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(Artificial) Neural Networks (NNs)

1. mathematical models of biological neural networks

• simulating and understanding the brain (The Human Brain Project)

• modeling cognitive functions

2. computing devices alternative to conventional computers

already first computer designers sought their inspiration in the human brain
(e.g., neurocomputer due to Minsky, 1951)

• common tools in machine learning or data mining (learning from training data)

• professional software implementations (e.g. Matlab, Statistica modules)

• successful commercial applications in AI (e.g. deep learning):
pattern recognition, control, prediction, decision-making, signal analysis, fault
detection, diagnostics, etc.



The Neural Network Model – Architecture

s computational units (neurons), indexed as V = {1, . . . , s}, connected into
a directed graph (V,A) where A ⊆ V × V



The Neural Network Model – Weights

each edge (i, j) ∈ A from unit i to j is labeled with a real weight wji ∈ R



The Neural Network Model – Zero Weights

each edge (i, j) ∈ A from unit i to j is labeled with a real weight wji ∈ R
(wki = 0 iff (i, k) /∈ A)



The Neural Network Model – Biases

each neuron j ∈ V is associated with a real bias wj0 ∈ R
(i.e. a weight of (0, j) ∈ A from an additional formal neuron 0 ∈ V )



Discrete-Time Computational Dynamics – Network State

the evolution of global network state (output) y(t) = (y
(t)
1 , . . . , y

(t)
s ) ∈ [0, 1]s

at discrete time instant t = 0, 1, 2, . . .



Discrete-Time Computational Dynamics – Initial State

t = 0 : initial network state y(0) ∈ {0, 1}s



Discrete-Time Computational Dynamics: t = 1

t = 1 : network state y(1) ∈ [0, 1]s



Discrete-Time Computational Dynamics: t = 2

t = 2 : network state y(2) ∈ [0, 1]s



Discrete-Time Computational Dynamics – Excitations

at discrete time instant t ≥ 0, an excitation is computed as

ξ
(t)
j = wj0+

s∑
i=1

wjiy
(t)
i =

s∑
i=0

wjiy
(t)
i

for j = 1, . . . , s

where unit 0 ∈ V has constant output y
(t)
0 ≡ 1 for every t ≥ 0



Discrete-Time Computational Dynamics – Outputs

at the next time instant t+1, only the neurons j ∈ αt+1 from a selected subset

αt+1 ⊆ V update their states:

y
(t+1)
j =

 σ
(
ξ

(t)
j

)
for j ∈ αt+1

y
(t)
j for j ∈ V \ αt+1

where σ : R −→ [0, 1]

is an activation function, e.g.

σ(ξ) =

 1 for ξ ≥ 1
ξ for 0 < ξ < 1
0 for ξ ≤ 0

the saturated-linear function



The Computational Power of NNs – Motivations

• the potential and limits of general-purpose computation with NNs:

What is ultimately or efficiently computable by particular NN models?

• idealized mathematical models of practical NNs which abstract away from
implementation issues, e.g. analog numerical parameters are true real numbers

• methodology: the computational power and efficiency of NNs is investigated
by comparing formal NNs to traditional computational models such as finite
automata, Turing machines, Boolean circuits, etc.

• NNs may serve as reference models for analyzing alternative computational
resources (other than time or memory space) such as analog state, continuous
time, energy, temporal coding, etc.

• NNs capture basic characteristics of biological nervous systems (plenty of
densely interconnected simple unreliable computational units)

−→ computational principles of mental processes



Neural Networks As Formal Language Acceptors

language (problem) L ⊆ Σ∗ over a finite alphabet Σ

y
(T (n))
out =

{
1 if x ∈ L
0 if x /∈ L y

(t)
val =

{
1 if t = T (n)
0 if t 6= T (n)

Y = {out, val} output neurons

T (n) is the computational time
in terms of input length n ≥ 0

d ≥ 1 is the time overhead for
processing a single input symbol

X = enum(Σ) ⊆ V
input neuronsx y(d(i−1)+k)

j = 1 iff j = enum(xi)

x = x1x2 . . . xi−1 ←− xi ←− xi+1xi+2 . . . xn ∈ Σ∗ input word



The Computational Power of NNs – Integer Weights

depends on the information content of weight parameters:

1. integer weights: finite automaton (FA) (Minsky, 1967)

wji ∈ Z −→ excitations ξj ∈ Z −→ states yj ∈ {0, 1}

−→ 2s global NN states y ∈ {0, 1}s ∼ FA states

size-optimal implementations:

