The Computational Power of Neural Networks and Representations of Numbers in Non-Integer Bases

Jiří Šíma

Outline of Talk

- 1. The Neural Network Model
- 2. A Brief Overview of the Computational Power of Neural Networks
- 3. Integer-Weight Neural Networks with an Extra Rational-Weight Analog Neuron (1ANN)
- 4. Representations of Numbers in Non-Integer Bases
- 5. Quasi-Periodic Numbers
- 6. Classifying the 1ANNs Within the Chomsky Hierarchy
- 7. Conclusions

(Artificial) Neural Networks (NNs)

- 1. mathematical models of biological neural networks
 - simulating and understanding the brain (The Human Brain Project)
 - modeling cognitive functions
- computing devices alternative to conventional computers
 already first computer designers sought their inspiration in the human brain
 (e.g., neurocomputer due to Minsky, 1951)
 - common tools in machine learning or data mining (learning from training data)
 - professional software implementations (e.g. Matlab, Statistica modules)
 - successful commercial applications in AI (e.g. deep learning): pattern recognition, control, prediction, decision-making, signal analysis, fault detection, diagnostics, etc.

The Neural Network Model – Architecture

s computational units (neurons), indexed as $V = \{1, \ldots, s\}$, connected into a directed graph (V, A) where $A \subseteq V imes V$

The Neural Network Model – Weights

each edge $(i,j)\in A$ from unit i to j is labeled with a real weight $w_{ji}\in\mathbb{R}$

The Neural Network Model – Zero Weights

each edge $(i,j) \in A$ from unit i to j is labeled with a real weight $w_{ji} \in \mathbb{R}$ $(w_{ki}=0 ext{ iff } (i,k)
otin A)$

The Neural Network Model – Biases

each neuron $j \in V$ is associated with a real bias $w_{j0} \in \mathbb{R}$ (i.e. a weight of $(0, j) \in A$ from an additional formal neuron $0 \in V$)

Discrete-Time Computational Dynamics – Network State

the evolution of global network state (output) $\mathbf{y}^{(t)}=(y_1^{(t)},\ldots,y_s^{(t)})\in[0,1]^s$ at discrete time instant $t=0,1,2,\ldots$

Discrete-Time Computational Dynamics – Initial State

t=0 : initial network state $\mathbf{y}^{(0)} \in \{0,1\}^s$

Discrete-Time Computational Dynamics: t = 1

t=1 : network state $\mathbf{y}^{(1)} \in [0,1]^s$

Discrete-Time Computational Dynamics: t = 2

t=2 : network state $\mathbf{y}^{(2)}\in[0,1]^s$

Discrete-Time Computational Dynamics – Excitations

at discrete time instant $t \geq 0$, an excitation is computed as

where unit $0 \in V$ has constant output $y_0^{(t)} \equiv 1$ for every $t \geq 0$

Discrete-Time Computational Dynamics – Outputs

at the next time instant t+1, only the neurons $j \in \alpha_{t+1}$ from a selected subset $\alpha_{t+1} \subseteq V$ update their states:

The Computational Power of NNs – Motivations

- the potential and limits of general-purpose computation with NNs: What is ultimately or efficiently computable by particular NN models?
- idealized mathematical models of practical NNs which abstract away from implementation issues, e.g. analog numerical parameters are true real numbers
- methodology: the computational power and efficiency of NNs is investigated by comparing formal NNs to traditional computational models such as finite automata, Turing machines, Boolean circuits, etc.
- NNs may serve as reference models for analyzing alternative computational resources (other than time or memory space) such as analog state, continuous time, energy, temporal coding, etc.
- NNs capture basic characteristics of biological nervous systems (plenty of densely interconnected simple unreliable computational units)

 \longrightarrow computational principles of mental processes

Neural Networks As Formal Language Acceptors

language (problem) $L \subseteq \Sigma^*$ over a finite alphabet Σ

The Computational Power of NNs – Integer Weights

depends on the information content of weight parameters:

1. integer weights: finite automaton (FA) (Minsky, 1967)

$$egin{array}{rcl} w_{ji}\in\mathbb{Z}&\longrightarrow& ext{excitations}\;\;m{\xi}_j\in\mathbb{Z}&\longrightarrow& ext{states}\;\;y_j\in\{0,1\}\ &\longrightarrow&2^s\; ext{global}\; ext{NN}\; ext{states}\; ext{y}\in\{0,1\}^s\;\;\sim& ext{FA}\; ext{states} \end{array}$$

size-optimal implementations:

- $\Theta(\sqrt{m})$ neurons for a deterministic FA with m states (Indyk, 1995; Horne, Hush, 1995)
- $\Theta(m)$ neurons for a regular expression of length m (Šíma, Wiedermann 1998)

The Computational Power of NNs – Rational Weights

depends on the information content of weight parameters:

2. rational weights: Turing machine (Siegelmann, Sontag, 1995)

- $w_{ji} \in \mathbb{Q}$ are fractions $rac{p}{q}$ where $p \in \mathbb{Z}$, $q \in \mathbb{N}$
- NNs compute algorithmically solvable problems
- real-time simulation of TMs \longrightarrow polynomial time \equiv complexity class P
- a universal NN with 25 neurons (Indyk, 1995)
 - → the halting problem of whether a small NN terminates its computation, is algorithmically undecidable

The Computational Power of NNs – Real Weights

depends on the information content of weight parameters:

3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994)

- $w_{ji} \in \mathbb{R}$, e.g. irrational weights $\sqrt{2}$, π
- infinite precision of ONE real weight (vs. an algorithm has a finite description) can encode any function f: 0.code(C₁) code(C₂) code(C₃)...
 (code(C_n) encodes the circuit C_n computing f for inputs of length n)

$$\rightarrow$$
 exponential time \equiv any I/O mapping
(including algorithmically undecidable problems)

• polynomial time \equiv nonuniform complexity class P/poly:

problems solvable by a polynomial-time (P) algorithm that for input $x \in \Sigma^*$ of length n = |x|, receives an external advise: a string $s(n) \in \Sigma^*$ of polynomial length $|s(n)| = O(n^c)$ (poly), which depends only on n

The Computational Power of NNs – Rough Overview

depends on the information content of weight parameters:

- 1. integer weights: finite automaton
- 2. **rational** weights: Turing machine polynomial time \equiv complexity class P
- arbitrary real weights: "super-Turing" computation polynomial time ≡ nonuniform complexity class P/poly exponential time ≡ any I/O mapping

Neural Networks Between Rational and Real Weights

1. integer weights: finite automaton

2. **rational** weights: Turing machine polynomial time $\equiv \mathbf{P}$

polynomial time & increasing Kolmogorov complexity of real weights:

the length of the shortest program (in a fixed programming language) that produces a real weight,

e.g.
$$K\left(``\sqrt{2}"
ight)=O(1)$$
, $K(``random strings")=n+O(1)$

- ≡ a proper hierarchy of nonuniform complexity classes between P and P/poly (Balcázar, Gavaldà, Siegelmann, 1997)
- 3. arbitrary real weights: "super-Turing" computation polynomial time
 P/poly

Neural Networks Between Integer and Rational Weights

1. integer weights: finite automata \equiv regular (Type-3) languages

a gap between integer and rational weights w.r.t. the Chomsky hierarchy: pushdown automata \equiv context-free (Type-2) languages linear-bounded automata (NSPACE(O(n))) \equiv context-sensitive (Type-1) languages

2. rational weights: Turing machines \equiv recursively enumerable (Type-0) lang.

TWO analog neurons with rational weights + a few integer-weight neurons can implement a 2-stack pushdown automaton \equiv Turing machine

 \longrightarrow What is the computational power of **ONE** extra analog neuron ?

