
Energy Complexity of Recurrent Neural Networks

Jiřı́ Šı́ma
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Abstract

Recently, a new so-called energy complexity measure has been introduced and studied

for feedforward perceptron networks. This measure is inspired by the fact that biologi-

cal neurons require more energy to transmit a spike than not to fire, and the activity of

neurons in the brain is quite sparse, with only about 1% of neurons firing. In this paper,

we investigate the energy complexity of recurrent networks which counts the number

of active neurons at any time instant of a computation. We prove that any determin-

istic finite automaton with m states can be simulated by a neural network of optimal

size s = Θ(
√
m) with the time overhead of τ = O(s/e) per one input bit, using the



energy O(e), for any e such that e = Ω(log s) and e = O(s), which shows the time-

energy tradeoff in recurrent networks. In addition, for the time overhead τ satisfying

τ τ = o(s), we obtain the lower bound of sc/τ on the energy of such a simulation, for

some constant c > 0 and for infinitely many s.

1 Introduction

In biological neural networks the energy cost of a firing neuron is relatively high1, while

energy supplied to the brain is limited and hence the activity of neurons in the brain is

quite sparse, with only about 1% of neurons firing (Lennie, 2003). This is in contrast to

artificial neural networks in which, on average, every second unit fires during a compu-

tation. This fact has recently motivated the definition of a new complexity measure for

feedforward perceptron networks (threshold circuits), the so-called energy complexity

(Uchizawa et al., 2006) which is the maximum number of units in the network which

output 1, taken over all the inputs to the circuit. Energy complexity has been shown

to be closely related by tradeoff results to other complexity measures such as the net-

work size (i.e., the number of neurons) (Uchizawa et al., 2008, 2011b), the circuit depth

(i.e., parallel computational time) (Uchizawa et al., 2010, 2008), and the fan-in (i.e.,

the maximum number of inputs to a single unit) (Suzuki et al., 2011) etc. In addition,

energy complexity has found its use in circuit complexity, e.g. as a tool for proving the

lower bounds (Uchizawa et al., 2011a) etc.

1The relatively small difference in the oxygen consumption of a used vs. not used functional part

of brain (e.g. visual cortex), which is documented by the fMRI studies, is caused by the fact that the

corresponding neurons fire although the respective region is not employed for its purpose.
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In this paper, we investigate, for the first time, the energy complexity of recurrent

neural networks which we define to be the maximum number of neurons outputting 1

at any time instant, taken over all possible computations. It has been known for a long

time that the computational power of binary-state recurrent networks corresponds to

that of finite automata since the network of size s units can reach only a finite number

(at most 2s) different states (Šı́ma et al., 2003). A simple way of simulating a given

deterministic finite automaton A with m states by a neural network N of size O(m) is

to implement each of the 2m transitions of A (having 0 and 1 transitions for each state)

by a single unit in N which checks whether the input bit agrees with the respective type

of transition (Minsky, 1967). Clearly, this simple linear-size implementation of finite

automata requires only a constant energy.

Much effort had been given to reducing the size of neural automata (e.g., Alon et al.,

1991; Horne et al., 1996; Indyk, 1995; Šı́ma et al., 1998) and, indeed, neural networks

of size Θ(
√
m) implementing a given deterministic finite automaton withm states were

proposed and proven to be size-optimal (Horne et al., 1996; Indyk, 1995). A natural

question arises: what is the energy consumption when simulating finite automata by

optimal-size neural networks? We answer this question by proving the tradeoff between

the energy and the time overhead of the simulation. In particular, we prove that an

optimal-size neural network of s = Θ(
√
m) units can be constructed to simulate a

deterministic finite automaton with m states using the energy O(e) for any function e

such that e = Ω(log s) and e = O(s), while the time overhead for processing one input

bit is τ = O(s/e). For this purpose, we adapt the asymptotically optimal method of

threshold circuit synthesis due to Lupanov (1973).
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In addition, we derive lower bounds on the energy consumption e of a neural net-

work of size s simulating a finite automaton within the time overhead τ per one in-

put bit, by using the technique due to Uchizawa et al. (2008) which is based on com-

munication complexity (Kushilevitz et al., 1997). In particular, for less than sublog-

arithmic time overhead τ satisfying τ log τ = o(log s), we obtain the lower bound

log e = Ω∞
(

1
τ

log s
)

which implies e ≥ sc/τ for some constant c > 0 and for infinitely

many s. For example, this means that for time overhead τ = O(1), the energy of any

simulation must fulfill e ≥ sδ for some constant δ such that 0 < δ < 1, and for infinitely

many s, which can be compared to the energy e = O(s) consumed by our simulation.

For τ = O(logα s) where 0 < α < 1, any simulation requires e = Ω∞

(
s

log log s

logδ s

)
for

any δ > α, while e = O (s/ logα s) is sufficient for our implementation.

This paper is organized as follows. After a brief review of the basic definitions

in section 2, the main result concerning a low-energy simulation of finite automata

by neural nets is formulated in section 3 including the basic ideas of the proof. The

subsequent two sections are devoted to the technical details of the proof: section 4 deals

with a decomposition of the transition function and section 5 describes the construction

of low-energy neural automata. The lower bounds on the energy consumption of such

neural automata are derived and compared to the respective upper bounds in section 6.

A concluding summary is given in section 7. A preliminary version appeared as an

extended abstract (Šı́ma, 2013).
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2 Neural Networks as Finite Automata

We will first specify the model of an (artificial) neural network N . The network consists

of s units (neurons, threshold gates), indexed as V = {1, . . . , s}, where s is called the

network size. The units are connected into a directed graph representing the architecture

of N , in which each edge (i, j) leading from unit i to j is labeled with an integer weight

w(i, j). The absence of a connection within the architecture corresponds to a zero

weight between the respective neurons, and vice versa.

In contrast to general recurrent networks, which have cyclic architectures, the archi-

tecture of a feedforward network (or a so-called threshold circuit) is an acyclic graph.

Hence, units in a feedforward network can be grouped in a unique minimal way into a

sequence of d+ 1 pairwise disjoint layers α0, . . . , αd ⊆ V so that neurons in any layer

αt are connected only to neurons in subsequent layers αu, u > t. Usually the zeroth, or

input layer α0 consists of external inputs and is not counted in the number of layers and

in the network size. The last, or output layer αd is composed of output neurons. The

number of layers d excluding the input one is called the depth of threshold circuit.