• Θ
(√
m
)

neurons for a deterministic FA with m states
(Indyk, 1995; Horne, Hush, 1995)

• Θ(m) neurons for a regular expression of length m
(Šı́ma, Wiedermann 1998)



The Computational Power of NNs – Rational Weights

depends on the information content of weight parameters:

2. rational weights: Turing machine (Siegelmann, Sontag, 1995)

• wji ∈ Q are fractions p
q

where p ∈ Z , q ∈ N

• NNs compute algorithmically solvable problems

• real-time simulation of TMs −→ polynomial time ≡ complexity class P

• a universal NN with 25 neurons (Indyk, 1995)

−→ the halting problem of whether a small NN terminates its computation,

is algorithmically undecidable



The Computational Power of NNs – Real Weights

depends on the information content of weight parameters:

3. arbitrary real weights: “super-Turing” computation (Siegelmann, Sontag, 1994)

•wji ∈ R, e.g. irrational weights
√

2, π

• infinite precision of ONE real weight (vs. an algorithm has a finite description)

can encode any function f : 0 . code(C1) code(C2) code(C3) . . .

(code(Cn) encodes the circuit Cn computing f for inputs of length n)

−→ exponential time ≡ any I/O mapping

(including algorithmically undecidable problems)

• polynomial time ≡ nonuniform complexity class P/poly:

problems solvable by a polynomial-time (P) algorithm that for input x ∈ Σ∗

of length n = |x|, receives an external advise: a string s(n) ∈ Σ∗ of
polynomial length |s(n)| = O(nc) (poly), which depends only on n



The Computational Power of NNs – Rough Overview

depends on the information content of weight parameters:

1. integer weights: finite automaton

2. rational weights: Turing machine

polynomial time ≡ complexity class P

3. arbitrary real weights: “super-Turing” computation

polynomial time ≡ nonuniform complexity class P/poly

exponential time ≡ any I/O mapping



Neural Networks Between Rational and Real Weights

1. integer weights: finite automaton

2. rational weights: Turing machine

polynomial time ≡ P

polynomial time & increasing Kolmogorov complexity of real weights:

the length of the shortest program (in a fixed programming language) that

produces a real weight,

e.g. K
(

“
√

2 ”
)

= O(1), K(“random strings”) = n+ O(1)

≡ a proper hierarchy of nonuniform complexity classes between P and P/poly

(Balcázar, Gavaldà, Siegelmann, 1997)

3. arbitrary real weights: “super-Turing” computation

polynomial time ≡ P/poly



Neural Networks Between Integer and Rational Weights

1. integer weights: finite automata ≡ regular (Type-3) languages

a gap between integer and rational weights w.r.t. the Chomsky hierarchy:

pushdown automata ≡ context-free (Type-2) languages

linear-bounded automata (NSPACE(O(n))) ≡ context-sensitive (Type-1) languages

2. rational weights: Turing machines ≡ recursively enumerable (Type-0) lang.

TWO analog neurons with rational weights + a few integer-weight neurons
can implement a 2-stack pushdown automaton ≡ Turing machine

−→ What is the computational power of ONE extra analog neuron ?



A Neural Network with an Extra Analog Neuron (1ANN)

all the weights to neurons are integers except for ONE neuron s with rational weights:

wji ∈
{
Z j = 1, . . . , s− 1
Q j = s

i ∈ {0, . . . , s}



The Representation Theorem for 1ANNs (Šı́ma, IJCNN 2017)

A language L ⊂ Σ∗ that is accepted by a 1ANN satisfying 0 < |wss| < 1,
can be written as

L = h

( p⋃
r=0

(
L<cr ∩ L<cr+1

)
R ·Ar

)Pref
∩R0

∗ ∩R


(
options: L>0 , L>cr ∩ L<cr+1 , L>cr ∩ L>cr+1 , L<cr ∩ L<cr+1 , L<1

)
where

• A =
{∑s−1

i=0 wsiyi

∣∣∣ y1, . . . , ys−1 ∈ {0, 1}
}
∪ {0, 1} ⊂ Q is a finite

alphabet of (rational) digits

• h : A∗ −→ Σ∗ is a letter-to-letter morphism

• R ,R0 ⊆ A∗ are regular languages

• SPref denotes the largest prefix-closed subset of S ∪A ∪ {ε}

• A1, . . . , Ap is a partition of a finite alphabet A

•KR denotes the reversal of language K



The Representation Theorem for 1ANNs (Šı́ma, IJCNN 2017)

