
A Low-Energy Implementation of Finite
Automata by Optimal-Size Neural Nets

Jǐŕı Š́ıma?

Institute of Computer Science, Academy of Sciences of the Czech Republic,
P. O. Box 5, 18207 Prague 8, Czech Republic, sima@cs.cas.cz

Abstract. Recently, a new so-called energy complexity measure has
been introduced and studied for feedforward perceptron networks. This
measure is inspired by the fact that biological neurons require more en-
ergy to transmit a spike than not to fire and the activity of neurons
in the brain is quite sparse, with only about 1% of neurons firing. We
investigate the energy complexity for recurrent networks which bounds
the number of active neurons at any time instant of a computation. We
prove that any deterministic finite automaton with m states can be simu-
lated by a neural network of optimal size s = Θ(

√
m) with time overhead

O(s/e) per one input bit, using the energy O(e), for any e = Ω(log s) and
e = O(s), which shows the time-energy tradeoff in recurrent networks.

1 Introduction

In biological neural networks the energy cost of a firing neuron is relatively high
while energy supplied to the brain is limited and hence the activity of neurons in
the brain is quite sparse, with only about 1% of neurons firing [4]. This is in con-
trast to artificial neural networks in which on average every second unit fires dur-
ing a computation. This fact has recently motivated the definition of a new com-
plexity measure for feedforward perceptron networks (threshold circuits), the so-
called energy complexity [11] which is the maximum number of units in the net-
work which output 1, taken over all the inputs to the circuit. The energy has been
shown to be closely related by tradeoff results to other complexity measures such
as the network size (i.e., the number of neurons) [13, 15], the circuit depth (i.e.,
parallel computational time) [12, 13], and the fan-in (i.e., the maximum number
of inputs to a single unit) [10] etc. In addition, energy complexity has found its
use in circuit complexity, e.g. as a tool for proving the lower bounds [14] etc.

In this paper, we investigate for the first time energy complexity for recurrent
neural networks which we define to be the maximum number of neurons out-
putting 1 at any time instant, taken over all possible computations. It has been
known for a long time that the computational power of binary-state recurrent
networks corresponds to that of finite automata since the network of size s units
can reach only a finite number (at most 2s) different states [8]. A simple way of
simulating a given deterministic finite automaton A with m states by a neural
? Research was supported by the projects GA ČR P202/10/1333 and RVO: 67985807.

2 J. Š́ıma

network N of size O(m) is to implement each of the 2m transitions of A (having
0 and 1 transitions for each state) by a single unit in N which checks whether
the input bit agrees the respective type of transition [6]. Clearly, this simple
linear-size implementation of finite automata requires only a constant energy.

Much effort was given to reducing the size of neural automata (e.g. [1–3, 9]),
and indeed, neural networks of size Θ(

√
m) implementing a given deterministic

finite automaton with m states were proposed and proven to be size-optimal [2,
3]. A natural question arises: what is the energy consumption when simulating
finite automata by optimal-size neural networks? We answer this question by
proving the tradeoff between the energy and the time overhead of the simulation.
In particular, we prove that an optimal-size neural network of s = Θ(

√
m)

units can be constructed to simulate a deterministic finite automaton with m
states using the energy O(e) for any e = Ω(log s) and e = O(s), while the time
overhead for processing one input bit is O(s/e). For this purpose, we adapt the
asymptotically optimal method of threshold circuit synthesis due to Lupanov [5].

This paper is organized as follows. In Section 2, the main result is formulated
after a brief review of the basic definitions. The subsequent two sections are
devoted to the technical proof: Section 3 deals with a decomposition of the
transition function and Section 4 describes the construction of low-energy neural
automata. Section 5 concludes with some remarks on lower bounds on the energy
complexity of neural network automata.

2 Neural Networks as Finite Automata

We will first specify the model of a recurrent neural network N . The network
consists of s units (neurons), indexed as V = {1, . . . , s}, where s is called the
network size. The units are connected into an oriented graph representing the
architecture of N , in which each edge (i, j) leading from unit i to j is labeled with
an integer weight w(i, j). The absence of a connection within the architecture
corresponds to a zero weight between the respective neurons, and vice versa.