The computational dynamics of (not necessarily feedforward) network N deter-

mines for each unit j ∈ V its binary state (output) y(t)
j ∈ {0, 1} at discrete time instants

t = 0, 1, 2, . . .. We say that neuron j is active (fires) at time t if y(t)
j = 1, while j is pas-

sive for y(t)
j = 0. This establishes the network state y(t) = (y

(t)
1 , . . . , y

(t)
s ) ∈ {0, 1}s at

each discrete time instant t ≥ 0. At the beginning of a computation, the neural network

N is placed in an initial state y(0) which may also include an external input. At discrete
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time instant t ≥ 0, an excitation of any neuron j ∈ V is defined as

ξ
(t)
j =

s∑
i=1

w(i, j)y
(t)
i − h(j) (1)

including an integer threshold h(j) local to unit j. At the next instant t+1, the neurons

j ∈ αt+1 from a selected subset αt+1 ⊆ V update their states y(t+1)
j = H(ξ

(t)
j ) in

parallel by applying the Heaviside function H : R −→ {0, 1} which is defined as

H(ξ) =


1 for ξ ≥ 0

0 for ξ < 0 .

(2)

The remaining units j ∈ V \ αt+1 do not change their outputs, that is y(t+1)
j = y

(t)
j for

j 6∈ αt+1. In this way, the new network state y(t+1) at time t+ 1 is determined.

Without loss of efficiency (Orponen, 1997), we implicitly assume synchronous com-

putations. Thus, the sets αt which define the computational dynamics of N are predes-

tined deterministically for each time instant t (e.g. αt = V for any t ≥ 1 means fully

parallel synchronous updates). Note that computations in feedforward networks pro-

ceed layer by layer from the input layer up to the output one (i.e. sets αt naturally

coincide with layers), which implement Boolean functions. We define the energy com-

plexity of N to be the maximum number of active units
∑s

j=1 y
(t)
j at any time instant

t ≥ 0, taken over all the computations of N .

The computational power of recurrent neural networks has been studied analogously

to the traditional models of computations so that the networks are exploited as acceptors

of formal languages L ⊆ {0, 1}∗ over the binary alphabet. For the finite networks that

are to recognize regular languages, the following input/output protocol has been used

(Alon et al., 1991; Horne et al., 1996; Indyk, 1995; Siegelmann et al., 1995; Šı́ma et al.,
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1998, 2003). A binary input word (string) x = x1 . . . xn ∈ {0, 1}n of arbitrary length

n ≥ 0 is sequentially presented to the network bit by bit via an input neuron in ∈ V . The

state of this unit is externally set (and clamped) to the respective input bits at prescribed

time instants, regardless of any influence from the remaining neurons in the network,

that is,

y
(τ(i−1))
in = xi (3)

for i = 1, . . . , n where an integer parameter τ ≥ 1 is the period or time overhead

for processing a single input bit. Then, an output neuron out ∈ V signals at time τn

whether the input word belongs to underlying language L, that is,

y
(τn)
out =


1 for x ∈ L

0 for x 6∈ L .

(4)

As usual, we will describe the limiting behavior (rate of growth) of functions when

the argument tends towards infinity in terms of simpler functions by using Landau or

big O notation. Recall that for functions f ≥ 1 and g ≥ 1 defined for all natural

numbers, notations g = O(f) and g = Ω(f) mean that for some real constant c > 0

and for all but finitely many natural numbers n, g(n) ≤ c · f(n) and g(n) ≥ c · f(n),

respectively. In addition, g = Θ(f) if g = O(f) and g = Ω(f) simultaneously. Simi-

larly, g = o(f) denotes that for every real constant c > 0 and for all but finitely many

natural numbers n, g(n) ≤ c ·f(n), while g = Ω∞(f) means that for some real constant

c > 0 and for infinitely many natural numbers n, g(n) ≥ c · f(n). Clearly, g = o(f) iff

limn→∞ g(n)/f(n) = 0 iff g 6= Ω∞(f).

7



3 Low-Energy Optimal-Size Neural Finite Automata

Now, we can formulate our main result concerning a low-energy implementation of

finite automata by optimal-size neural nets:

Theorem 1 A given deterministic finite automaton A with m states can be simulated

by a neural network N of optimal size s = Θ(
√
m) neurons with time overhead τ =

O(s/e) per one input bit, using the energy O(e), where e is any function satisfying

e = Ω(log s) and e = O(s).

Proof: We will first outline the main ideas of the proof while the following two sections

provide the detailed argument. As we are interested in asymptotic analysis we will

hereafter assume m to be sufficiently large. A set Q of m states of a given deterministic

finite automaton A can be arbitrarily enumerated so that each q ∈ Q is binary encoded

using p = dlogme + 1 bits including one additional (e.g. the pth) bit which indicates

the final states (i.e. its value is 1 just for the final states of A). Then, the respective

transition function δ : Q × {0, 1} −→ Q of automaton A, producing its new state

qnew = δ(qold, x) ∈ Q from the old state qold ∈ Q and current input bit x ∈ {0, 1}, can

be viewed as a vector Boolean function f : {0, 1}p+1 −→ {0, 1}p in terms of binary

encoding of automaton’s states.

Furthermore, “transition” function f is implemented by a four-layer neural network

C of asymptotically optimal size s = Θ(
√

2p) = Θ(
√
m) using the method of threshold

circuit synthesis due to Lupanov (1973). Feedforward network C implementing the

transition function δ of A can then simply be transformed to a recurrent neural network

N simulating A by adding the recurrent connections from the fourth layer to the first
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one (in fact, the fourth output layer of C is identified with the zeroth input one in N )

which replace the code of the old state of A by the new one. Using this approach, a

finite automaton can be implemented by an optimal-size neural net (Horne et al., 1996).

Unfortunately, the second layer of C in Lupanov’s construction (Lupanov, 1973)

contains Θ(s) neurons, half of which fire for any input to C, which results in an unac-

ceptably high energy consumption Ω(s). In order to achieve a low-energy implementa-

tion of A, this layer of Θ(s) neurons is properly partitioned into O(s/e) blocks of O(e)

units each. Then, so-called control units are introduced which ensure that these blocks

are updated successively one by one so that the energy consumption (i.e. the maxi-

mum number of simultaneously active neurons) of O(e) is guaranteed while the time

overhead for processing a single input bit increases to O(s/e). In addition, the results

of computation of particular blocks must somehow be preserved using the available

energy.

In particular, we will decompose transition function f in section 4 using the method

of threshold circuit synthesis (Lupanov, 1973) so that f can be implemented by a four-

layer threshold circuit C of asymptotically optimal size. This decomposition is then

used in section 5 for constructing a low-energy recurrent neural network N which in-

corporates circuit C and thus simulates finite automaton A.