A Neural Network with an Extra Analog Neuron (1ANN)

all the weights to neurons are integers except for ONE neuron s with rational weights:

The Representation Theorem for 1ANNs (Šíma, IJCNN 2017)

A language $L \subset \Sigma^*$ that is accepted by a 1ANN satisfying $0 < |w_{ss}| < 1$, can be written as

$$L = h \left(\left(\left(igcup_{r=0}^p \left(\overline{L_{< c_r}} \cap L_{< c_{r+1}}
ight)^R \cdot A_r
ight)^{Pref} \cap R_0
ight)^* \cap R
ight)$$

 $\left(\text{options: } \overline{L_{>0}} \,, \ L_{>c_r} \cap L_{< c_{r+1}} \,, \ L_{>c_r} \cap \overline{L_{>c_{r+1}}} \,, \ \overline{L_{< c_r}} \cap \overline{L_{< c_{r+1}}} \,, \ \overline{L_{< 1}} \right)$ where

- $A = \left\{ \sum_{i=0}^{s-1} w_{si} y_i \ \Big| \ y_1, \dots, y_{s-1} \in \{0,1\} \right\} \cup \{0,1\} \subset \mathbb{Q}$ is a finite alphabet of (rational) digits
- $h: A^* \longrightarrow \Sigma^*$ is a letter-to-letter morphism
- $R\,,R_0\subseteq A^*$ are regular languages
- S^{Pref} denotes the largest prefix-closed subset of $S\cup A\cup\{arepsilon\}$
- A_1, \ldots, A_p is a partition of a finite alphabet A
- ullet K^R denotes the reversal of language K

The Representation Theorem for 1ANNs (Šíma, IJCNN 2017)

A language $L \subset \Sigma^*$ that is accepted by a 1ANN satisfying $0 < |w_{ss}| < 1$, can be written as

$$L = h \left(\left(\left(igcup_{r=0}^p \left(\overline{L_{< c_r}} \cap L_{< c_{r+1}}
ight)^R \cdot A_r
ight)^{Pref} \cap R_0
ight)^* \cap R
ight)$$

where (continued)

ullet $L_{< c_r}$, $L_{> c_r} \subseteq A^*$ are so-called **cut languages** over digit alphabet A,

$$L_{< c} = \left\{a_1 \dots a_n \in A^* \; \left| \; \sum_{k=1}^n a_k eta^{-k} < c
ight\}
ight.$$

• $0 = c_1 \leq c_2 \leq \cdots \leq c_p = 1$ are (rational) thresholds such that $C = \{c_1, \dots, c_p\} = \left\{-\sum_{i=0}^{s-1} rac{w_{ji}}{w_{js}}y_i \ \middle| \ j \in V \setminus (X \cup \{s\}) ext{ s.t. } w_{js}
eq 0, \ y_1, \dots, y_{s-1} \in \{0, 1\}
ight\} \cup \{0, 1\} \subset \mathbb{Q}$

•
$$\beta = \frac{1}{w_{ss}} \in \mathbb{Q}$$
 is called a (rational) base (radix) $\longrightarrow |\beta| > 1$

Representations of Numbers in Non-Integer Bases

non-standard positional numeral systems: a base and/or digits need not be integers

- $eta \in \mathbb{R}$ is a real base (radix) such that |eta| > 1
- $\emptyset
 eq A \subset \mathbb{R}$ is a finite set of real digits

a word (string) composed of digits $a_1 \dots a_n \in A^*$ (the radix point omitted), called a finite β -expansion, represents a number in base β as

$$(0 \cdot a_1 \cdot \cdot \cdot a_n)_{\beta} = a_1 \beta^{-1} + a_2 \beta^{-2} + a_3 \beta^{-3} + \dots + a_n \beta^{-n} = \sum_{k=1}^n a_k \beta^{-k}$$

Examples:

- 1. $\beta = 10$, $A = \{0, 1, 2, \dots, 9\}$ decimal expansion 75 represents $\frac{3}{4} = (0.75)_{10} = 7 \cdot 10^{-1} + 5 \cdot 10^{-2}$
- 2. $\beta = 2$, $A = \{0, 1\}$

binary expansion 11 represents $rac{3}{4} = (0.11)_2 = 1 \cdot 2^{-1} + 1 \cdot 2^{-2}$

