content of weight parameters:
3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994)

- $\boldsymbol{w}_{j i} \in \mathbb{R}$, e.g. irrational weights $\sqrt{2}, \pi$
- infinite precision of ONE real weight (vs. an algorithm has a finite description) can encode any function f : $0 . \operatorname{code}\left(C_{1}\right) \operatorname{code}\left(C_{2}\right) \operatorname{code}\left(C_{3}\right) \ldots$ (code $\left(\boldsymbol{C}_{n}\right)$ encodes the circuit $\boldsymbol{C}_{\boldsymbol{n}}$ computing \boldsymbol{f} for inputs of length \boldsymbol{n})
\longrightarrow exponential time \equiv any I/O mapping
(including algorithmically undecidable problems)
- polynomial time \equiv nonuniform complexity class $\mathrm{P} /$ poly:
problems solvable by a polynomial-time (P) algorithm that for input $\boldsymbol{x} \in \boldsymbol{\Sigma}^{*}$ of length $n=|\boldsymbol{x}|$, receives an external advise: a string $\boldsymbol{s}(\boldsymbol{n}) \in \Sigma^{*}$ of polynomial length $|s(n)|=\boldsymbol{O}\left(\boldsymbol{n}^{c}\right)$ (poly), which depends only on \boldsymbol{n}

The Computational Power of NNs - Rough Overview

depends on the information content of weight parameters:

1. integer weights: finite automaton
2. rational weights: Turing machine polynomial time \equiv complexity class P
3. arbitrary real weights: "super-Turing" computation polynomial time \equiv nonuniform complexity class $\mathrm{P} /$ poly exponential time \equiv any I / O mapping

Neural Networks Between Rational and Real Weights

1. integer weights: finite automaton
2. rational weights: Turing machine polynomial time $\equiv \mathbf{P}$
polynomial time \& increasing Kolmogorov complexity of real weights: the length of the shortest program (in a fixed programming language) that produces a real weight,

$$
\text { e.g. } K(" \sqrt{2} ")=O(1), K(\text { "random strings" })=n+O(1)
$$

\equiv a proper hierarchy of nonuniform complexity classes between P and $\mathrm{P} /$ poly (Balcázar, Gavaldà, Siegelmann, 1997)
3. arbitrary real weights: "super-Turing" computation polynomial time $\equiv P /$ poly

Neural Networks Between Integer and Rational Weights

1. integer weights: finite automata \equiv regular (Type-3) languages
a gap between integer and rational weights w.r.t. the Chomsky hierarchy:

$$
\text { pushdown automata } \equiv \text { context-free (Type-2) languages }
$$

linear-bounded automata ($\operatorname{NSPACE}(\mathrm{O}(\mathrm{n}))$) \equiv context-sensitive (Type-1) languages
2. rational weights: Turing machines \equiv recursively enumerable (Type-0) lang.

TWO analog neurons with rational weights + a few integer-weight neurons can implement a 2-stack pushdown automaton \equiv Turing machine
\longrightarrow What is the computational power of ONE extra analog neuron ?

A Neural Network with an Extra Analog Neuron (1ANN)

all the weights to neurons are integers except for ONE neuron s with rational weights:

The Representation Theorem for 1ANNs (Šíma, IJcNn 2017)

A language $L \subset \Sigma^{*}$ that is accepted by a 1ANN satisfying $0<\left|\boldsymbol{w}_{s s}\right|<1$, can be written as

$$
L=h\left(\left(\left(\bigcup_{r=0}^{p}\left(\overline{L_{<c_{r}}} \cap L_{<c_{r+1}}\right)^{\boldsymbol{R}} \cdot \boldsymbol{A}_{r}\right)^{\text {Pref }} \cap \boldsymbol{R}_{0}\right)^{*} \cap \boldsymbol{R}\right)
$$

(options: $\overline{L_{>0}}, L_{>c_{r}} \cap L_{<c_{r+1}}, L_{>c_{r}} \cap \overline{L_{>c_{r+1}}}, \overline{L_{<c_{r}}} \cap \overline{L_{<c_{r+1}}}, \overline{L_{<1}}$) where