4 The Transition Function Decomposition

In this section, we will employ the asymptotically optimal method of threshold circuit

synthesis due to Lupanov (1973) for a decomposition of function f : {0, 1}p+1 −→
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{0, 1}p which implements the transition function δ of finite automaton A in terms of

binary encoding of its states. This decomposition allows f to be evaluated by a four-

layer threshold circuit C of asymptotically optimal size Θ(
√

2p) which will later (in

section 5) be incorporated into a low-energy recurrent neural network N simulating A.

In particular, the resulting formula (18) for function f is derived below which will be

exploited for computing f using four layers of perceptron units as it is summarized in

the beginning of section 5. Unlike the result by Horne et al. (1996), the decomposition

technicalities are needed for minimizing the energy demands when A is being imple-

mented by N . Therefore, in the rest of this section, we will completely reformulate the

method due to Lupanov (1973) in a detailed and compact form which is simplified and

adopted for our future use.2

The p + 1 arguments of vector function f(u,v, z) are split into three groups u =

(u1, . . . , up1), v = (v1, . . . , vp2), and z = (z1, . . . , zp3), respectively, where

p3 = blog(p+ 1− log p)− 2c (5)

p1 =

⌊
p+ 1− log p− log(p+ 1− log p)

2

⌋
(6)

p2 = p+ 1− p3 − p1 . (7)

Parameters p1, p2, p3 are chosen so that the resulting circuit for f will have the asymp-

totically optimal size Θ(
√

2p) (see section 5.6). Then, each function element fk :

2To the best of our knowledge the classical result due to Lupanov (1973) is described in full details

only in his original Russian paper.
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{0, 1}p+1 −→ {0, 1} (1 ≤ k ≤ p) of vector function f = (f1, . . . , fp) is decomposed to

fk(u,v, z) =
∨

c∈{0,1}p3

(fk(u,v, c) ∧ (z = c))

=
∨

c∈{0,1}p3

(
fk(u,v, c) ∧

p3∧
j=1

`cj(zj)

)
, (8)

where the respective literals are defined as

`c(z) =


z for c = 1

¬z for c = 0 .

(9)

Furthermore, we define vector functions gk : {0, 1}p1+p2 −→ {0, 1}p1 for k = 1, . . . , p

as

gk(u,v) = (fk(u,v, [0]p3), fk(u,v, [1]p3), . . . , fk(u,v, [2
p3 − 1]p3), 0, . . . , 0) (10)

where [j]n = c = (c1, . . . , cn) ∈ {0, 1}n denotes an n-bit binary representation of

integer j ≥ 0, that is, j = 〈c〉 =
∑n

i=1 2i−1ci. Note that we use 〈c〉 for denoting the

inverse value to [j]n, e.g. 〈[j]n〉 = j. The vector produced by gk in equation (10) has

p1 elements out of which the first 2p3 items are defined using fk for all possible values

of argument z ∈ {0, 1}p3 , while the remaining ones are 0s, which is a correct definition

since 2p3 < p1 for sufficiently large p according to formulas (5) and (6).

In the following lemma we will further decompose functions gk (1 ≤ k ≤ p).

For this purpose, we split the first part u ∈ {0, 1}p1 of gk’s argument into its first bit

a ∈ {0, 1} and the remaining bits u′ ∈ {0, 1}r where r = p1 − 1. Thus, we will use

notation gk(a,u
′,v) as an alternative to gk(u,v) introduced in equation (10) when the

first bit of gk’s argument needs to be specified explicitly (similarly for functions f , fk

etc.).
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Lemma 1 For each gk (1 ≤ k ≤ p), one can construct four vector functions

gak : {0, 1}r+p2 −→ {0, 1}p1 and hak : {0, 1}r+p2 −→ {0, 1}p1 for a ∈ {0, 1} satis-

fying the following two conditions:

1. For any a ∈ {0, 1}, u′ ∈ {0, 1}r, and v ∈ {0, 1}p2 ,

gk(a,u
′,v) = gak(u

′,v)⊕ hak(u
′,v) (11)

where ⊕ denotes a bitwise parity.

2. Functions gak,h
a
k are injective in the first vector argument u′, that is, for any

a ∈ {0, 1}, v ∈ {0, 1}p2 , and u′
1,u

′
2 ∈ {0, 1}r,

if u′
1 6= u′

2 , then gak(u
′
1,v) 6= gak(u

′
2,v) and hak(u

′
1,v) 6= hak(u

′
2,v) . (12)

Recall that the parity z = x ⊕ y ∈ {0, 1}n used in equation (11) is defined for vectors

x = (x1, . . . , xn) ∈ {0, 1}n, y = (y1, . . . , yn) ∈ {0, 1}n, and z = (z1, . . . , zn) ∈

{0, 1}n as

zi = (xi ∧ ¬yi) ∨ (¬xi ∧ yi) (13)

(i.e. zi = 1 iff xi 6= yi) for every i = 1, . . . , n, which is an associative operation.

Proof: For any v ∈ {0, 1}p2 , the function values gak([i]
r,v) are defined inductively for

i = 0, . . . , 2r − 1 as gak([i]
r,v) is chosen arbitrarily from {0, 1}p1 \Ga

k(i,v) where

Ga
k(i,v) = {gak([j]r,v) | j = 0, . . . , i− 1}

∪ {gk(a, [i]r,v)⊕ gk(a, [j]
r,v)⊕ gak([j]

r,v) | j = 0, . . . , i− 1} , (14)

and functions hak are defined so that equation (11) is met:

hak(u
′,v) = gk(a,u

′,v)⊕ gak(u
′,v) . (15)
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Note that ∅ = Ga
k(0,v) ⊆ Ga

k(1,v) ⊆ · · · ⊆ Ga
k(2

r − 1,v) and |Ga
k(i,v)| ≤ 2i

according to definition (14), which implies |Ga
k(i,v)| ≤ |Ga

k(2
r − 1,v)| ≤ 2(2r − 1).

Hence, |{0, 1}p1 \ Ga
k(i,v)| ≥ 2p1 − 2(2r − 1) = 2 for any i = 0, . . . , 2r − 1, which

ensures that gak(u
′,v) is correctly defined for all the values of argument u′ ∈ {0, 1}r.