3.
$$\beta = \frac{5}{2}$$
, $A = \left\{\frac{5}{16}, \frac{7}{4}\right\}$
 $\frac{5}{2}$ -expansion $\frac{7}{4}$ $\frac{5}{16}$ represents $\frac{3}{4} = \left(0 \cdot \frac{7}{4} \cdot \frac{5}{16}\right)_{\frac{5}{2}} = \frac{7}{4} \cdot \left(\frac{5}{2}\right)^{-1} + \frac{5}{16} \cdot \left(\frac{5}{2}\right)^{-2}$

Finite β -Expansions & Cut Languages

a cut language $L_{<c}$ contains all the finite β -expansions $a_1 \dots a_n \in A^*$ of numbers that are less than a threshold $c \in \mathbb{R}$ (similarly for $L_{>c}$):

$$L_{< c} = \left\{a_1 \dots a_n \in A^* \; \middle|\; (0 \, . \, a_1 \dots a_n)_eta = \sum_{k=1}^n a_k eta^{-k} < c
ight\}$$

 $eta \in \mathbb{Q}$, $A \subset \mathbb{Q}$: $L_{< c}$ is composed of finite eta-expansions of a Dedekind cut

(Infinite) β-Expansions (Rényi, 1957; Parry, 1960)

an infinite word composed of digits $a_1a_2a_3\dots\in A^\omega$ is a eta-expansion of number

$$(0\,.\,a_1a_2a_3\cdots)_eta=a_1eta^{-1}+a_2eta^{-2}+a_3eta^{-3}+\cdots=\sum_{k=1}^\infty a_keta^{-k}$$

which is a convergent power series due to |eta|>1

Example: $\beta = \frac{3}{2}, A = \{0, 1\}$

 $\frac{3}{2}$ -expansion $~000(10)^\omega=000\,10\,10\,10\,10\,10\,10$ $\ldots\in\{0,1\}^\omega$ represents the number

$$(0.000\ 10\ 10\ 10\ 10\ 10\ 10\ \dots)_{\frac{3}{2}} = \left(\frac{3}{2}\right)^{-4} + \left(\frac{3}{2}\right)^{-6} + \left(\frac{3}{2}\right)^{-8} + \cdots$$
$$= \sum_{k=2}^{\infty} \left(\frac{3}{2}\right)^{-2k} = \sum_{k=2}^{\infty} \left(\frac{4}{9}\right)^{k} = \frac{\frac{16}{81}}{1 - \frac{4}{9}} = \frac{16}{45}$$

Uniqueness of β -Expansions for Integer Base β

for an integer base $\beta > 0$ and the standard digits, $A = \{0, 1, \dots, \beta - 1\}$, almost any number from the interval (0, 1) has a unique β -expansion,

e.g. the decimal expansion $\ 70710678118\ldots \in \{0,1,2,\ldots,9\}^\omega$ of

$$rac{\sqrt{2}}{2} = (0.70710678118\dots)_{10}$$

except for those with a finite β -expansion, which have two distinct β -expansions,

e.g. two decimal expansions $750^\omega = 75000\ldots$, $749^\omega = 74999\ldots$ of

$$rac{3}{4} = (0.75)_{10} = (0.75000\dots)_{10} = (0.74999\dots)_{10}$$

Uniqueness of β -Expansions for Non-Integer Base β

for a non-integer base β , almost every number has infinitely (uncountably) many distinct β -expansions (Sidorov, 2003)

Example: $1 < \beta < 2$, $A = \{0, 1\}$, $D_{\beta} = \left(0, \frac{1}{\beta - 1}\right)$