- $\boldsymbol{A}=\left\{\sum_{i=0}^{s-1} \boldsymbol{w}_{s i} \boldsymbol{y}_{i} \mid \boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{s-1} \in\{0,1\}\right\} \cup\{0,1\} \subset \mathbb{Q}$ is a finite alphabet of (rational) digits
- $h: \boldsymbol{A}^{*} \longrightarrow \boldsymbol{\Sigma}^{*}$ is a letter-to-letter morphism
- $\boldsymbol{R}, \boldsymbol{R}_{0} \subseteq \boldsymbol{A}^{*}$ are regular languages
- $S^{\text {Pref }}$ denotes the largest prefix-closed subset of $S \cup A \cup\{\varepsilon\}$
- $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{p}$ is a partition of a finite alphabet \boldsymbol{A}
- $\boldsymbol{K}^{\boldsymbol{R}}$ denotes the reversal of language \boldsymbol{K}

The Representation Theorem for 1ANNs (Šima, IJcnN 2017)
A language $L \subset \Sigma^{*}$ that is accepted by a 1ANN satisfying $0<\left|\boldsymbol{w}_{s s}\right|<1$, can be written as

$$
L=h\left(\left(\left(\bigcup_{r=0}^{p}\left(\overline{L_{<c_{r}}} \cap L_{<c_{r+1}}\right)^{R} \cdot \boldsymbol{A}_{r}\right)^{\text {Pref }} \cap \boldsymbol{R}_{0}\right)^{*} \cap \boldsymbol{R}\right)
$$

where (continued)

- $L_{<c_{r}}, L_{>c_{r}} \subseteq \boldsymbol{A}^{*}$ are so-called cut languages over digit alphabet \boldsymbol{A},

$$
L_{<c}=\left\{a_{1} \ldots a_{n} \in A^{*} \mid \sum_{k=1}^{n} a_{k} \beta^{-k}<c\right\}
$$

- $0=c_{1} \leq c_{2} \leq \cdots \leq c_{p}=1$ are (rational) thresholds such that

$$
\begin{array}{r}
C=\left\{c_{1}, \ldots, c_{p}\right\}=\left\{\left.-\sum_{i=0}^{s-1} \frac{w_{j i}}{w_{j s}} \boldsymbol{y}_{i} \right\rvert\, j \in V \backslash(X \cup\{s\}) \text { s.t. } \boldsymbol{w}_{j s} \neq 0,\right. \\
\left.\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{s-1} \in\{0,1\}\right\} \cup\{0,1\} \subset \mathbb{Q}
\end{array}
$$

- $\beta=\frac{1}{w_{s s}} \in \mathbb{Q}$ is called a (rational) base (radix) $\longrightarrow|\beta|>1$

Representations of Numbers in Non-Integer Bases

non-standard positional numeral systems: a base and/or digits need not be integers

- $\boldsymbol{\beta} \in \mathbb{R}$ is a real base (radix) such that $|\boldsymbol{\beta}|>1$
- $\emptyset \neq A \subset \mathbb{R}$ is a finite set of real digits
a word (string) composed of digits $a_{1} \ldots a_{n} \in A^{*}$ (the radix point omitted), called a finite $\boldsymbol{\beta}$-expansion, represents a number in base $\boldsymbol{\beta}$ as
$\left(0 . a_{1} \ldots a_{n}\right)_{\beta}=a_{1} \beta^{-1}+a_{2} \beta^{-2}+a_{3} \beta^{-3}+\cdots+a_{n} \beta^{-n}=\sum_{k=1}^{n} a_{k} \beta^{-k}$

Examples:

1. $\beta=10, A=\{0,1,2, \ldots, 9\}$
decimal expansion 75 represents $\frac{3}{4}=(0.75)_{10}=7 \cdot 10^{-1}+5 \cdot \mathbf{1 0}^{-2}$
2. $\beta=2, A=\{0,1\}$
binary expansion 11 represents $\frac{3}{4}=(0.11)_{2}=1 \cdot 2^{-1}+1 \cdot 2^{-2}$
3. $\boldsymbol{\beta}=\frac{5}{2}, \quad A=\left\{\frac{5}{16}, \frac{7}{4}\right\}$
$\frac{5}{2}$-expansion $\frac{7}{4} \frac{5}{16}$ represents $\frac{3}{4}=\left(0 \cdot \frac{7}{4} \frac{5}{16}\right)_{\frac{5}{2}}=\frac{7}{4} \cdot\left(\frac{5}{2}\right)^{-1}+\frac{5}{16} \cdot\left(\frac{5}{2}\right)^{-2}$

Finite β-Expansions \& Cut Languages

a cut language $L_{<c}$ contains all the finite β-expansions $a_{1} \ldots a_{n} \in \boldsymbol{A}^{*}$ of numbers that are less than a threshold $c \in \mathbb{R}$ (similarly for $L_{>c}$):

$$
L_{<c}=\left\{a_{1} \ldots a_{n} \in A^{*} \mid\left(0 . a_{1} \ldots a_{n}\right)_{\beta}=\sum_{k=1}^{n} a_{k} \beta^{-k}<c\right\}
$$

$\beta \in \mathbb{Q}, A \subset \mathbb{Q}: L_{<c}$ is composed of finite $\boldsymbol{\beta}$-expansions of a Dedekind cut

(Infinite) $\boldsymbol{\beta}$-Expansions (Rényi, 1957; Parry, 1960)

an infinite word composed of digits $a_{1} a_{2} a_{3} \cdots \in A^{\omega}$ is a β-expansion of number

$$
\left(0 . a_{1} a_{2} a_{3} \cdots\right)_{\beta}=a_{1} \beta^{-1}+a_{2} \beta^{-2}+a_{3} \beta^{-3}+\cdots=\sum_{k=1}^{\infty} a_{k} \beta^{-k}
$$

which is a convergent power series due to $|\boldsymbol{\beta}|>1$

Example: $\beta=\frac{3}{2}, \quad A=\{0,1\}$
$\frac{3}{2}$-expansion $000(10)^{\omega}=0001010101010 \ldots \in\{0,1\}^{\omega}$ represents the number

$$
\begin{gathered}
(0.0001010101010 \ldots)_{\frac{3}{2}}=\left(\frac{3}{2}\right)^{-4}+\left(\frac{3}{2}\right)^{-6}+\left(\frac{3}{2}\right)^{-8}+\cdots \\
=\sum_{k=2}^{\infty}\left(\frac{3}{2}\right)^{-2 k}=\sum_{k=2}^{\infty}\left(\frac{4}{9}\right)^{k}=\frac{\frac{16}{81}}{1-\frac{4}{9}}=\frac{16}{45}
\end{gathered}
$$

Uniqueness of $\boldsymbol{\beta}$-Expansions for Integer Base $\boldsymbol{\beta}$

for an integer base $\beta>0$ and the standard digits, $A=\{0,1, \ldots, \beta-1\}$, almost any number from the interval $(0,1)$ has a unique $\boldsymbol{\beta}$-expansion, e.g. the decimal expansion $70710678118 \ldots \in\{0,1,2, \ldots, 9\}^{\omega}$ of

$$
\frac{\sqrt{2}}{2}=(0.70710678118 \ldots)_{10}
$$

except for those with a finite $\boldsymbol{\beta}$-expansion, which have two distinct $\boldsymbol{\beta}$-expansions,
e.g. two decimal expansions $750^{\omega}=75000 \ldots, 749^{\omega}=74999 \ldots$ of

$$
\frac{3}{4}=(0.75)_{10}=(0.75000 \ldots)_{10}=(0.74999 \ldots)_{10}
$$

Uniqueness of $\boldsymbol{\beta}$-Expansions for Non-Integer Base $\boldsymbol{\beta}$

for a non-integer base $\boldsymbol{\beta}$, almost every number has infinitely (uncountably) many distinct $\boldsymbol{\beta}$-expansions (Sidorov, 2003)
Example: $1<\beta<2, \quad A=\{0,1\}, \quad D_{\beta}=\left(0, \frac{1}{\beta-1}\right)$

