
A Turing Machine Distance Hierarchy

Stanislav Žák? and Jǐŕı Š́ıma??

Institute of Computer Science, Academy of Sciences of the Czech Republic,
P. O. Box 5, 18207 Prague 8, Czech Republic, {stan|sima}@cs.cas.cz

Abstract. We introduce a new so-called distance complexity measure
for Turing machine computations which is sensitive to long-distance
transfers of information on the worktape. An important special case of
this measure can be interpreted as a kind of buffering complexity which
counts the number of necessary block uploads into a virtual buffer on
top of the worktape. Thus, the distance measure can be used for inves-
tigating the buffering aspects of Turing computations. In this paper, we
start this study by proving a tight separation and hierarchy result. In
particular, we show that a very small increase in the distance complexity
bound (roughly from c(n) to c(n + 1) + constant) brings provably more
computational power to both deterministic and nondeterministic Turing
machines. For this purpose, we formulate a very general diagonalization
method for Blum-like complexity measures. We also obtain a hierarchy
of the distance complexity classes.

Keywords: Turing machine, hierarchy, distance complexity, diagonal-
ization

1 Introduction

The theory of computational complexity is one of the major attempts to under-
stand the phenomenon of computation. One of the key tasks of the theory is to
find out how an increase or decrease of limits set on the computational resources
can influence the computational power of different types of computational de-
vices. In history, the efforts to answer questions of this type led to a long sequence
of various separation and hierarchy results for particular computational devices
and complexity measures, e.g. chronologically [3, 6–9, 1, 4, 5].

The present paper follows this direction of research. A new nontraditional
complexity measure is introduced for both deterministic and nondeterministic
Turing machines (TM) with one worktape (Section 2). This so-called distance
complexity (Section 6) is sensitive to long transfers of information on the work-
tape of a Turing machine while the short transfers are not counted.

? S.Ž.’s research was partially supported by the projects GA ČR P202/10/1333 and
RVO: 67985807.

?? J.Š.’s research was partially supported by the projects GA ČR P202/12/G061 and
RVO: 67985807.

2 S. Žák and J. Š́ıma

In particular, the distance complexity of a given computation, which can be
understood as a sequence of TM configurations, is the length of its certain subse-
quence defined as follows. The subsequence starts with the initial configuration
c0. The next element ci+1 is defined to be the first configuration c after ci such
that the distance (measured in the number of tape cells) between the worktape
head position of c and the worktape head position of some configuration that
precedes c and succeeds or is equal to ci, reaches a given bound d(n) where
d(n) is a parameter of the distance measure depending on the input length n. In
other words, ci+1 is the first configuration along the computation such that its
worktape head position is exactly at distance d(n) from that of some preceding
configuration taken from the segment of computation starting with ci.

A special case of this distance complexity in which the distance is measured
from the head position of previous-element configuration ci (i.e. the worktape
head position of ci+1 is at distance d(n) from that of ci), can be interpreted as a
kind of buffering complexity of Turing computations. In particular, the worktape
is divided into blocks of the same number d(n) of cells and the control unit has a
virtual buffer memory whose capacity is two blocks, the concatenated so-called
left-hand and right-hand side buffers, respectively. The worktape head position
has to be within this buffer and the buffering complexity measures the number
of necessary block uploads into the buffer. Namely, if the worktape head finds
itself at the right end of the right-hand side buffer containing the (k +1)st block
of the worktape (while the left-hand side buffer stores the kth worktape block),
and has to move further to the right worktape cell (k + 1)d(n) + 1 outside the
buffer, then the content of the right-hand side buffer is copied to the left-hand
side one and the (k + 2)nd block of the worktape is uploaded to the right-hand
side buffer while the worktape head ends up at the left end of the right-hand
side buffer. In other words, the virtual buffer moves to the right by d(n) cells
which is reminiscent of a super-head reading the whole block as a super-cell of
length d(n). Similarly, for the worktape head at the left end of the left-hand side
buffer which moves to the left. In this way, the distance measure can be used for
investigating the buffering aspects of Turing computations.

We start our study by separation (Section 6) and hierarchy (Section 7) results
for the distance complexity which are surprisingly very tight. This indicates that
the new complexity measure is an appropriate tool for classifying the computa-
tions. The tightness in the results requires that the worktape alphabet is fixed
and the measure is not applied to TM computations directly but instead to their
simulations on a fixed universal Turing machine. The results are of the form that
a shift by one in the argument of the complexity bound (and of parameter d plus
an additive constant) leads to a strictly greater computational power. In the case
of a linear complexity bound, the increase in the bound by an additive constant
is sufficient to gain more power. For the hierarchy of complete languages the
increase in the bound is slightly larger (Section 7). The main tool of the proof is
the general diagonalization method introduced in [9] (Section 3) which is applied
(Section 5) to arbitrary Blum-like complexity measures (Section 4).