- $1 < \beta < \varphi$ where $\varphi = (1 + \sqrt{5})/2 \approx 1.618034$ is the golden ratio: every $x \in D_{\beta}$ has uncountably many distinct β -expansions (Erdös et al., 1990)
- $\varphi \leq \beta < q$ where $q \approx 1.787232$ is the Komornik-Loreti constant: countably many $x \in D_{\beta}$ have unique β -expansions (Glendinning, Sidorov, 2001) e.g. $\beta = \frac{5}{3} = 1.\overline{6} = 1.666... \longrightarrow D_{\frac{5}{3}} = (0, \frac{3}{2})$ the infinite word $0^{k}(10)^{\omega}$ $(k \geq 0)$ represents a unique $\frac{5}{3}$ -expansion of $(0. \underbrace{0...0}_{k \text{ times}} 10\,10\,10\,10\,10\,\ldots)_{\frac{5}{3}} = (\frac{3}{5})^{k-1} \cdot \frac{9}{16}$

vs. $\beta = \varphi = (1 + \sqrt{5})/2 \approx 1.618034 \longrightarrow D_{\varphi} = (0, \varphi)$ countably many distinct φ -expansions $(10)^k 110^{\omega}$, $(10)^{\omega}$, $(10)^k 01^{\omega}$ ($k \ge 0$) of the number 1, e.g. $1 = (0.\overline{10})_{\varphi} = (0.1010101010...)_{\varphi}$

• $q \leq eta < 2$: uncountably many $x \in D_eta$ have unique eta-expansions

Eventually Periodic β -Expansions

$$a_1a_2\ldots a_{k_1}\,(a_{k_1+1}a_{k_1+2}\ldots a_{k_2})^{\omega}$$

- $a_1a_2\ldots a_{k_1}\in A^{k_1}$ is a preperiodic part of length $k_1\geq 0$ (purely periodic eta-expansions meet $k_1=0$)
- $a_{k_1+1}a_{k_1+2}\ldots a_{k_2}\in A^m$ is a repetend of length $m=k_2-k_1>0$ whose minimum is the period of eta-expansion

•
$$(0.a_1a_2...a_{k_1}\overline{a_{k_1+1}a_{k_1+2}...a_{k_2}})_eta = (0.a_1a_2...a_{k_1})_eta + eta^{-k_1}arrho$$

where
$$\varrho = (0 \cdot \overline{a_{k_1+1}a_{k_1+2}\dots a_{k_2}})_eta = rac{\sum_{k=1}^m a_{k_1+k}eta^{-k}}{1-eta^{-m}}$$
 is a periodic point

Example: $\beta = \frac{3}{2}$, $A = \{0, 1\}$, $1 (10)^{\omega} = 1 \, 10 \, 10 \, 10 \, 10 \, 10 \, \dots$

$$\frac{22}{15} = (0.1\overline{10})_{\frac{3}{2}} = (0.1)_{\frac{3}{2}} + \left(\frac{3}{2}\right)^{-1} \cdot (0.\overline{10})_{\frac{3}{2}} = \left(\frac{3}{2}\right)^{-1} + \left(\frac{3}{2}\right)^{-1} \cdot \varrho$$

where
$$\varrho = (0.\overline{10})_{\frac{3}{2}} = \sum_{k=0}^{\infty} \left(\frac{3}{2}\right)^{-2k-1} = \frac{1 \cdot \left(\frac{3}{2}\right)^{-1} + 0 \cdot \left(\frac{3}{2}\right)^{-2}}{1 - \left(\frac{3}{2}\right)^{-2}} = \frac{6}{5}$$

Eventually Quasi-Periodic β -Expansions

$$eta$$
-expansion $a_1\ldots a_{k_1}a_{k_1+1}\ldots a_{k_2}a_{k_2+1}\ldots a_{k_3}a_{k_3+1}\ldots a_{k_4}\ldots\in A^\omega$

is eventually quasi-periodic if there is $0 \leq k_1 < k_2 < \cdots$ such that

$$arrho=(0\,.\,\overline{a_{k_1+1}\dots a_{k_2}})_eta=(0\,.\,\overline{a_{k_2+1}\dots a_{k_3}})_eta=(0\,.\,\overline{a_{k_3+1}\dots a_{k_4}})_eta=\cdots$$