The computational dynamics of N determines for each unit j ∈ V its binary
state (output) y(t)

j ∈ {0, 1} at discrete time instants t = 0, 1, 2, We say that

neuron j is active (fires) at time t if y(t)
j = 1, while j is passive for y(t)

j = 0. This

establishes the network state y(t) = (y(t)
1 , . . . , y

(t)
s) ∈ {0, 1}s at each discrete

time instant t ≥ 0. At the beginning of a computation, N is placed in an initial
state y(0). At discrete time instant t ≥ 0, an excitation of any neuron j ∈ V

is defined as ξ(t)j =
∑s
i=1 w(i, j)y(t)

i − h(j) including an integer threshold h(j)
local to unit j. At the next instant t + 1, the neurons j ∈ αt+1 from a selected
subset αt+1 ⊆ V update their states y(t+1)

j = H(ξ(t)j) in parallel by applying the
Heaviside function H(ξ) which is defined to be 1 for ξ ≥ 0 and 0 for ξ < 0. The
remaining units j ∈ V \αt+1 do not change their outputs, that is y(t+1)

j = y
(t)
j for

j 6∈ αt+1. In this way, the new network state y(t+1) at time t+ 1 is determined.
We define the energy complexity of N to be the maximum number of active units∑s
j=1 y

(t)
j at any time instant t ≥ 0, taken over all computations of N .

Low-Energy Optimal-Size Neural Automata 3

The computational power of recurrent neural networks has been studied anal-
ogously to the traditional models of computations so that the networks are ex-
ploited as acceptors of formal languages L ⊆ {0, 1}∗ over the binary alphabet.
For the finite networks that are to recognize regular languages, the following
input/output protocol has been used [1–3, 7–9]. A binary input word (string)
x = x1 . . . xn ∈ {0, 1}n of arbitrary length n ≥ 0 is sequentially presented to the
network bit by bit via an input neuron in ∈ V . The state of this unit is exter-
nally set (and clamped) to the respective input bits at prescribed time instants,
regardless of any influence from the remaining neurons in the network, that is,
y
(τ(i−1))
in = xi for i = 1, . . . , n where an integer parameter τ ≥ 1 is the period or

time overhead for processing a single input bit. Then, an output neuron out ∈ V
signals at time τn whether the input word belongs to underlying language L,
that is, y(τn)

out = 1 for x ∈ L, whereas y(τn)
out = 0 for x 6∈ L.

Now, we can formulate our main result concerning a low-energy implemen-
tation of finite automata by optimal-size neural nets:

Theorem 1. A given deterministic finite automaton A with m states can be
simulated by a neural network N of optimal size s = Θ(

√
m) neurons with time

overhead O(s/e) per one input bit, using the energy O(e), where e is any function
satisfying e = Ω(log s) and e = O(s).

Proof. A set Q of m states of a given deterministic finite automaton A can be ar-
bitrarily enumerated so that each q ∈ Q is binary encoded using p = dlogme+ 1
bits including one additional bit which indicates the final states. Then, the re-
spective transition function δ : Q × {0, 1} −→ Q of A, producing its new state
qnew = δ(qold, x) ∈ Q from the old state qold ∈ Q and input bit x ∈ {0, 1}, can be
viewed as a vector Boolean function f : {0, 1}p+1 −→ {0, 1}p in terms of binary
encoding of states. In the following two sections we will adapt the asymptotically
optimal method of threshold circuit synthesis due to Lupanov [5] to implement
f by a low-energy recurrent neural network.

3 The Transition Function Decomposition

The p + 1 arguments of vector function f(u,v, z) are split into three groups
u = (u1, . . . , up1), v = (v1, . . . , vp2), and z = (z1, . . . , zp3), respectively, where
p1 = b(p + 1 − log p − log(p + 1 − log p))/2c, p3 = blog(p + 1 − log p) − 2c, and
p2 = p + 1 − p3 − p1. Then, each function element fk : {0, 1}p+1 −→ {0, 1}
(1 ≤ k ≤ p) of vector function f = (f1, . . . , fp) is decomposed to

fk(u,v, z) =
∨

c∈{0,1}p3

fk(u,v, c) ∧ p3∧
j=1

`cj (zj)

 , (1)

where the respective literals are defined as `c(z) = z for c = 1 and `c(z) = ¬z
for c = 0. Furthermore, we define vector functions gk : {0, 1}p1+p2 −→ {0, 1}p1
for k = 1, . . . , p as

gk(u,v) = (fk(u,v, [0]p3), fk(u,v, [1]p3), . . . , fk(u,v, [2p3 − 1]p3), 0, . . . , 0) (2)

4 J. Š́ıma

where [j]n = c = (c1, . . . , cn) ∈ {0, 1}n denotes an n-bit binary representation
of integer j ≥ 0, that is, j = 〈c〉 =

∑n
i=1 2i−1ci. The vector produced by gk in

(2) has p1 elements out of which the first 2p3 items are defined using fk for all
possible values of argument z ∈ {0, 1}p3 , while the remaining ones are 0s, which
is a correct definition since 2p3 < p1 for sufficiently large p.