Moreover, condition (12) is satisfied because for any i, j ∈ {0, . . . , 2r − 1} such that

i > j, definition (14) secures gak([i]
r,v) 6= gak([j]

r,v) and hak([i]
r,v) = gk(a, [i]

r,v)⊕

gak([i]
r,v) 6= gk(a, [i]

r,v) ⊕ gk(a, [i]
r,v) ⊕ gk(a, [j]

r,v) ⊕ gak([j]
r,v) = hak([j]

r,v)

by using condition (15) and the fact that x ⊕ x ⊕ y = y. This completes the proof of

lemma 1. 2

We further rewrite gak and hak from lemma 1 by using the functions ϕak : {0, 1}r+p2

−→ {0, . . . , 2p1 − 1} and ψak : {0, 1}r+p2 −→ {0, . . . , 2p1 − 1} so that

gak(u
′,v) = [ϕak(u

′,v)]
p1 and hak(u

′,v) = [ψak(u
′,v)]

p1 , (16)

respectively, which for any a ∈ {0, 1}, v ∈ {0, 1}p2 , and u′
1,u

′
2 ∈ {0, 1}r, satisfy

if u′
1 6= u′

2 , then ϕak(u
′
1,v) 6= ϕak(u

′
2,v) and ψak(u

′
1,v) 6= ψak(u

′
2,v) (17)

according to condition (12). Now, we can plug formulas (10), (11), (13), and (16) into

equation (8), which results in the final f ’s decomposition

fk(a,u
′,v, z) =

∨
c∈{0,1}p3

(
(gk(a,u

′,v))〈c〉 ∧
p3∧
i=1

`ci(zi)

)

=
∨

c∈{0,1}p3

(
(gak(u

′,v)⊕ hak(u
′,v))〈c〉 ∧

p3∧
i=1

`ci(zi)

)
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=
∨

c∈{0,1}p3

(((
[ϕak(u

′,v)]
p1
)
〈c〉 ∧ ¬

(
[ψak(u

′,v)]
p1
)
〈c〉 ∧

p3∧
i=1

`ci(zi)

)

∨

(
¬
(
[ϕak(u

′,v)]
p1
)
〈c〉 ∧

(
[ψak(u

′,v)]
p1
)
〈c〉 ∧

p3∧
i=1

`ci(zi)

))
(18)

where (x)i denotes the ith element of vector x.

Formula (18) can be used for implementing a four-layer circuit C which computes

the transition function f of finite automaton A using the asymptotically optimal number

Θ(
√

2p) of threshold gates. The details of such an implementation are presented in

section 5 where this circuit C will be incorporated into a low-energy recurrent neural

network N simulating A.

5 The Finite Automaton Implementation

In this section, we will introduce the construction of a low-energy recurrent neural

network N simulating a given finite automaton A. In particular, a set of neurons V

is composed of four disjoint layers V = ν0 ∪ ν1 ∪ ν2 ∪ ν3 which mainly evaluate the

transition function f according to its decomposition (18) derived in section 4 as follows.

The zeroth layer ν0 is composed of p + 1 units storing an input bit and a cur-

rent state of A, which are split according to f ’s arguments a,u′,v, z (section 5.1).

The gates in the first layer ν1 computes all possible monomials
∧p2
i=1 `bi(vi) for b ∈

{0, 1}p2 over variables v (section 5.2), which are used for evaluating functions ϕak(u
′,v)

and ψak(u
′,v) in the second layer ν2 (section 5.3). The third layer ν3 computes con-

junctions ([ϕak(u
′,v)]p1)〈c〉 ∧¬([ψak(u

′,v)]p1)〈c〉∧
∧p3
i=1 `ci(zi) and ¬([ϕak(u

′,v)]p1)〈c〉∧

([ψak(u
′,v)]p1)〈c〉∧

∧p3
i=1 `ci(zi) from formula (18) while their disjunction for c ∈ {0, 1}p3
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Figure 1: A schema of neural network N implementing finite automaton A

is evaluated for each fk in the fourth layer which coincides with zeroth layer ν0 as the

old state of A is replaced by the new one (section 5.5) .

In addition, so-called control units are introduced in layers ν1 and ν2 for minimiz-

ing the energy demands of N (section 5.4). The global computational dynamics of N

together with its energy complexity is specified in section 5.6. The network is schemat-

ically depicted in Figure 1 where the layers or their parts are indicated and only a few

representative units and connections are drawn. The directed edges connecting units are

labeled with the corresponding weights whereas the edges drawn without an originating

unit correspond to the threshold parameters.
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5.1 Layer ν0 Stores an Input Bit and Automaton’s State

An input bit and a current state of A are stored using p + 1 neurons which constitute

layer ν0. Thus, set ν0 includes the input neuron in ∈ ν0 and the output neuron out ∈

ν0 which stores the bit (in the state encoding) that indicates the final states. We will

implement formula (18) in N for evaluating the transition function f in terms of binary

encoding of states in order to compute the new state of A. For this purpose, layer

ν0 = {in}∪ν01∪ν02∪ν03 is disjointly split into four parts corresponding to the partition

of arguments of f(a,u′,v, z), respectively, that is, the input neuron in represents the first

variable a as yin = a, ν01 = {u1, . . . , ur}, ν02 = {v1, . . . , vp2}, and ν03 = {z1, . . . , zp3}

where neuron zp3 corresponds to the output unit out as the last bit of state encoding has

been chosen to indicate the final states ofA. Note that we identify the names of neurons

in ν0 \ {in} with the arguments of f encoding automaton’s state so that these variables

describe the states of corresponding units, e.g. yvi = vi. For notational simplicity,

we often omit the time index in the states of neurons (e.g. we write yin = a instead

of y(t)
in = a) and we implicitly assume step-by-step timing which follows the directed

connections among neurons in the natural order as they are introduced when describing

the implementation of f in N . The precise timing will be formalized within the global

computational dynamics of N simulating A in section 5.6.

5.2 Layer ν1 Computes Monomials
∧p2

i=1 `bi
(vi)

The next layer ν1 = ν11 ∪ ν12 consists of 2p2 neurons in ν11 = {µ〈b〉 |b ∈ {0, 1}p2}

for computing all possible monomials
∧p2
i=1 `bi(vi) for b ∈ {0, 1}p2 over variables v,

and two other, so-called control units in ν12 = {κ0
0, κ

1
0} which indicate the input bit
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value. These monomials will be used in section 5.3 for evaluating functions ϕak(u
′,v)

and ψak(u
′,v) in formula (18). Thus, we introduce weights w(vi, µ〈b〉) = 2bi − 1 (i.e.

w(vi, µ〈b〉) = 1 for bi = 1 whereas w(vi, µ〈b〉) = −1 for bi = 0) for i = 1, . . . , p2, and

threshold h(µ〈b〉) =
∑p2

i=1 bi = |{i ∈ {1, . . . , p2} | bi = 1}|, for any b = (b1, . . . , bp2) ∈

{0, 1}p2 so that the following lemma trivially holds:

Lemma 2 Unit µ〈b〉 fires for input v ∈ {0, 1}p2 if f b = v.