- $a_1a_2\ldots a_{k_1}\in A^{k_1}$ is a preperiodic part of length k_1 (purely quasi-periodic eta-expansions meet $k_1=0$)
- $a_{k_i+1} \dots a_{k_{i+1}} \in A^{m_i}$ is a quasi-repetend of length $m_i = k_{i+1} k_i > 0$

•
$$(0.a_1a_2a_2...)_eta=(0.a_1a_2...a_{k_1})_eta+eta^{-k_1}arrho$$
 where for every $i\ge 1$,

$$(0\,.\,\overline{a_{k_i+1}\dots a_{k_{i+1}}})_eta=rac{\sum_{k=1}^{m_i}a_{k_i+k}eta^{-k}}{1-eta^{-m_i}}=arrho$$
 is a periodic point

 \longrightarrow quasi-repetends can be mutually replaced with each other arbitrarily

• a generalization of eventually periodic β -expansions:

$$a_{k_1+1}\dots a_{k_2} = a_{k_2+1}\dots a_{k_3} = a_{k_3+1}\dots a_{k_4} = \cdots$$

An Example of Quasi-Periodic β -Expansion

base
$$\beta = \frac{5}{2}$$
, digits $A = \left\{0, \frac{1}{2}, \frac{7}{4}\right\}$, periodic point $\varrho = \frac{3}{4}$
 $\left(0 \cdot \frac{7}{4} \ 0\right)_{\frac{5}{2}} = \left(0 \cdot \frac{7}{4} \frac{1}{2} \ 0\right)_{\frac{5}{2}} = \left(0 \cdot \frac{7}{4} \frac{1}{2} \frac{1}{2} \frac{1}{2} \ 0\right)_{\frac{5}{2}} = \left(0 \cdot \frac{7}{4} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \ 0\right)_{\frac{5}{2}} = \cdots$
 $= \left(0 \cdot \frac{7}{4} \frac{1}{2} \frac{1}{2} \cdots \frac{1}{2} \ 0\right)_{\frac{5}{2}} = \frac{\frac{7}{4} \cdot (\frac{5}{2})^{-1} + \sum_{i=2}^{n+1} \frac{1}{2} \cdot (\frac{5}{2})^{-i} + 0 \cdot (\frac{5}{2})^{-n-2}}{1 - (\frac{5}{2})^{-n-2}} = \frac{3}{4}$
 $\longrightarrow \ \varrho = \frac{3}{4}$ has uncountably many distinct quasi-periodic $\frac{5}{2}$ -expansions:

 $\frac{3}{4} = \left(0 \cdot \frac{7}{4} \cdot \frac{1}{2} \cdots \cdot \frac{1}{2} \cdot 0 \cdot \frac{7}{4} \cdot \frac{1}{2} \cdots \cdot \frac{1}{2} \cdot 0 \cdot \frac{7}{4} \cdot \frac{1}{2} \cdots \cdot \frac{1}{2} \cdot 0 \cdot \frac{7}{4} \cdot \frac{1}{2} \cdots \cdot \frac{1}{2} \cdot 0 \cdot \frac{7}{4} \cdot \frac{1}{2} \cdots \cdot \frac{1}{2} \cdot 0 \cdot \frac{1}{2} \cdot \frac{1}{2}$

where n_1, n_2, n_3, \ldots is any infinite sequence of nonnegative integers

Quasi-Periodic Numbers

 $c \in \mathbb{R}$ is $\beta\text{-quasi-periodic}$ within A if every infinite $\beta\text{-expansion}$ of c is eventually quasi-periodic

Examples:

• c from the complement of the Cantor set is 3-quasi-periodic within $\{0,2\}$: c has no eta-expansion at all

•
$$c = \frac{3}{4}$$
 is $\frac{5}{2}$ -quasi-periodic within $A = \{0, \frac{1}{2}, \frac{7}{4}\}$:
all the $\frac{5}{2}$ -expansions of $\frac{3}{4}$ using digits from A , are eventually quasi-periodic