A Turing Machine Distance Hierarchy 3

2 Technical Preliminaries

We denote by N the set of natural numbers (including 0). By a complexity
bound we mean any mapping c, c : N → N . In the notation of complexity
classes, c(n + 1) stands for complexity bound c′ such that, for each n ∈ N ,
c′(n) =df c(n + 1). By a language we mean any L, L ⊆ {0, 1}∗. Moreover, ε
denotes the empty word.

By a Turing machine we mean any machine with two-way read-only input
tape and with one semi-infinite worktape (infinite to the right) with worktape
alphabet 0, 1, b and with endmarker # at the left end side (at the 0-th cell of
the tape), allowing for both the deterministic or nondeterministic versions. Any
computation of a Turing machine on an input word can be understood as a
sequence of its configurations.

The programs are words from {0, 1}+ and we suppose that there is a machine
which, having any word p on its worktape, is able to decide whether p is a
program without any use of the cells outside of p. If p is a program, then Mp

is the corresponding machine. For any machine M , by L(M) we denote the
language accepted by M , and by pM we mean the program of M .

On any input u, the universal machine starts its computation with some
program p at the left end side of the worktape and it simulates machine Mp on
u. We implicitly assume that the universal machine shifts program p along its
worktape in order to follow the shifts of the head of the simulated machine Mp.

Let S be a set of programs and let C = {Lp | p ∈ S} be a class of languages.
We say that C is uniformly recursive iff there is a machine M such that for each
p ∈ S and for each u ∈ {0, 1}∗, computing on the input pu, M decides whether
u ∈ Lp or not.

3 The Diagonalization Theorem

In the sequel we use the diagonalization method which is based on the theorem
from [9]. This theorem is formulated without any notion concerning computabil-
ity nor complexity. It is formulated only in terms of languages, functions and
relations. Due to this property the method is largely applicable towards the
world of computational complexity.

We say that two languages L,L′ are equivalent L ∼ L′ iff they differ only
on a finite number of words. For a class C of languages we define E(C) =df

{L′ | ∃L ∈ C (L ∼ L′)}. Then the fact L /∈ E(C) implies that L differs from any
language of E(C) on infinitely many words.

Now we are ready to introduce our diagonalization theorem.

Theorem 1. Let L be a language and let C be a class of languages indexed by
a set S, that is C = {Lp | p ∈ S}. Let R be a language and let F be a mapping,
F : R → S, such that (∀ p ∈ S)(∃∞ r ∈ R)(F (r) = p). Let z be a mapping,
z : R → N , such that for each r ∈ R, z(r) satisfies the following two conditions:
a) r1z(r) ∈ L ↔ r /∈ LF (r),

4 S. Žák and J. Š́ıma

b) (∀ j, 0 ≤ j < z(r))(r1j ∈ L ↔ r1j+1 ∈ LF (r)).
Then L /∈ E(C).

The idea of the proof by contradiction is as follows. From the assumption
L ∈ E(C) we derive an appropriate r such that L = LF (r). Then conditions (a),
(b) produce a contradiction immediately.

The idea of the application to the complexity world is as follows. The decision
whether r ∈ LF (r) or not is achieved during the computation on the word r1z(r)

where z(r) is a very large function. While from the point of length |r| this
decision requires very large amount of the source in question (e. g. space, time
etc.), especially in the case of nondeterministic computations, from the point of
length |r1z(r)| this amount is negligible. The main consumption of the sources
is now concentrated in the simulation on the input of length n + 1. Even in the
case of nondeterministic computations the respective increase of complexity is
moderate.

For the sake of completeness we add the complete proof of the theorem [9].

Proof. By contradiction. Let L ∈ E(C). Hence, L ∼ Lp for some p ∈ S. Moreover,
there is r ∈ R such that F (r) = p and the languages L and LF (r)(= Lp) differ
only on words shorter than r. In particular, for each j ∈ N , r1j ∈ LF (r) iff
r1j ∈ L. Hence by condition (b), r ∈ L ↔ r1z(r) ∈ L, and further by condition
(a), r1z(r) ∈ L ↔ r /∈ L, which is a contradiction. ut

4 Complexity Measures and Classes

Inspired by Blum axioms [2], by a complexity measure we mean any (partial)
mapping m : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → N . Informally, the first argument is
intended to be the input word, the second one corresponds to a program, and
the third one represents the initial content of the worktape.