Denote r = p1 − 1. For each gk (1 ≤ k ≤ p), we will construct four vector
functions gak : {0, 1}r+p2 −→ {0, 1}p1 and hak : {0, 1}r+p2 −→ {0, 1}p1 for a ∈
{0, 1} such that

gk(a,u′,v) = gak(u
′,v)⊕ hak(u

′,v) (3)

for any a ∈ {0, 1}, u′ ∈ {0, 1}r, and v ∈ {0, 1}p2 , where ⊕ denotes a bitwise
parity (i.e., z = x⊕y ∈ {0, 1}n is defined for vectors x = (x1, . . . , xn) ∈ {0, 1}n,
y = (y1, . . . , yn) ∈ {0, 1}n, and z = (z1, . . . , zn) ∈ {0, 1}n as zi = 1 iff xi 6= yi for
every i = 1, . . . , n) which is an associative operation. In addition, the construc-
tion will guarantee that for any a ∈ {0, 1}, v ∈ {0, 1}p2 , and u′1,u

′
2 ∈ {0, 1}r,

if u′1 6= u′2 , then gak(u
′
1,v) 6= gak(u

′
2,v) and hak(u

′
1,v) 6= hak(u

′
2,v) . (4)

For any v ∈ {0, 1}p2 , the function values of gak are defined inductively as
gak([i]

r,v) ∈ {0, 1}p1 \Gak(i,v) is chosen arbitrarily for i = 0, . . . , 2r − 1 where

Gak(i,v) = {gak([j]r,v) ,
gk(a, [i]r,v)⊕ gk(a, [j]r,v)⊕ gak([j]

r,v) | j = 0, . . . , i− 1} , (5)

and functions hak are defined so that equation (3) is met:

hak(u
′,v) = gk(a,u′,v)⊕ gak(u

′,v) . (6)

Note that ∅ = Gak(0,v) ⊆ Gak(1,v) ⊆ · · · ⊆ Gak(2
r − 1,v) and |Gak(i,v)| ≤

2i according to (5), which implies |Gak(i,v)| ≤ |Gak(2r − 1,v)| ≤ 2(2r − 1).
Hence, |{0, 1}p1 \ Gak(i,v)| ≥ 2p1 − 2(2r − 1) = 2, which ensures that gak(u

′,v)
is correctly defined for all arguments u′ ∈ {0, 1}r. Moreover, condition (4) is
satisfied because for any i, j ∈ {0, . . . , 2r − 1} such that i > j, definition (5)
secures gak([i]

r,v) 6= gak([j]
r,v) and hak([i]

r,v) = gk(a, [i]r,v) ⊕ gak([i]
r,v) 6=

gk(a, [i]r,v)⊕gk(a, [i]r,v)⊕gk(a, [j]r,v)⊕gak([j]
r,v) = hak([j]

r,v) by using (6)
and the fact that x⊕ x⊕ y = y.

We further decompose gak and hak by using the functions ϕak : {0, 1}r+p2 −→
{0, . . . , 2p1 − 1} and ψak : {0, 1}r+p2 −→ {0, . . . , 2p1 − 1} as

gak(u
′,v) = [ϕak(u

′,v)]p1 and hak(u
′,v) = [ψak(u

′,v)]p1 , (7)

respectively, which satisfy for any a ∈ {0, 1}, v ∈ {0, 1}p2 , and u′1,u
′
2 ∈ {0, 1}r,

if u′1 6= u′2 , then ϕak(u
′
1,v) 6= ϕak(u

′
2,v) and ψak(u

′
1,v) 6= ψak(u

′
2,v) (8)

according to (4). Now, we can plug (2), (3), and (7) into (1) which results in

fk(a,u′,v, z) =
∨

c∈{0,1}p3

(
(gk(a,u′,v))〈c〉 ∧

p3∧
i=1

`ci(zi)

)

Low-Energy Optimal-Size Neural Automata 5

=
∨

c∈{0,1}p3

(((
[ϕak(u

′,v)]p1
)
〈c〉 ∧ ¬

(
[ψak(u

′,v)]p1
)
〈c〉 ∧

p3∧
i=1

`ci(zi)

)

∨

(
¬
(
[ϕak(u

′,v)]p1
)
〈c〉 ∧

(
[ψak(u

′,v)]p1
)
〈c〉 ∧

p3∧
i=1

`ci(zi)

))
, (9)

where (x)i denotes the ith element of vector x.