•
$$c = \frac{40}{57} = (0.0\overline{011})_{\frac{3}{2}}$$
 is not $\frac{3}{2}$ -quasi-periodic within $A = \{0, 1\}$:
greedy (i.e. lexicographically maximal) $\frac{3}{2}$ -expansion 100000001... of $\frac{40}{57}$ is not eventually periodic

Cut Languages Within the Chomsky Hierarchy

(Šíma, Savický, LATA 2017)

$$L_{< c} = \left\{a_1 \dots a_n \in A^* \; \middle|\; (0 \, . \, a_1 \dots a_n)_eta = \sum_{k=1}^n a_k eta^{-k} < c
ight\}$$

Theorem 1 A cut language $L_{<c}$ is regular iff c is β -quasi-periodic within A.

Theorem 2 Let $\beta \in \mathbb{Q}$ and $A \subset \mathbb{Q}$. Every cut language $L_{<c}$ with threshold $c \in \mathbb{Q}$ is context-sensitive.

Theorem 3 If c is not β -quasi-periodic within A, then the cut language $L_{<c}$ is not context-free.

Corollary 1 Any cut language $L_{<c}$ is either regular or non-context-free (depending on whether c is a β -quasi-periodic number within A).

The Computational Power of 1ANNs (Šíma, IJCNN 2017)

applying the results on cut languages to the **representation theorem** for 1ANNs:

$$L = h\left(\left(\left(igcup_{r=0}^p igl(\overline{L_{< c_r}} \cap L_{< c_{r+1}} igr)^R \cdot A_r
ight)^{Pref} \cap R_0
ight)^* \cap R
ight)$$

Theorem 4 Let N be a 1ANN and assume $0 < |w_{ss}| < 1$. Define $\beta \in \mathbb{Q}$, $A \subset \mathbb{Q}$, and $C \subset \mathbb{Q}$ as in the representation theorem using the weights of N:

$$egin{aligned} eta &= rac{1}{w_{ss}}, \quad m{A} = \left\{ \sum_{i=0}^{s-1} w_{si} y_i \ \Big| \ y_1, \dots, y_{s-1} \in \{0,1\}
ight\} \, \cup \, \{0,1\} \, , \ & m{C} &= \{m{c}_1, \dots, m{c}_p\} = \left\{ -\sum_{i=0}^{s-1} rac{w_{ji}}{w_{js}} y_i \ \Big| \ j \in V \setminus (X \cup \{s\}) \ s.t. \ w_{js}
eq 0 \, , \ & y_1, \dots, y_{s-1} \in \{0,1\}
ight\} \cup \{0,1\} \, . \end{aligned}$$

If every $c \in C$ is β -quasi-periodic within A, then N accepts regular language.

Theorem 5 There is a language accepted by a 1ANN, which is not context-free.

Theorem 6 Any language accepted by a 1ANN is context-sensitive.

NNs Between Integer and Rational Weights & the Chomsky Hierarchy

rational-weight NNs \equiv TMs \equiv recursively enumerable languages (Type-0)

 $1ANNs \subset LBA \equiv context-sensitive languages (Type-1)$

1ANNs $\not\subset$ PDA \equiv context-free languages (Type-2)

integer-weight NNs \equiv "quasi-periodic" 1ANNs \equiv FA \equiv regular languages (Type-3)

Conclusions

- we have presented a brief survey of results on the computational power of NNs
- we have characterized the class of languages accepted by 1ANNs—integerweight NNs with an extra rational-weight analog neuron, using cut languages
- \bullet we have shown an interesting link to active research on β -expansions in non-integer bases
- we have introduced the notion of quasi-periodic numbers
- we have refined the analysis of the computational power of NNs between integer and rational weights within the Chomsky hierarchy

Open Problems

- a necessary condition when a 1ANN accepts a regular language
- ullet the analysis for $w_{ss} \in \mathbb{R}$ or $|w_{ss}| > 1$
- a proper hierarchy of 1ANNs, e.g. with increasing quasi-period of weights