A language L ⊂ Σ∗ that is accepted by a 1ANN satisfying 0 < |wss| < 1,
can be written as

L = h

( p⋃
r=0

(
L<cr ∩ L<cr+1

)
R ·Ar

)Pref
∩R0

∗ ∩R


where (continued)

• L<cr , L>cr ⊆ A∗ are so-called cut languages over digit alphabet A,

L<c =

{
a1 . . . an ∈ A∗

∣∣∣∣∣
n∑
k=1

akβ
−k < c

}

• 0 = c1 ≤ c2 ≤ · · · ≤ cp = 1 are (rational) thresholds such that

C = {c1, . . . , cp} =
{
−
∑s−1

i=0

wji
wjs
yi

∣∣∣ j ∈ V \ (X ∪ {s}) s.t. wjs 6= 0 ,

y1, . . . , ys−1 ∈ {0, 1}
}
∪ {0, 1} ⊂ Q

• β = 1
wss
∈ Q is called a (rational) base (radix) −→ |β| > 1



Representations of Numbers in Non-Integer Bases

non-standard positional numeral systems: a base and/or digits need not be integers

• β ∈ R is a real base (radix) such that |β| > 1

• ∅ 6= A ⊂ R is a finite set of real digits

a word (string) composed of digits a1 . . . an ∈ A∗ (the radix point omitted),
called a finite β-expansion, represents a number in base β as

(0 . a1 . . . an)β = a1β
−1 +a2β

−2 +a3β
−3 + · · ·+anβ

−n =
n∑
k=1

akβ
−k

Examples:

1. β = 10, A = {0, 1, 2, . . . , 9}
decimal expansion 75 represents 3

4
= (0 . 75)10 = 7 · 10−1 + 5 · 10−2

2. β = 2, A = {0, 1}
binary expansion 11 represents 3

4
= (0 . 11)2 = 1 · 2−1 + 1 · 2−2

3. β = 5
2

, A =
{

5
16
, 7

4

}
5
2

-expansion 7
4

5
16

represents 3
4

=
(
0 . 7

4
5
16

)
5
2

= 7
4
·
(

5
2

)−1
+ 5

16
·
(

5
2

)−2



Finite β-Expansions & Cut Languages

a cut language L<c contains all the finite β-expansions a1 . . . an ∈ A∗ of
numbers that are less than a threshold c ∈ R (similarly for L>c):

L<c =

{
a1 . . . an ∈ A∗

∣∣∣∣∣ (0 . a1 . . . an)β =
n∑
k=1

akβ
−k < c

}

β ∈ Q, A ⊂ Q: L<c is composed of finite β-expansions of a Dedekind cut



(Infinite) β-Expansions (Rényi, 1957; Parry, 1960)

an infinite word composed of digits a1a2a3 · · · ∈ Aω is a β-expansion of
number

(0 . a1a2a3 · · · )β = a1β
−1 + a2β

−2 + a3β
−3 + · · · =

∞∑
k=1

akβ
−k

which is a convergent power series due to |β| > 1

Example: β = 3
2

, A = {0, 1}

3
2

-expansion 000(10)ω = 000 10 10 10 10 10 . . . ∈ {0, 1}ω represents

the number(
0 . 000 10 10 10 10 10 . . .

)
3
2

=

(
3

2

)−4

+

(
3

2

)−6

+

(
3

2

)−8

+ · · ·

=
∞∑
k=2

(
3

2

)−2k

=
∞∑
k=2

(
4

9

)k
=

16
81

1− 4
9

=
16

45



Uniqueness of β-Expansions for Integer Base β

for an integer base β > 0 and the standard digits, A = {0, 1, . . . , β − 1},

almost any number from the interval (0, 1) has a unique β-expansion,

e.g. the decimal expansion 70710678118 . . . ∈ {0, 1, 2, . . . , 9}ω of

√
2

2
= (0 . 70710678118 . . . )10

except for those with a finite β-expansion, which have two distinct β-expansions,

e.g. two decimal expansions 750ω = 75000 . . . , 749ω = 74999 . . . of

3

4
= (0 . 75)10 = (0 . 75000 . . . )10 = (0 . 74999 . . . )10



Uniqueness of β-Expansions for Non-Integer Base β

for a non-integer base β, almost every number has infinitely (uncountably)
many distinct β-expansions (Sidorov, 2003)