- $1<\beta<\varphi$ where $\varphi=(1+\sqrt{5}) / 2 \approx 1.618034$ is the golden ratio: every $\boldsymbol{x} \in \boldsymbol{D}_{\boldsymbol{\beta}}$ has uncountably many distinct $\boldsymbol{\beta}$-expansions (Erdös et al.,1990)
- $\varphi \leq \beta<q$ where $\boldsymbol{q} \approx 1.787232$ is the Komornik-Loreti constant: countably many $\boldsymbol{x} \in \boldsymbol{D}_{\boldsymbol{\beta}}$ have unique $\boldsymbol{\beta}$-expansions (Glendinning, Sidorov, 2001) e.g. $\beta=\frac{5}{3}=1 . \overline{6}=1.666 \ldots \longrightarrow D_{\frac{5}{3}}=\left(0, \frac{3}{2}\right)$ the infinite word $0^{k}(10)^{\omega}(\boldsymbol{k} \geq 0)$ represents a unique $\frac{5}{3}$-expansion of

$$
(0 . \underbrace{0 \ldots 0}_{k \text { times }} 1010101010 \ldots)_{\frac{5}{3}}=\left(\frac{3}{5}\right)^{k-1} \cdot \frac{9}{16}
$$

vs. $\beta=\varphi=(1+\sqrt{5}) / 2 \approx 1.618034 \longrightarrow D_{\varphi}=(0, \varphi)$ countably many distinct φ-expansions $(10)^{k} 110^{\omega},(10)^{\omega},(10)^{k} 01^{\omega}(\boldsymbol{k} \geq 0)$ of the number 1 , e.g. $1=(0 . \overline{10})_{\varphi}=(0.1010101010 \ldots)_{\varphi}$

- $q \leq \beta<2$: uncountably many $\boldsymbol{x} \in \boldsymbol{D}_{\boldsymbol{\beta}}$ have unique $\boldsymbol{\beta}$-expansions

Eventually Periodic β-Expansions

$$
a_{1} a_{2} \ldots a_{k_{1}}\left(a_{k_{1}+1} a_{k_{1}+2} \ldots a_{k_{2}}\right)^{\omega}
$$

- $\boldsymbol{a}_{1} a_{2} \ldots \boldsymbol{a}_{k_{1}} \in \boldsymbol{A}^{k_{1}}$ is a preperiodic part of length $\boldsymbol{k}_{1} \geq \mathbf{0}$ (purely periodic $\boldsymbol{\beta}$-expansions meet $\boldsymbol{k}_{1}=0$)
- $\boldsymbol{a}_{k_{1}+1} \boldsymbol{a}_{k_{1}+2} \ldots \boldsymbol{a}_{k_{2}} \in \boldsymbol{A}^{\boldsymbol{m}}$ is a repetend of length $\boldsymbol{m}=\boldsymbol{k}_{2}-\boldsymbol{k}_{1}>\mathbf{0}$ whose minimum is the period of $\boldsymbol{\beta}$-expansion
- $\left(0 . a_{1} a_{2} \ldots a_{k_{1}} \overline{a_{k_{1}+1}} a_{k_{1}+2} \ldots a_{k_{2}}\right)_{\beta}=\left(0 . a_{1} a_{2} \ldots a_{k_{1}}\right)_{\beta}+\beta^{-k_{1}} \varrho$ where $\varrho=\left(0 . \overline{\boldsymbol{a}_{k_{1}+1} \boldsymbol{a}_{k_{1}+2} \ldots \boldsymbol{a}_{k_{2}}}\right)_{\beta}=\frac{\sum_{k=1}^{m} \boldsymbol{a}_{k_{1}+\boldsymbol{k}} \boldsymbol{\beta}^{-k}}{1-\boldsymbol{\beta}^{-m}} \quad$ is a periodic point