In addition, we define w(in, κ1
0) = 1, w(in, κ0

0) = −1 and h(κ1
0) = 1, h(κ0

0) = 0, which

ensures that κ1
0 fires just one computational step after the current input bit is presented

to in iff yin = 1, and similarly, κ0
0 is active iff yin = 0 (cf. Lemma 6).

5.3 Layer ν2 Computes ϕa
k(u

′,v) and ψa
k(u

′,v)

Furthermore, layer ν2 = ν21 ∪ ν22 where ν21 = {γϕakj , λ
ϕa
kj , γ

ψa
kj , λ

ψa
kj | 1 ≤ k ≤ p ,

a ∈ {0, 1} , j = 0, . . . , 2p1 − 1}, and ν22 = {κai | a ∈ {0, 1} , i = 1, . . . , d + 1}

with d = d|ν21|/(4e)e = d2p2p1/ee, serves for a low-energy computation of functions

ϕak(u
′,v) and ψak(u

′,v) for any 1 ≤ k ≤ p and a ∈ {0, 1}.

In this section, we will first show how to implement functions ϕak(u
′,v) for any

1 ≤ k ≤ p and a ∈ {0, 1} with no constraints on energy by using the outputs of

neurons from ν01 and ν11 which provide the values of argument u′ (see section 5.1)

and monomials
∧p2
i=1 `bi(vi) for all b ∈ {0, 1}p2 over variables v (see section 5.2),

respectively. In particular, 2p1 pairs of neurons γϕakj , λ
ϕa
kj ∈ ν21 for j = 0, . . . , 2p1 − 1

are employed for this purpose having zero thresholds for now (their thresholds will be

defined in section 5.4 for the low-energy implementation) and weights w(ui, γ
ϕa
kj ) =

−w(ui, λ
ϕa
kj ) = 2i−1 for i = 1, . . . , r and w(µ〈b〉, γ

ϕa
kj ) = −w(µ〈b〉, λ

ϕa
kj ) = −dϕabkj ∈

17



{0, . . . , 2r − 1} such that j = ϕak([d
ϕab
kj ]r,b) ∈ {0, . . . , 2p1 − 1} for b ∈ {0, 1}p2 . Note

that dϕabkj is uniquely defined according to condition (17). For this definition of weights,

the following lemma shows how the outputs of γϕakj , λ
ϕa
kj ∈ ν21 for j = 0, . . . , 2p1 − 1

represent the function value ϕak(u
′,v) ∈ {0, . . . , 2p1 − 1}.

Lemma 3 For any input u′ ∈ {0, 1}r and v ∈ {0, 1}p2 , at least one unit from the pair

γϕakj , λ
ϕa
kj fires for each j ∈ {0, . . . , 2p1 − 1}. In addition, both units γϕakj and λϕakj fire

simultaneously if f j = ϕak(u
′,v).

Proof: It follows that for given u′ ∈ {0, 1}r and v ∈ {0, 1}p2 , neuron γϕakj fires iff

r∑
i=1

w(ui, γ
ϕa
kj )yui +

∑
b∈{0,1}p2

w(µ〈b〉, γ
ϕa
kj )yµ〈b〉 ≥ 0 iff

r∑
i=1

2i−1u′i − dϕavkj ≥ 0 iff 〈u′〉 ≥ dϕavkj , (19)

since yµ〈b〉 = 1 iff b = v according to lemma 2. Similarly, neuron λϕakj is active iff

〈u′〉 ≤ dϕavkj . Clearly, either 〈u′〉 ≥ dϕavkj or 〈u′〉 ≤ dϕavkj , and hence, at least one unit

from the pair γϕakj , λ
ϕa
kj is always active while both these neurons fire at the same time iff

〈u′〉 = dϕavkj iff j = ϕak(u
′,v), which implements function ϕak(u

′,v). 2

Functions ψak(u
′,v) for any 1 ≤ k ≤ p and a ∈ {0, 1} are implemented analogously

(replace ϕ by ψ above) using 2p1 pairs of neurons γψakj , λ
ψa
kj ∈ ν21 for j = 0, . . . , 2p1 − 1

so that the following lemma holds (cf. lemma 3):

Lemma 4 For any input u′ ∈ {0, 1}r and v ∈ {0, 1}p2 , at least one unit from the pair

γψakj , λ
ψa
kj fires for each j ∈ {0, . . . , 2p1 − 1}. In addition, both units γψakj and λψakj fire

simultaneously if f j = ψak(u
′,v).
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5.4 Low-Energy Implementation of ϕa
k(u

′,v) and ψa
k(u

′,v)

We employ so-called control units κai ∈ ν12∪ν22 for a ∈ {0, 1} and i = 0, . . . , d+1, for

synchronizing the computation of functions ϕak(u
′,v), ψak(u

′,v) by neurons from ν21

as described in section 5.3 so that their energy consumption is bounded by e+ 2.

For this purpose, we split set ν21 = ν0
21∪ν1

21 into two parts νa21 = {γϕakj , λ
ϕa
kj , γ

ψa
kj , λ

ψa
kj |

1 ≤ k ≤ p , j = 0, . . . , 2p1 − 1} of size 4p2p1 according to a ∈ {0, 1}, and both these

parts are further partitioned into d blocks, each of size at most 2e, that is, νa21 =
⋃d
i=1 β

a
i

where |βai | ≤ 2e. In addition, we require that any pair γϕakj , λ
ϕa
kj respectively γψakj , λ

ψa
kj is

included into one block, which means for each i = 1, . . . , d, if γϕakj ∈ βai , then λϕakj ∈ βai ,

and if γψakj ∈ βai , then λψakj ∈ βai . Furthermore, all neurons j ∈ ν21 whose thresholds

were originally assumed to be zero (see section 5.3) are now blocked by large thresh-

olds h(j) = W where W = 2r, which make them passive. Then, for any 1 ≤ i ≤ d and

a ∈ {0, 1}, the neurons in block βai are released to fire by control unit κai−1 using the

weights w(κai−1, j) = W for all j ∈ βai . Thus, if control unit κai−1 fires, then threshold

h(j) = W of unit j ∈ βai ⊆ ν21 is canceled by weight w(κai−1, j) = W and neuron j

takes part in the computation of ϕak(u
′,v) and ψak(u

′,v) according to lemma 3 and 4,

respectively, as described in section 5.3. This is summarized in the following lemma:

Lemma 5 For any 1 ≤ i ≤ d and a ∈ {0, 1}, neurons in βai ⊆ ν21 can fire (according

to lemma 3 and 4) if f control unit κai−1 is active.