4 The Finite Automaton Implementation

In this section, we will describe the construction of low-energy recurrent neural
network N simulating a given finite automaton A. In particular, set of neurons
V is composed of four disjoint layers V = ν0 ∪ ν1 ∪ ν2 ∪ ν3. A current state of A
and an input bit are stored using p+ 1 neurons which constitute layer ν0. Thus,
set ν0 includes the input neuron in ∈ ν0 and the output neuron out ∈ ν0 which
saves the bit (in the state encoding) that indicates the final states. We will
implement formula (9) in N for evaluating the transition function f in terms
of binary encoding of states in order to compute the new state of A. Layer
ν0 = {in} ∪ ν01 ∪ ν02 ∪ ν03 is disjointly split into four parts corresponding to the
partition of arguments of f(a,u′,v, z), respectively, that is, ν01 = {u1, . . . , ur},
ν02 = {v1, . . . , vp2}, and ν03 = {z1, . . . , zp3}.

The next layer ν1 = ν11 ∪ ν12 consists of 2p2 neurons in ν11 = {µ〈b〉 |b ∈
{0, 1}p2} for computing all possible monomials

∧p2
i=1 `bi(vi) over input variables

v, and two control units in ν12 = {κ0
0, κ

1
0} which indicate the input bit value.

This is implemented by weights w(vi, µ〈b〉) = 2bi − 1 for i = 1, . . . , p2, and
threshold h(µ〈b〉) =

∑p2
i=1 bi, for any b = (b1, . . . , bp2) ∈ {0, 1}p2 so that µ〈b〉

fires iff b = v. In addition, we define w(in, κ1
0) = −w(in, κ0

0) = 1 and h(κ1
0) = 1,

h(κ0
0) = 0, which ensures that yin = 1 iff κ1

0 fires iff κ0
0 is passive.

Furthermore, layer ν2 = ν21 ∪ ν22 where ν21 = {γϕakj , λ
ϕa
kj , γ

ψa
kj , λ

ψa
kj | 1 ≤ k ≤

p , a ∈ {0, 1} , j = 0, . . . , 2p1 − 1}, and ν22 = {κai | a ∈ {0, 1} , i = 1, . . . , d + 1}
with d = d2p2p1/ee, serves for a low-energy computation of functions ϕak(u

′,v)
and ψak(u

′,v). We will first show how to implement functions ϕak(u
′,v) for any

1 ≤ k ≤ p and a ∈ {0, 1} with no constraints on energy by using the outputs of
neurons from ν01 and ν11. In particular, 2p1 pairs of neurons γϕakj , λ

ϕa
kj ∈ ν21 for

j = 0, . . . , 2p1 − 1 are employed having zero thresholds for now (their thresholds
will be defined below for the low-energy implementation) and weights w(ui, γ

ϕa
kj)

= −w(ui, λ
ϕa
kj) = 2i−1 for i = 1, . . . , r and w(µ〈b〉, λ

ϕa
kj) = −w(µ〈b〉, γ

ϕa
kj) =

dϕabkj ∈ {0, . . . , 2r − 1} such that j = ϕak([d
ϕab
kj]r,b) ∈ {0, . . . , 2p1 − 1} for b ∈

{0, 1}p2 . Note that dϕabkj is uniquely defined according to (8). It follows that for
given u′ ∈ {0, 1}r and v ∈ {0, 1}p2 , neuron γϕakj fires iff

∑r
i=1 w(ui, γ

ϕa
kj)yui

+
∑

b∈{0,1}p2 w(µ〈b〉, γ
ϕa
kj)yµ〈b〉 ≥ 0 iff

∑r
i=1 2i−1u′i − dϕavkj ≥ 0 iff 〈u′〉 ≥ dϕavkj ,

since yµ〈b〉 = 1 iff b = v. Similarly, neuron λϕakj is active iff 〈u′〉 ≤ dϕavkj . Hence,
both neurons γϕakj and λϕakj fire at the same time iff 〈u′〉 = dϕavkj iff j = ϕak(u