Example: $\quad \beta=\frac{3}{2}, \quad A=\{0,1\}, \quad 1(10)^{\omega}=11010101010 \ldots$

$$
\begin{gathered}
\frac{22}{15}=(0.1 \overline{10})_{\frac{3}{2}}=(0.1)_{\frac{3}{2}}+\left(\frac{3}{2}\right)^{-1} \cdot(0 . \overline{10})_{\frac{3}{2}}=\left(\frac{3}{2}\right)^{-1}+\left(\frac{3}{2}\right)^{-1} \cdot \varrho \\
\quad \text { where } \varrho=(0 . \overline{10})_{\frac{3}{2}}=\sum_{k=0}^{\infty}\left(\frac{3}{2}\right)^{-2 k-1}=\frac{1 \cdot\left(\frac{3}{2}\right)^{-1}+0 \cdot\left(\frac{3}{2}\right)^{-2}}{1-\left(\frac{3}{2}\right)^{-2}}=\frac{6}{5}
\end{gathered}
$$

Eventually Quasi-Periodic β-Expansions

$\boldsymbol{\beta}$-expansion $a_{1} \ldots a_{k_{1}} a_{k_{1}+1} \ldots a_{k_{2}} a_{k_{2}+1} \ldots a_{k_{3}} a_{k_{3}+1} \ldots a_{k_{4}} \ldots \in A^{\omega}$ is eventually quasi-periodic if there is $0 \leq k_{1}<k_{2}<\cdots$ such that

$$
\varrho=\left(0 . \overline{\boldsymbol{a}_{k_{1}+1} \ldots \boldsymbol{a}_{k_{2}}}\right)_{\beta}=\left(0 . \overline{\boldsymbol{a}_{k_{2}+1} \ldots \boldsymbol{a}_{k_{3}}}\right)_{\beta}=\left(0 . \overline{\boldsymbol{a}_{k_{3}+1} \ldots \boldsymbol{a}_{k_{4}}}\right)_{\beta}=\cdots
$$

- $a_{1} a_{2} \ldots a_{k_{1}} \in A^{k_{1}}$ is a preperiodic part of length \boldsymbol{k}_{1} (purely quasi-periodic $\boldsymbol{\beta}$-expansions meet $\boldsymbol{k}_{\mathbf{1}}=\mathbf{0}$)
- $\boldsymbol{a}_{k_{i}+1} \ldots \boldsymbol{a}_{k_{i+1}} \in \boldsymbol{A}^{m_{i}}$ is a quasi-repetend of length $\boldsymbol{m}_{\boldsymbol{i}}=\boldsymbol{k}_{\boldsymbol{i + 1}}-\boldsymbol{k}_{\boldsymbol{i}}>\mathbf{0}$
- $\left(0 . a_{1} a_{2} a_{2} \ldots\right)_{\beta}=\left(0 . a_{1} a_{2} \ldots a_{k_{1}}\right)_{\beta}+\beta^{-k_{1}} \varrho \quad$ where for every $i \geq 1$,

$$
\left(0 . \overline{\boldsymbol{a}_{k_{i}+1} \ldots \boldsymbol{a}_{k_{i+1}}}\right)_{\beta}=\frac{\sum_{k=1}^{m_{i}} \boldsymbol{a}_{k_{i}+k} \boldsymbol{\beta}^{-k}}{\mathbf{1}-\boldsymbol{\beta}^{-m_{i}}}=\varrho \quad \text { is a periodic point }
$$

\longrightarrow quasi-repetends can be mutually replaced with each other arbitrarily

- a generalization of eventually periodic $\boldsymbol{\beta}$-expansions:

$$
\boldsymbol{a}_{k_{1}+1} \ldots \boldsymbol{a}_{k_{2}}=\boldsymbol{a}_{k_{2}+1} \ldots \boldsymbol{a}_{k_{3}}=\boldsymbol{a}_{k_{3}+1} \ldots \boldsymbol{a}_{k_{4}}=\ldots
$$