Let S, S ⊆ {0, 1}+, be the set of programs of the machines in question. For
any p ∈ S and for any complexity bound c : N → N we define Lm,p,c =df

{u ∈ {0, 1}∗|m(u, p, ε) ≤ c(|u|)} where ε is the empty word. We say that Mp

accepts its language within m-complexity c iff L(Mp) = Lm,p,c.
Let m be a complexity measure, U be a universal machine, and pU be the

program of U . By the complexity measure mU we mean the mapping mU :
{0, 1}∗ × {0, 1}∗ → N , mU (u, p) =df m(u, pU , p).

For any p ∈ S and for any c : N → N we define language LmU ,p,c =df

{u ∈ {0, 1}∗ |mU (u, p) ≤ c(|u|)}. We say that Mp accepts its language within
mU -complexity c iff L(Mp) = LmU ,p,c. We also say that L(Mp) is an (mU , c)-
complete language.

We define the complexity class Cm,c =df {Lm,p,c | p ∈ S}. Similarly for m =
mU , CmU ,c =df {LmU ,p,c | p ∈ S} . We say that Mp accepts its language within
m-complexity c iff L(Mp) = Lm,p,c.

Let Ccomp,mU ,c =df {L | (∃p ∈ S) L = L(Mp) = LmU ,p,c} be a class composed
of all (mU , c)-complete languages which we call an (mU , c)-complete (or shortly
complete) class.

A Turing Machine Distance Hierarchy 5

5 The Diagonalization Result

The following definition forms the first step in the process of implementing our
diagonalization theorem (Theorem 1) in the milieu of computations and complex-
ity measures. The complexity measure is still not specified, so the constructed
diagonalizer can possibly be applied to any Blum-like measure.

Definition 2. Let S be a recursive set of programs (of machines in question).
Let R be the set of program codes, R =df {1k0l | k, l ∈ N ; k, l > 0; bin(k) ∈
S} (where bin(k) is the binary code of k). Let F be a mapping, F : R → S,
F (1k0l) = bin(k). For any p ∈ S, let Lp be a uniformly recursive part of L(Mp).

Then by diagonalizer M we mean the machine that works on the input of
length n as follows: M first checks whether the input is of the form 1k0l1j,
k, l, j ∈ N , k, l > 0, and j ≥ 0. Then M constructs the initial segment of its
worktape of length log n, n = k+ l+j. Within this segment, M constructs bin(k)
and tries to verify that bin(k) ∈ S. If bin(k) = p ∈ S then 1k0l = r ∈ R and
M tries further to decide whether 1k0l ∈ Lp (i.e. whether r ∈ LF (r)) using only
the initial segment of the worktape of length log n constructed previously by M .
If M accomplishes this decision, then M accepts if f 1k0l /∈ Lp (r /∈ LF (r)).
Otherwise, M simulates p on longer input 1k0l1j+1 in the same manner as
universal machine U can do. (This simulation is not limited in the amount of
used tape.)

Moreover, for r ∈ R we define z(r) to be the minimal j such that working on
r1j, diagonalizer M decides whether r ∈ LF (r) or not.

This definition has introduced a diagonalizer which is appropriate for lan-
guage separation tasks. A similar diagonalizer can be defined which is appropri-
ate for proving separation results for unary languages. The following theorem
translates Theorem 1 into the world of computations and Blum-like complexity
measures.

Theorem 3. Let m be a measure and c be a complexity bound. Let S, R, F, Lp,M ,
z be as in Definition 2, and C =df {Lp | p ∈ S}. For each r ∈ R, let the following
two conditions hold:
a) r1z(r) ∈ Lm,pM ,c(n+1) ↔ r /∈ LF (r),
b) for each j < z(r) (r1j ∈ Lm,pM ,c(n+1) ↔ r1j+1 ∈ LF (r)).
Then Lm,pM ,c(n+1) /∈ E(C).

Proof. S, R, F,C satisfy the assumptions of Theorem 1. It is clear that also z
and L = Lm,pM ,c(n+1) satisfy the assumptions of Theorem 1 and especially its
conditions (a) and (b). The statement follows immediately. ut

6 The Separation Result for the Distance Measure

We introduce a new complexity measure which we call the distance complexity.
Let d, d : N → N , be a positive function. For any machine, we define the
d-subsequence {ci} of its computation on a word u in question as follows:

6 S. Žák and J. Š́ıma

1. c0 is the initial configuration.
2. Given ci, the next configuration ci+1 is defined to be the first configuration

c after ci such that there is a configuration c′ in between ci and c (along
the computation) or c′ = ci, and the distance between the worktape head
positions of c and c′ equals d(|u|).