′,v),
which implements function ϕak(u

′,v). Functions ψak(u
′,v) for any 1 ≤ k ≤ p and

6 J. Š́ıma

a ∈ {0, 1} are implemented analogously (replace ϕ by ψ above) using 2p1 pairs
of neurons γψakj , λ

ψa
kj ∈ ν21 for j = 0, . . . , 2p1 − 1, that is, both units γψakj and λψakj

are active iff j = ψak(u
′,v).

We employ control units κai ∈ ν12 ∪ ν22 for a ∈ {0, 1} and i = 0, . . . , d + 1,
for synchronizing the computation of functions ϕak(u

′,v), ψak(u
′,v) by neurons

from ν21 so that their energy consumption is bounded by e+2. For this purpose,
we split set ν21 = ν0

21 ∪ ν1
21 into two parts νa21 = {γϕakj , λ

ϕa
kj , γ

ψa
kj , λ

ψa
kj | 1 ≤ k ≤

p , j = 0, . . . , 2p1 − 1} of size 4p2p1 according to a ∈ {0, 1}, and each such part
is further partitioned into d blocks of size at most 2e, that is νa21 =

⋃d
i=1 β

a
i

where |βai | ≤ 2e. In addition, we require for every i = 1, . . . , d, if γϕakj ∈ βai ,
then λϕakj ∈ βai , and if γψakj ∈ βai , then λψakj ∈ βai . For any 1 ≤ i ≤ d and
a ∈ {0, 1}, the neurons in block βai are activated by control unit κai−1 using the
weights w(κai−1, j) = W for all j ∈ βai , while all neurons j ∈ ν21 are blocked by
thresholds h(j) = W where W = 2r if there is no support from a corresponding
control unit. For current input bit yin = a ∈ {0, 1}, the control units κa0 , . . . , κ

a
d+1

fire successively one by one, which is achieved by weights w(κai , κ
a
i+1) = 1 for

i = 0, . . . , d, w(κai , κ
a
0) = −1 for i = 0, . . . , d + 1, and thresholds h(κai) = 1 for

i = 1, . . . , d+ 1. This ensures that only the neurons from one block βai of size at
most 2e can fire at the same time. In fact, we know that just one unit of each
pair γϕakj , λ

ϕa
kj ∈ βai or γψakj , λ

ψa
kj ∈ βai is active except for the special pairs of both

firing units γϕakjϕ , λ
ϕa
kjϕ

and γψakjψ , λ
ψa
kjψ

such that ϕak(u
′,v) = jϕ and ψak(u

′,v) =
jψ, respectively. Hence, the energy consumption of ν21 is bounded by e + 2.
Finally, we must also guarantee that the resulting function values ϕak(u

′,v) = jϕ,
ψak(u

′,v) = jψ are stored, that is, neurons γϕakjϕ , λ
ϕa
kjϕ

, γψakjψ , λ
ψa
kjψ

remain active
without any support from corresponding control units until all blocks perform
computation which is indicated by control unit κad+1. Neuron κad+1 then resets all
neurons in ν21 before becoming itself passive. This is implemented by symmetric
weights w(γϕakj , λ

ϕa
kj) = w(λϕakj , γ

ϕa
kj) = w(γψakj , λ

ψa
kj) = w(λψakj , γ

ψa
kj) = W for

a ∈ {0, 1}, k = 1, . . . , p, j = 0, . . . , 2p1 − 1, and w(κad+1, j) = −W for all j ∈ ν21.
Finally, layer ν3 = {πk〈c〉, %k〈c〉 | 1 ≤ k ≤ p , c ∈ {0, 1}p3} is composed of 2p3

pairs of neurons πk〈c〉, %k〈c〉 for each k = 1, . . . , p which compute ([ϕak(u
′,v)]p1)〈c〉

∧¬([ψak(u
′,v)]p1)〈c〉 ∧

∧p3
i=1 `ci(zi) and ¬([ϕak(u

′,v)]p1)〈c〉 ∧ ([ψak(u
′,v)]p1)〈c〉 ∧∧p3

i=1 `ci(zi) from (9), respectively, for current input yin = a ∈ {0, 1} by using
the states of neurons from ν03 and the outputs of units γϕakj , λ