For current input bit yin = a ∈ {0, 1}, the control units κa0, . . . , κ
a
d+1 fire succes-

sively one by one, which is achieved by weights w(κai , κ
a
i+1) = 1 for i = 0, . . . , d,

w(κai , κ
a
0) = −1 for i = 0, . . . , d+ 1, and thresholds h(κai ) = 1 for i = 1, . . . , d+ 1, as
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the following lemma formally proves:

Lemma 6 For every i = 0, . . . , d + 1 and for current input bit y(t0+i+1)
in = a ∈ {0, 1}

which is first presented to network N at time instant t0 = τ(ι − 1) (i.e. xι = a),

y
(t0+i+1)
κai

= 1 whereas y(t0+j+1)
κai

= 0 for any j ∈ {0, . . . , d+ 1} such that j 6= i.

Proof: The argument for y(t0+i+1)
κai

= 1 proceeds by induction on i = 0, . . . , d + 1. For

i = 0, we know from section 5.2 that y(t0+1)
κa0

= 1 for y(t0)
in = a (all the control units

are assumed to be passive at time instant t0). For i > 0, the excitation of unit κai at

time instant t0 + i can be evaluated as ξ(t0+i)
κai

= w(κai−1, κ
a
i )y

(t0+i)
κai−1

−h(κai ) = 0 because

y
(t0+i)
κai−1

= 1 by induction hypothesis. Hence, y(t0+i+1)
κai

= H(ξ
(t0+i)
κai

) = 1. It follows that

y
(t0+i+1)
κa0

= 0 for i = 1, . . . , d+1 since w(κai−1, κ
a
0) = −1 and y(t0+i)

κai−1
= 1, which makes

and keeps neuron κai (1 ≤ i ≤ d+1) passive after κai fires at time instant t0 + i+1, that

is, y(t0+j+1)
κai

= 0 for any j ∈ {0, . . . , d+ 1} such that j 6= i. 2

Lemmas 5 and 6 ensure that only the neurons from one block βai of size at most 2e

can fire simultaneously. Note that the respective units from βai , which were released by

active control unit κai−1, fire at the same time as the next control unit κai becomes active.

In fact, we know from lemma 3 and 4 that just one unit of each pair γϕakj , λ
ϕa
kj ∈ βai or

γψakj , λ
ψa
kj ∈ βai is active except for the special pairs of both firing units γϕakjϕ , λ

ϕa
kjϕ

and

γψakjψ , λ
ψa
kjψ

such that ϕak(u
′,v) = jϕ and ψak(u

′,v) = jψ, respectively. Hence, the energy

consumption of ν21 is bounded by e+ 2.

In addition, we must also guarantee that the resulting function valuesϕak(u
′,v) = jϕ,

ψak(u
′,v) = jψ are preserved, that is, neurons γϕakjϕ , λ

ϕa
kjϕ
, γψakjψ , λ

ψa
kjψ

remain active with-

out any support from corresponding control units until all the blocks perform computa-

tion and are blocked, which is indicated by control unit κad+1. This is implemented by
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symmetric weights w(γϕakj , λ
ϕa
kj ) = w(λϕakj , γ

ϕa
kj ) = w(γψakj , λ

ψa
kj ) = w(λψakj , γ

ψa
kj ) = W

for a ∈ {0, 1}, k = 1, . . . , p, j = 0, . . . , 2p1 − 1. Note that in the case when only one

unit from the pair γϕakj , λ
ϕa
kj (similarly for γψakj , λ

ψa
kj ) is active, say γϕakj fires and λϕakj is

passive, the introduced weight w(γϕakj , λ
ϕa
kj ) = W does not cause the other unit λϕakj to

fire although this weight cancels its threshold h(λϕakj ) = W since λϕakj is passive for zero

threshold anyway. Moreover, neuron κad+1 eventually resets all neurons in ν21 before

becoming itself passive which is accomplished by weights w(κad+1, j) = −W for all

j ∈ νa21 and a ∈ {0, 1}.

5.5 Layers ν3 and ν0 Evaluate f

Finally, layer ν3 = {πk〈c〉, %k〈c〉 | 1 ≤ k ≤ p , c ∈ {0, 1}p3} is composed of 2p3 pairs of

neurons πk〈c〉, %k〈c〉 for each k = 1, . . . , p which evaluate conjunctions ([ϕak(u
′,v)]p1)〈c〉

∧¬([ψak(u
′,v)]p1)〈c〉 ∧

∧p3
i=1 `ci(zi) and ¬([ϕak(u

′,v)]p1)〈c〉 ∧ ([ψak(u
′,v)]p1)〈c〉 ∧∧p3

i=1 `ci(zi) from formula (18), respectively, for current input yin = a ∈ {0, 1}. For

this purpose, the states of neurons from ν03 which store the values of argument z, and

the outputs of units γϕakj , λ
ϕa
kj , γ

ψa
kj , λ

ψa
kj ∈ ν21 for j = 0, . . . , 2p1 − 1, which repre-

sent the function values ϕak(u
′,v), ψak(u

′,v) according to lemma 3 and 4 after κad+1

fires, are used. For c ∈ {0, 1}p3 , we define weights w(γϕakj , πk〈c〉) = w(λϕakj , πk〈c〉) =

−w(γψakj , πk〈c〉) = −w(λψakj , πk〈c〉) = −w(γϕakj , %k〈c〉) = −w(λϕakj , %k〈c〉) = w(γψakj , %k〈c〉)

= w(λψakj , %k〈c〉) = ([j]p1)〈c〉 ∈ {0, 1} for a ∈ {0, 1}, j = 0, . . . , 2p1−1, and w(zi, πk〈c〉)

= w(zi, %k〈c〉) = 2ci − 1 for i = 1, . . . , p3, and threshold h(πk〈c〉) = h(%k〈c〉) =

2 +
∑p3

i=1 ci. The correctness of this definition is shown in the following lemma:

Lemma 7 For any values a,u′,v, z of f ’s arguments, for every k = 1, . . . , p, and
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c ∈ {0, 1}p3 , unit πk〈c〉 fires if f ([ϕak(u
′,v)]p1)〈c〉 ∧ ¬([ψak(u

′,v)]p1)〈c〉 ∧
∧p3
i=1 `ci(zi)

and neuron %k〈c〉 is active if f ¬([ϕak(u
′,v)]p1)〈c〉 ∧ ([ψak(u

′,v)]p1)〈c〉 ∧
∧p3
i=1 `ci(zi).