Example: 1 < β < 2, A = {0, 1}, Dβ =
(
0 , 1

β−1

)
• 1 < β < ϕ where ϕ = (1 +

√
5)/2 ≈ 1.618034 is the golden ratio:

every x ∈ Dβ has uncountably many distinct β-expansions (Erdös et al.,1990)

• ϕ ≤ β < q where q ≈ 1.787232 is the Komornik-Loreti constant:

countably many x ∈ Dβ have unique β-expansions (Glendinning,Sidorov,2001)

e.g. β = 5
3

= 1 . 6 = 1 . 666 . . . −→ D5
3

=
(
0 , 3

2

)
the infinite word 0k(10)ω (k ≥ 0) represents a unique 5

3
-expansion of(

0 . 0 . . . 0︸ ︷︷ ︸
k times

10 10 10 10 10 . . .
)

5
3

=
(

3
5

)k−1 · 9
16

vs. β = ϕ = (1 +
√

5)/2 ≈ 1.618034 −→ Dϕ = (0 , ϕ)

countably many distinctϕ-expansions (10)k110ω, (10)ω, (10)k01ω (k ≥ 0)

of the number 1, e.g. 1 =
(
0 . 10

)
ϕ

= (0 . 10 10 10 10 10 . . .)ϕ

• q ≤ β < 2: uncountably many x ∈ Dβ have unique β-expansions



Eventually Periodic β-Expansions

a1a2 . . . ak1 (ak1+1ak1+2 . . . ak2)
ω

• a1a2 . . . ak1 ∈ Ak1 is a preperiodic part of length k1 ≥ 0
(purely periodic β-expansions meet k1 = 0)

• ak1+1ak1+2 . . . ak2 ∈ Am is a repetend of length m = k2 − k1 > 0
whose minimum is the period of β-expansion

• (0 . a1a2 . . . ak1 ak1+1ak1+2 . . . ak2)β = (0 . a1a2 . . . ak1)β + β−k1%

where % = (0 . ak1+1ak1+2 . . . ak2)β =

∑m
k=1 ak1+kβ

−k

1− β−m
is a periodic point

Example: β = 3
2

, A = {0, 1}, 1 (10)ω = 1 10 10 10 10 10 . . .

22

15
=
(
0 . 1 10

)
3
2

= (0 . 1)3
2
+

(
3

2

)−1

·
(
0 . 10

)
3
2

=

(
3

2

)−1

+

(
3

2

)−1

· %

where % =
(
0 . 10

)
3
2

=
∞∑
k=0

(
3

2

)−2k−1

=
1 ·
(

3
2

)−1
+ 0 ·

(
3
2

)−2

1−
(

3
2

)−2 =
6

5



Eventually Quasi-Periodic β-Expansions

β-expansion a1 . . . ak1 ak1+1 . . . ak2 ak2+1 . . . ak3 ak3+1 . . . ak4 . . . ∈ A
ω

is eventually quasi-periodic if there is 0 ≤ k1 < k2 < · · · such that

% = (0 . ak1+1 . . . ak2)β = (0 . ak2+1 . . . ak3)β = (0 . ak3+1 . . . ak4)β = · · ·

• a1a2 . . . ak1 ∈ Ak1 is a preperiodic part of length k1

(purely quasi-periodic β-expansions meet k1 = 0)

• aki+1 . . . aki+1
∈ Ami is a quasi-repetend of length mi = ki+1 − ki > 0

• (0 . a1a2a2 . . .)β = (0 . a1a2 . . . ak1)β+β−k1% where for every i ≥ 1,

(0 . aki+1 . . . aki+1
)β =

∑mi
k=1 aki+kβ

−k

1− β−mi
= % is a periodic point

−→ quasi-repetends can be mutually replaced with each other arbitrarily

• a generalization of eventually periodic β-expansions:

ak1+1 . . . ak2 = ak2+1 . . . ak3 = ak3+1 . . . ak4 = · · ·



An Example of Quasi-Periodic β-Expansion

base β =
5

2
, digits A =

{
0 ,

1

2
,

7

4

}
, periodic point % =

3

4(
0 .

7

4
0

)
5
2

=

(
0 .

7

4

1

2
0

)
5
2

=

(
0 .

7

4

1

2

1

2
0

)
5
2

=

(
0 .