ϕa
kj , γ

ψa
kj , λ

ψa
kj ∈ ν21

for j = 0, . . . , 2p1 − 1 after κad+1 fires. For c ∈ {0, 1}p3 , we define weights
w(γϕakj , πk〈c〉) = w(λϕakj , πk〈c〉) = −w(γψakj , πk〈c〉) = −w(λψakj , πk〈c〉) =
−w(γϕakj , %k〈c〉) = −w(λϕakj , %k〈c〉) = w(γψakj , %k〈c〉) = w(λψakj , %k〈c〉) = ([j]p1)〈c〉
for a ∈ {0, 1}, j = 0, . . . , 2p1 − 1, and w(zi, πk〈c〉) = w(zi, %k〈c〉) = 2ci − 1 for
i = 1, . . . , p3, and threshold h(πk〈c〉) = h(%k〈c〉) = 1 +

∑p3
i=1 ci. Hence, neuron

πk〈c〉 is active iff ([ϕak(u
′,v)]p1)〈c〉 = 1 and ([ψak(u

′,v)]p1)〈c〉 = 0 for yin = a,
and yzi = ci for i = 1, . . . , p3, since only one pair of neurons γϕakjϕ , λ

ϕa
kjϕ

for
0 ≤ jϕ ≤ 2p1 − 1 fires such that jϕ = ϕak(u

′,v) and only one pair of units
γψakjψ , λ

ψa
kjψ

for 0 ≤ jψ ≤ 2p1 − 1 is active such that jψ = ψak(u
′,v), while the

remaining units in v21 are passive after κad+1 fires. Analogously, neuron %k〈c〉

Low-Energy Optimal-Size Neural Automata 7

fires iff ([ϕak(u
′,v)]p1)〈c〉 = 0 and ([ψak(u

′,v)]p1)〈c〉 = 1 for yin = a, and yzi = ci
for i = 1, . . . , p3.

It follows that for any 1 ≤ k ≤ p, at most one unit among πk〈c〉, %k〈c〉 ∈
ν3 for c ∈ {0, 1}p3 is active, which determines the value of fk(a,u′,v, z) for
yin = a according (9). Thus, a binary encoding f(a,u′,v, z) of the new state
of automaton A is computed as disjunctions (9) for k = 1, . . . , p by units from
ν0\{in} (which rewrite the old state of A) using the recurrent connections leading
from neurons of ν3. After re-indexing the units in layer ν0 \ {in} = {1, . . . , p}
properly, for each k = 1, . . . , p, we define weights w(πk〈c〉, k) = w(%k〈c〉, k) = 1
for every c ∈ {0, 1}p3 , and threshold h(k) = 1.

Now we specify the computational dynamics of neural network N simulating
the finite automaton A. At the beginning, the states of neurons from ν0 \ {in}
are placed in an initial state of A. Each bit xi (1 ≤ i ≤ n) of input word
x = x1, . . . , xn, which is read by input neuron in ∈ ν0 at time instant τ(i − 1)
(i.e. y(τ(i−1))

in = xi), is being processed by N within the desired period of τ =
d + 4 = O(p2p1/e) = O(

√
2p/e) = O(

√
m/e) time steps. The states of neurons

in N are successively updated in the order following the architecture of layers.
Thus, we define sets αt of units updated at time instants t ≥ 1 as ατ(i−1)+1 = ν1,
ατ(i−1)+j+1 = ν12 ∪ ν2 for j = 1, . . . , d + 1, ατ(i−1)+d+3 = ν12 ∪ ν2 ∪ ν3, and
ατi = ν0 \ {in}, for i = 1, . . . , n. Eventually, the output neuron out ∈ ν0 signals
at time instant τn whether input word x belongs to underlying language L, that
is, y(τn)

out = 1 iff x ∈ L.
The size of N simulating the finite automaton A with m states can be ex-

pressed as s = |ν0|+ |ν1|+ |ν2|+ |ν3| = p+1+2p2 +2+8p2p1 +2(d+1)+p2p3 =
O(
√

2p) = O(
√
m) in terms of m, which matches the known lower bound [2, 3].