Proof: We know that for yin = a and each k = 1, . . . , p, only one pair of neurons

γϕakjϕ , λ
ϕa
kjϕ

for 0 ≤ jϕ ≤ 2p1 −1 fires such that jϕ = ϕak(u
′,v) by lemma 3, and only one

pair of units γψakjψ , λ
ψa
kjψ

for 0 ≤ jψ ≤ 2p1−1 is active such that jψ = ψak(u
′,v) according

to lemma 4, while the remaining units in v21 are passive (blocked) after κad+1 fires, which

follows from lemma 5 and 6. Hence, neuron πk〈c〉 is active iff ([ϕak(u
′,v)]p1)〈c〉 =

([jϕ]
p1)〈c〉 = 1 and ([ψak(u

′,v)]p1)〈c〉 = ([jψ]p1)〈c〉 = 0, and yzi = ci for every i =

1, . . . , p3, when active neurons γϕakjϕ , λ
ϕa
kjϕ

contribute to excitation ξπk〈c〉 by 2, while the

contribution of units z1, . . . , zp3 to ξπk〈c〉 reaches
∑p3

i=1 ci, which altogether equals the

threshold h(πk〈c〉) (cf. lemma 2). Analogously, neuron %k〈c〉 fires iff ([ϕak(u
′,v)]p1)〈c〉 =

0 and ([ψak(u
′,v)]p1)〈c〉 = 1, and yzi = ci for every i = 1, . . . , p3. 2

It follows from lemma 7 that for any 1 ≤ k ≤ p, at most one unit among πk〈c〉, %k〈c〉 ∈

ν3 over c ∈ {0, 1}p3 is active, which determines the value of fk(a,u′,v, z) according

to formula (18), as described in the following lemma:

Lemma 8 For any values a,u′,v, z of f ’s arguments and for every k = 1, . . . , p,

fk(a,u
′,v, z) = 1 if f either πk〈z〉 or %k〈z〉 fires. In addition, the remaining units πk〈c〉,

%k〈c〉 ∈ ν3 for c 6= z are passive.

Thus, a binary encoding f(a,u′,v, z) of the new state of automaton A is computed as

disjunctions (18) over c ∈ {0, 1}p3 for k = 1, . . . , p by units from ν0 \ {in} (which

rewrite the code of the old state of A) using the recurrent connections leading from

neurons of ν3. After re-indexing the units in layer ν0 \ {in} = {1, . . . , p} properly,
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for each k = 1, . . . , p, the kth disjunction is implemented by weights w(πk〈c〉, k) =

w(%k〈c〉, k) = 1 for every c ∈ {0, 1}p3 , and threshold h(k) = 1, according to lemma 8.

5.6 Computational Dynamics and Complexity of N

Now we specify the computational dynamics of neural network N simulating the finite

automaton A. At the beginning, the states of neurons from ν0 \ {in} are placed in an

initial state of A. Each bit xi (1 ≤ i ≤ n) of input word x = x1, . . . , xn, which is read

by input neuron in ∈ ν0 at time instant τ(i−1) (i.e. y(τ(i−1))
in = xi), is being processed by

N within the desired period of τ = d+4 = O(p2p1/e) = O(
√

2p/e) = O(
√
m/e) time

steps. The states of neurons in N are successively updated in the order following the

architecture of layers. Thus, we define sets αt of units updated at time instants t ≥ 1 as

ατ(i−1)+1 = ν1, ατ(i−1)+j+1 = ν12∪ν2 for j = 1, . . . , d+1, ατ(i−1)+d+3 = ν12∪ν2∪ν3,

and ατi = ν0 \ {in}, for i = 1, . . . , n. Eventually, the output neuron out ∈ ν0 signals

at time instant τn whether input word x belongs to underlying language L, that is,

y
(τn)
out = 1 iff x ∈ L.

The size of N simulating the finite automaton A with m states can be expressed as

s = |ν0|+|ν1|+|ν2|+|ν3| = p+1+2p2+2+8p2p1+2(d+1)+p2p3 = O(
√

2p) = O(
√
m)

in terms of m according to formulas (5)–(7), which matches the known lower bound

(Horne et al., 1996; Indyk, 1995). Finally, energy consumption can be bounded for

particular layers as follows. Layer ν0 can possibly require all p + 1 units to fire for

storing the binary encoding of a current automaton’s state (see section 5.1). Moreover,

there is only one active unit among neurons in ν11 which serve for evaluating all possible

monomials over variables v according to lemma 2, and also only one control unit from
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ν12 ∪ ν22 fires at one time instant by lemma 6. In addition, we know that the energy

consumption by ν21 is at most e + 2 (see section 5.4), and at most p neurons among

πk〈c〉, %k〈c〉 from ν3 fire (one for each k = 1, . . . , p) according to lemma 8. Altogether,

the global energy consumption of N is bounded by e+ 2p+ 5 = O(e+ log s) = O(e)

as e = Ω(log s) is assumed. This completes the proof of theorem 1. 2

6 The Lower Bound

In this section, we will show lower bounds on the energy complexity of neural networks

implementing finite automata. For this purpose, we will employ the technique due

to Uchizawa et al. (2008) which is based on communication complexity (Kushilevitz

et al., 1997). Assume that f : {0, 1}n × {0, 1}n −→ {0, 1} is a Boolean function

whose value f(x,y) has to be computed by two players with unlimited computational

power, each receiving only his/her part of the input x ∈ {0, 1}n and y ∈ {0, 1}n,

respectively, while they wish to exchange with each other the least possible number of

bits. In particular, they communicate according to a randomized protocol additionally

making use of the same public random bit string. For any error probability ε satisfying

0 ≤ ε < 1/2, the communication complexity Rε(f) of function f is defined to be the

maximum number of bits needed to be exchanged for the best randomized protocol to

make the two players compute the correct value of f(x,y) with probability at least

1− ε, for every input assignment x and y.

It is well known (Kushilevitz et al., 1997) that almost all Boolean functions f of 2n
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variables have large communication complexity

Rε(f) = Ω

(
n+ log

(
1

2
− ε

))
(20)

for any error probability ε such that 0 ≤ ε < 1/2. An example of a particular function

that meets condition (20) is the Boolean inner product IPn : {0, 1}2n −→ {0, 1},

defined as

IPn(x1, . . . , xn, y1, . . . , yn, ) =
n⊕
i=1

(xi ∧ yi) . (21)

On the other hand, Uchizawa et al. (2008) proved the upper bound on the com-

munication complexity of Boolean function f in terms of the size, depth, and energy

complexity of a feedforward network computing f :

Theorem 2 (Uchizawa et al. (2008)) If a Boolean function f : {0, 1}2n −→ {0, 1}

can be computed by a threshold circuit of size S, depth d, and energy complexity E,

then

Rε(f) = O
(
(E + d)(log n+ (E + 1)d logS

)
(22)

for error probability

ε =
1

2
− 1

4S3(E+1)d
. (23)