7

4

1

2

1

2

1

2
0

)
5
2

= · · ·

=

0 .
7

4

1

2
· · ·

1

2︸ ︷︷ ︸
n times

0


5
2

=
7
4
·
(

5
2

)−1
+
∑n+1

i=2
1
2
·
(

5
2

)−i
+ 0 ·

(
5
2

)−n−2

1−
(

5
2

)−n−2 =
3

4

−→ % = 3
4

has uncountably many distinct quasi-periodic 5
2

-expansions:

3

4
=

0 .
7

4

1

2
· · ·

1

2︸ ︷︷ ︸
n1 times

0
7

4

1

2
· · ·

1

2︸ ︷︷ ︸
n2 times

0
7

4

1

2
· · ·

1

2︸ ︷︷ ︸
n3 times

0
7

4

1

2
· · ·

1

2︸ ︷︷ ︸
n4 times

0 · · ·


5
2

where n1, n2, n3, . . . is any infinite sequence of nonnegative integers



Quasi-Periodic Numbers

c ∈ R is β-quasi-periodic within A if every infinite β-expansion of c is
eventually quasi-periodic

Examples:

• c from the complement of the Cantor set is 3-quasi-periodic within {0, 2} :

c has no β-expansion at all

• c = 3
4

is 5
2

-quasi-periodic within A =
{
0 , 1

2
, 7

4

}
:

all the 5
2

-expansions of 3
4

using digits from A, are eventually quasi-periodic

• c = 40
57

= (0 . 0 011)3
2

is not 3
2

-quasi-periodic within A = {0, 1} :

greedy (i.e. lexicographically maximal) 3
2

-expansion 100000001 . . . of 40
57

is not eventually periodic



Cut Languages Within the Chomsky Hierarchy

(Šı́ma, Savický, LATA 2017)

L<c =

{
a1 . . . an ∈ A∗

∣∣∣∣∣ (0 . a1 . . . an)β =
n∑
k=1

akβ
−k < c

}

Theorem 1 A cut language L<c is regular iff c is β-quasi-periodic within A.

Theorem 2 Let β ∈ Q and A ⊂ Q. Every cut language L<c with threshold
c ∈ Q is context-sensitive.

Theorem 3 If c is not β-quasi-periodic within A, then the cut language L<c
is not context-free.

Corollary 1 Any cut language L<c is either regular or non-context-free
(depending on whether c is a β-quasi-periodic number within A).



The Computational Power of 1ANNs (Šı́ma, IJCNN 2017)

applying the results on cut languages to the representation theorem for 1ANNs:

L = h
(((⋃p

r=0

(
L<cr ∩ L<cr+1

)
R ·Ar

)Pref ∩R0

)∗
∩R

)
Theorem 4 Let N be a 1ANN and assume 0 < |wss| < 1. Define β ∈ Q,
A ⊂ Q, and C ⊂ Q as in the representation theorem using the weights of N :

β = 1
wss
, A =

{∑s−1
i=0 wsiyi

∣∣∣ y1, . . . , ys−1 ∈ {0, 1}
}
∪ {0, 1} ,

C = {c1, . . . , cp} =
{
−
∑s−1

i=0

wji
wjs
yi

∣∣∣ j ∈ V \ (X ∪ {s}) s.t. wjs 6= 0 ,

y1, . . . , ys−1 ∈ {0, 1}
}
∪{0, 1} .

If every c ∈ C is β-quasi-periodic within A, then N accepts regular language.

Theorem 5 There is a language accepted by a 1ANN, which is not context-free.

Theorem 6 Any language accepted by a 1ANN is context-sensitive.



NNs Between Integer and Rational Weights

& the Chomsky Hierarchy

rational-weight NNs ≡ TMs ≡ recursively enumerable languages (Type-0)

1ANNs ⊂ LBA ≡ context-sensitive languages (Type-1)

1ANNs 6⊂ PDA ≡ context-free languages (Type-2)

integer-weight NNs ≡ “quasi-periodic” 1ANNs ≡ FA ≡ regular languages (Type-3)



Conclusions

• we have presented a brief survey of results on the computational power of NNs

• we have characterized the class of languages accepted by 1ANNs—integer-
weight NNs with an extra rational-weight analog neuron, using cut languages

• we have shown an interesting link to active research on β-expansions in
non-integer bases

• we have introduced the notion of quasi-periodic numbers

• we have refined the analysis of the computational power of NNs between
integer and rational weights within the Chomsky hierarchy

Open Problems

• a necessary condition when a 1ANN accepts a regular language

• the analysis for wss ∈ R or |wss| > 1

• a proper hierarchy of 1ANNs, e.g. with increasing quasi-period of weights