Finally, the energy consumption can be bounded for particular layers as follows.
Layer ν0 can possibly require all p+1 units to fire for storing the binary encoding
of a current automaton state. Moreover, there is only one active unit among neu-
rons in ν11 which serve for evaluating all possible monomials over input variables
v, and also only one control unit from ν12∪ν22 fires at one time instant. In addi-
tion, we know that the energy consumption by ν21 is at most e+ 2, and at most
p neurons among πk〈c〉, %k〈c〉 from ν3 fire (one for each k = 1, . . . , p). Altogether,
the global energy consumption ofN is bounded by e+2p+5 = O(e+log s) = O(e)
as e = Ω(log s) is assumed. This completes the proof of the theorem. ut

5 Conclusions

We have, for the first time, applied the energy complexity measure to recur-
rent neural nets. This measure has recently been introduced and studied for
feedforward perceptron networks. The binary-state recurrent neural networks
recognize exactly the regular languages so we have investigated their energy
consumption of simulating the finite automata with the asymptotically optimal
number of neurons. We have presented a low-energy implementation of finite
automata by optimal-size neural nets with the tradeoff between the time over-
head for processing one input bit and the energy varying from the logarithm

8 J. Š́ıma

to the full network size. In the full paper, we will also present lower bounds
on the energy complexity of neural network automata. In particular, for time
overhead τ = O(1), the energy satisfies e ≥ sε for some real constant ε such that
0 < ε < 1, and for infinitely many s, while for τ = O(logε s), we have shown
that e = Ω∞(slog log s/ logη s) for any η > ε. An open problem remains for further
research whether these bounds can be improved.

References

1. Alon, N., Dewdney, A.K., Ott, T.J.: Efficient simulation of finite automata by
neural nets. Journal of the ACM 14(2), 495–514 (1991)

2. Horne, B.G., Hush, D.R.: Bounds on the complexity of recurrent neural network
implementations of finite state machines. Neural Networks 9(2), 243–252 (1996)

3. Indyk, P.: Optimal simulation of automata by neural nets. In: Mayr, E.W.,
Puech, C. (eds.) Proceedings of the STACS 1995 Twelfth Annual Symposium on
Theoretical Aspects of Computer Science. LNCS, vol. 900, pp. 337–348 (1995)

4. Lennie, P.: The cost of cortical computation. Current Biology 13(6),493–497 (2003)
5. Lupanov, O.: On the synthesis of threshold circuits. Problemy Kibernetiki 26, 109–

140 (1973)
6. Minsky, M.: Computations: Finite and Infinite Machines. Prentice-Hall, Englewood

Cliffs (1967)
7. Siegelmann, H.T., Sontag, E.D.: Computational power of neural networks. Journal

of Computer System Science 50(1), 132–150 (1995)
8. Š́ıma, J., Orponen, P.: General-purpose computation with neural networks: A sur-

vey of complexity theoretic results. Neural Computation 15(12), 2727–2778 (2003)
9. Š́ıma, J., Wiedermann, J.: Theory of neuromata. Journal of the ACM 45(1), 155–

178 (1998)
10. Suzuki, A., Uchizawa, K., Zhou, X.: Energy and fan-in of threshold circuits com-

puting Mod functions. In: Ogihara, M., Tarui, J. (eds.) Proceedings of the TAMC
2011 Eight Annual Conference on Theory and Applications of Models of Compu-
tation. LNCS, vol. 6648, pp. 154–163 (2011)

11. Uchizawa, K., Douglas, R., Maass, W.: On the computational power of threshold
circuits with sparse activity. Neural Computation 18(12), 2994–3008 (2006)

12. Uchizawa, K., Nishizeki, T., Takimoto E.: Energy and depth of threshold circuits.
Theoretical Computer Science 411(44-46), 3938–3946 (2010)

13. Uchizawa, K., Takimoto, E.: Exponential lower bounds on the size of constant-
depth threshold circuits with small energy complexity. Theoretical Computer Sci-
ence 407(1-3), 474–487 (2008)

14. Uchizawa, K., Takimoto, E.: Lower bounds for linear decision trees via an energy
complexity argument. In: Murlak, F., Sankowski, P. (eds.): Proceedings of the
MFCS 2011 Thirty-Sixth International Symposium on Mathematical Foundations
of Computer Science. LNCS, vol. 6907, pp. 568-579 (2011)

15. Uchizawa, K., Takimoto, E., Nishizeki, T.: Size-energy tradeoffs for unate circuits
computing symmetric Boolean functions. Theoretical Computer Science 412(8-10),
773–782 (2011)