The lower and upper bounds on the communication complexity (20) and (22), re-

spectively, are put together in the following lemma:

Lemma 9 Let f : {0, 1}2n −→ {0, 1} be a Boolean function of 2n variables whose

communication complexity satisfies condition (20), which can be computed by a thresh-

old circuit of size S, depth d, and energy complexity E such that n = O(S) and

d = O(E). Then n = O(Ed+1 logS).
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Proof: It follows from condition (20) applied to formula (23) that there is a constant

c` > 0 such that

Rε(f) ≥ c`
(
n− 3(E + 1)d logS − 2

)
(24)

for sufficiently large n. On the other hand, formula (22) together with n = O(S) and

d = O(E) gives

Rε(f) ≤ cuE
d+1 logS (25)

for some constant cu > 0, as the term (1 + 1/E)E+1 is bounded. Putting inequalities

(24) and (25) together, we get

n ≤ cu
c`
Ed+1 logS + c`

(
3(E + 1)d logS + 2

)
(26)

which implies n = O(Ed+1 logS). 2

Now we will formulate the result providing the lower bound e ≥ sc/τ (for some con-

stant c > 0 and for infinitely many s) on the energy complexity e of a recurrent neural

network of size s neurons implementing a given finite automaton with time overhead τ

such that τ τ = o(s). This means the lower bound is valid for less than sublogarithmic

time overheads.

Theorem 3 Let τ log τ = o(log s). There exists a neural network of size s neurons sim-

ulating a finite automaton with time overhead τ per one input bit which needs energy e

such that log e = Ω∞
(

1
τ

log s
)
.

Proof: Let N be a neural network of size s neurons simulating a finite automaton A

with time overhead τ per one input bit. The states ofA are represented by the 2s−1 states

of N (excluding the input neuron in) and the transition function of A is computed by N
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within τ time steps. Clearly, network N can be “unwound” into a threshold circuit C

of depth d = τ and size S = τs which implements the transition function of A so that

each layer is a copy of N (Savage, 1972). Thus, the states of neurons in the ith layer of

C coincide with the network state y(kτ+i) for 0 ≤ i ≤ τ , when the new state y((k+1)τ) of

A is produced from the old one y(kτ) including the current input bit. Hence, the energy

complexity of C is a τ multiple of the energy consumed by N , that is, E = τe.

As component fk : {0, 1}s −→ {0, 1} (for 1 ≤ k ≤ s) of the transition function

definingA can be arbitrary, there is a neural networkN simulatingA such that fk imple-

mented by C has large communication complexity satisfying condition (20). Moreover,

n = ds/2e = O(S) and d = τ = O(E), which meets the remaining assumptions of

lemma 9. It follows that

ds/2e = n = O
(
Ed+1 logS

)
= O

(
(τe)t+1 log τs

)
(27)

according to lemma 9. On the contrary, suppose that

log e = o

(
log s

τ

)
. (28)

We will prove that (τe)τ+1 log τs = o(s) which contradicts equation (27). For this

purpose, it suffices to show that log((τe)τ+1 log τs) = o(log s). This can be rewritten as

(τ + 1) log τ + (τ + 1) log e + log log τ + log log s = o(log s) which follows from the

assumption of the theorem and equation (28), completing the argument. 2

In the following corollary we will present the lower bounds on energy complexity

in terms of the network size for selected cases of sublogarithmic time overhead.

Corollary 1

1. If τ = O(1), then e ≥ sδ for some δ such that 0 < δ < 1 and for infinitely many s.
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2. If τ = O(log log s), then e = Ω∞

(
s

1

logδ s

)
= Ω∞

(
2log1−δ s

)
for any δ such that

0 < δ < 1.

3. If τ = O(logα s) for some 0 < α < 1, then e = Ω∞

(
s

log log s

logδ s

)
= Ω∞

(
(log s)log1−δ s

)
for any δ such that δ > α.

Proof:

1. For τ = O(1), the assumption τ log τ = o(log s) trivially holds and the proposition

follows straightforwardly from theorem 3.

2. For τ = O(log log s), there is cu > 0 such that for all but finitely many s we

have τ log τ ≤ cu(log log s) log log log s + (cu log cu) log log s = o(log s). According

to theorem 3, there is c` > 0 such that log e ≥ c` log s
cu log log s

for infinitely many s. On the

contrary, suppose that e = o
(
s

1

logδ s

)
for some δ satisfying 0 < δ < 1, which implies

log1−δ s ≥ c` log s
cu log log s

leading to a contradiction log log s

logδ s
≥ c`

cu
> 0.

3. If τ = O(logα s) for some 0 < α < 1, then there is cu > 0 such that for all but

finitely many s we have τ log τ ≤ cu (logα s) log logα s + (cu log cu) logα s = o(log s).

According to theorem 3, there is c` > 0 such that log e ≥ cu
c`

log1−α s for infinitely

many s. On the contrary, suppose that e = o
(
s

log log s

logδ s

)
for some δ satisfying δ > α,

which implies (log log s) log1−δ s ≥ cu
c`

log1−α s leading to a contradiction log log s

logδ−α s
≥

cu
c`
> 0. 2

We can compare the lower bounds on energy complexity of simulating the finite

automata by neural nets presented in corollary 1 to the respective upper bounds pro-

vided by theorem 1. For the constant time overhead τ = O(1), the construction from

theorem 1 achieves the energy consumption of e = O(s), while any simulation requires

energy e ≥ sδ for some constant δ such that 0 < δ < 1 and for infinitely many s,
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according to corollary 1. Similarly, for the time overhead of τ = O(logα s) where

0 < α < 1, we have the upper bound of e = O (s/ logα s) which compares to the lower

bound of e = Ω∞

(
s

log log s

logδ s

)
. Clearly, there are still gaps between these lower and upper

bounds, respectively, which need to be eliminated.

7 Conclusions

We have, for the first time, applied the energy complexity measure to recurrent neural

nets. This measure has recently been introduced and studied for feedforward percep-

tron networks. The binary-state recurrent neural networks recognize exactly the regular

languages so we have investigated their energy consumption of simulating the finite au-

tomata with the asymptotically optimal number of neurons. We have presented a low-

energy implementation of finite automata by optimal-size neural nets with the tradeoff

between the time overhead for processing one input bit and the energy varying from the

logarithm to the full network size. We have also achieved lower bounds for the energy

consumption of neural finite automata which are valid for less than sublogarithmic time

overheads and are still not tight. An open problem remains for further research whether

these bounds can be improved. In addition, we have so far assumed the worst case

energy consumption while the average case analysis would be another challenge.
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