An Example of Quasi-Periodic $\boldsymbol{\beta}$-Expansion

base $\beta=\frac{5}{2}, \quad$ digits $A=\left\{0, \frac{1}{2}, \frac{7}{4}\right\}, \quad$ periodic point $\varrho=\frac{3}{4}$
$\left(0 \cdot \overline{\frac{7}{4} 0}\right)_{\frac{5}{2}}=\left(0 \cdot \overline{\frac{7}{4} \frac{1}{2} 0}\right)_{\frac{5}{2}}=\left(0 \cdot \overline{\frac{7}{4} \frac{1}{2} \frac{1}{2} 0}\right)_{\frac{5}{2}}=\left(0 \cdot \overline{\frac{7}{4} \frac{1}{2} \frac{1}{2} \frac{1}{2} 0}\right)_{\frac{5}{2}}=\cdots$
$=(0 \cdot \frac{\overline{7}}{\frac{7}{4} \underbrace{\frac{1}{2} \cdots \frac{1}{2}}_{n \text { times }} 0})_{\frac{5}{2}}=\frac{\frac{7}{4} \cdot\left(\frac{5}{2}\right)^{-1}+\sum_{i=2}^{n+1} \frac{1}{2} \cdot\left(\frac{5}{2}\right)^{-i}+0 \cdot\left(\frac{5}{2}\right)^{-n-2}}{1-\left(\frac{5}{2}\right)^{-n-2}}=\frac{3}{4}$
$\longrightarrow \varrho=\frac{3}{4}$ has uncountably many distinct quasi-periodic $\frac{5}{2}$-expansions:
$\frac{3}{4}=(0 \cdot \frac{7}{4} \underbrace{\frac{1}{2} \cdots \frac{1}{2}}_{n_{1} \text { times }} 0 \frac{7}{4} \underbrace{\frac{1}{2} \cdots \frac{1}{2}}_{n_{2} \text { times }} 0 \frac{7}{4} \underbrace{\frac{1}{2} \cdots \frac{1}{2}}_{n_{3} \text { times }} 00 \frac{7}{4} \underbrace{\frac{1}{2} \cdots \frac{1}{2}}_{n_{4} \text { times }} 0 \cdots)_{\frac{5}{2}}$
where $n_{1}, n_{2}, n_{3}, \ldots$ is any infinite sequence of nonnegative integers

Quasi-Periodic Numbers

$\boldsymbol{c} \in \mathbb{R}$ is $\boldsymbol{\beta}$-quasi-periodic within \boldsymbol{A} if every infinite $\boldsymbol{\beta}$-expansion of \boldsymbol{c} is eventually quasi-periodic

Examples:

- c from the complement of the Cantor set is 3 -quasi-periodic within $\{0,2\}$: \boldsymbol{c} has no $\boldsymbol{\beta}$-expansion at all
- $c=\frac{3}{4}$ is $\frac{5}{2}$-quasi-periodic within $A=\left\{0, \frac{1}{2}, \frac{7}{4}\right\}$: all the $\frac{5}{2}$-expansions of $\frac{3}{4}$ using digits from \boldsymbol{A}, are eventually quasi-periodic
- $c=\frac{40}{57}=(0.0 \overline{011})_{\frac{3}{2}}$ is not $\frac{3}{2}$-quasi-periodic within $A=\{0,1\}$: greedy (i.e. lexicographically maximal) $\frac{3}{2}$-expansion 100000001 . . of $\frac{40}{57}$ is not eventually periodic

Cut Languages Within the Chomsky Hierarchy

(S̆íma, Savický, LATA 2017)

$$
L_{<c}=\left\{a_{1} \ldots a_{n} \in A^{*} \mid\left(0 . a_{1} \ldots a_{n}\right)_{\beta}=\sum_{k=1}^{n} a_{k} \beta^{-k}<c\right\}
$$

Theorem 1 A cut language $\boldsymbol{L}_{<c}$ is regular iff \boldsymbol{c} is β-quasi-periodic within \boldsymbol{A}.
Theorem 2 Let $\boldsymbol{\beta} \in \mathbb{Q}$ and $\boldsymbol{A} \subset \mathbb{Q}$. Every cut language $\boldsymbol{L}_{<c}$ with threshold $c \in \mathbb{Q}$ is context-sensitive.

Theorem 3 If \boldsymbol{c} is not $\boldsymbol{\beta}$-quasi-periodic within \boldsymbol{A}, then the cut language $\boldsymbol{L}_{<c}$ is not context-free.

Corollary 1 Any cut language $L_{<c}$ is either regular or non-context-free (depending on whether \boldsymbol{c} is a $\boldsymbol{\beta}$-quasi-periodic number within \boldsymbol{A}).

The Computational Power of 1ANNs (Šíma, ijcvN 2017)

applying the results on cut languages to the representation theorem for 1ANNs:

$$
\boldsymbol{L}=\boldsymbol{h}\left(\left(\left(\bigcup_{r=0}^{p}\left(\overline{L_{<c_{r}}} \cap L_{<c_{r+1}}\right)^{R} \cdot \boldsymbol{A}_{r}\right)^{\text {Pref }} \cap \boldsymbol{R}_{0}\right)^{*} \cap \boldsymbol{R}\right)
$$

Theorem 4 Let \boldsymbol{N} be a $1 A N N$ and assume $\mathbf{0}<\left|\boldsymbol{w}_{s s}\right|<1$. Define $\beta \in \mathbb{Q}$, $A \subset \mathbb{Q}$, and $C \subset \mathbb{Q}$ as in the representation theorem using the weights of N :

$$
\begin{array}{r}
\beta=\frac{1}{w_{s s}}, \quad A=\left\{\sum_{i=0}^{s-1} \boldsymbol{w}_{s i} \boldsymbol{y}_{i} \mid \boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{s-1} \in\{0,1\}\right\} \cup\{0,1\} \\
C=\left\{c_{1}, \ldots, c_{p}\right\}=\left\{\left.-\sum_{i=0}^{s-1} \frac{w_{j i}}{w_{j s}} \boldsymbol{y}_{i} \right\rvert\, j \in \boldsymbol{j} \backslash(\boldsymbol{X} \cup\{s\}) \text { s.t. } \boldsymbol{w}_{j s} \neq 0\right. \\
\left.\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{s-1} \in\{0,1\}\right\} \cup\{0,1\}
\end{array}
$$

If every $c \in C$ is β-quasi-periodic within \boldsymbol{A}, then \boldsymbol{N} accepts regular language.

Theorem 5 There is a language accepted by a 1 ANN, which is not context-free.

Theorem 6 Any language accepted by a 1ANN is context-sensitive.

NNs Between Integer and Rational Weights \& the Chomsky Hierarchy

rational-weight $\mathrm{NNs} \equiv \mathrm{TMs} \equiv$ recursively enumerable languages (Type-0)

1ANNs \subset LBA \equiv context-sensitive languages (Type-1)

$$
1 \text { ANNs } \not \subset \text { PDA } \equiv \text { context-free languages (Type-2) }
$$

integer-weight NNs \equiv "quasi-periodic" 1 ANN s $\equiv \mathrm{FA} \equiv$ regular languages (Type-3)

Conclusions

- we have presented a brief survey of results on the computational power of NNs
- we have characterized the class of languages accepted by 1 ANNs-integerweight NNs with an extra rational-weight analog neuron, using cut languages
- we have shown an interesting link to active research on $\boldsymbol{\beta}$-expansions in non-integer bases
- we have introduced the notion of quasi-periodic numbers
- we have refined the analysis of the computational power of NNs between integer and rational weights within the Chomsky hierarchy

Open Problems

- a necessary condition when a 1 ANN accepts a regular language
- the analysis for $w_{s s} \in \mathbb{R}$ or $\left|w_{s s}\right|>1$
- a proper hierarchy of 1 ANNs, e.g. with increasing quasi-period of weights