The distance complexity measure md is defined as follows. For u ∈ {0, 1}∗ and
for p ∈ S, define md(u, p, ε) to be the minimum length of the d-subsequences
over all accepting computations of Mp on u. Clearly, the buffering complexity is
obtained as a special case of the distance measure when we demand c′ = ci in
part 2 of the definition of d-subsequence above.

Note that by means of the length of subsequences one can also define the
classical time or space complexity measures. The subsequence is simply the whole
computation for the time complexity while the space complexity is obtained when
the subsequence contains exactly each configuration ck such that the worktape
head position of any previous configuration ci, i < k, is to the left of the worktape
head position of ck.

Lemma 4. Let d be a function, U be the universal machine, and u be an input
word. Then md(u, pM , ε) = m

d+|pM |
U (u, pM).

Proof. Hint. On the worktape of the universal machine U the key property of
the simulation of M is that the program pM is being shifted along the tape
following the shifts of the head of M . The distance d(n) on the worktape of M
is transformed to the distance d(n) + |pM | on the worktape of U . ut

Now we prove the separation result for the distance complexity measure.

Theorem 5. Let U be a fixed universal machine, c be a recursive complexity
bound, and d, d : N → N , be a recursive nondecreasing function satisfying
d > log2. Then there is a language L ∈ C

m
d(n+1)+K
U ,c(n+1)

(where K is a constant)
which is not in the class E(Cmd

U ,c).

Proof. Let S, R, F, Lp,M, z be as in Definition 2 and Lp =df Lmd
U ,p,c. Let C

be also as in Definition 2, C = Cmd
U ,c, and m =df md(n+1). We define L =df

Lmd(n+1),pM ,c(n+1).
We will prove that L /∈ E(C). It suffices to verify conditions (a) and (b) of

Theorem 3. For r ∈ R, machine M , working on r1z(r), uses only log n < d(n) cells
of its worktape. Hence, M decides, whether r ∈ LF (r) or not, within the com-
plexity bound 1 corresponding to the initial configuration in the d-subsequence
(log n < d(n)) under the measure m = md(n+1). Thus, condition (a) is satisfied.

For j < z(r), let us verify that r1j ∈ Lmd(n+1),pM ,c(n+1) ↔ r1j+1 ∈ Lmd
U ,F (r),c

= LF (r). This is true since from the definition of M , it follows that, in this case,
M works as U does. Hence, condition (b) of Theorem 3 holds. According to
Theorem 3, we have L /∈ E(C).

A Turing Machine Distance Hierarchy 7

Furthermore,

L = Lmd(n+1),pM ,c(n+1)

=
{

u ∈ {0, 1}∗
∣∣∣ md(n+1)(u, pM , ε) ≤ c(|u|+ 1)

}
=

{
u ∈ {0, 1}∗

∣∣∣ m
d(n+1)+|pM |
U (u, pM) ≤ c(|u|+ 1)

}
(according to Lemma 4)

= L
m

d(n+1)+|pM |
U ,pM ,c(n+1)

∈ C
m

d(n+1)+|pM |
U ,c(n+1)

. ut

7 The Hierarchy

In order to prove the hierarchy theorem, we first show the folowing lemma.

Lemma 6. Let c1, c2 be complexity bounds and d1, d2 be functions, d1 : N → N ,
d2 : N → N . If c1 ≤ c2 and d1 ≤ d2, then C

comp,m
d1
U ,c1

⊆ C
comp,m

d2
U ,c2

.

Proof. Let L ∈ C
comp,m

d1
U ,c1

. Then there is a program p ∈ S such that L =
L

m
d1
U ,p,c1

= L(Mp). It suffices to prove that L
m

d1
U ,p,c1

⊆ L
m

d2
U ,p,c2

which implies
L = L

m
d2
U ,p,c2

= L(Mp), and consequently L ∈ C
comp,m

d2
U ,c2

. Suppose u ∈
L

m
d1
U ,p,c1

.

For i = 1, 2, let ci
j be the j-th configuration of di-subsequence of a com-

putation of U on the input u with p given on the worktape of the starting
configuration. For our purposes, it suffices to prove that for each j, c1

j is not
later in the computation than c2

j . We know that c1
0 = c2

0. We continue by con-
tradiction. Let j be the first number that the configuration c1

j is not after c2
j but

c1
j+1 is after c2

j+1. Thus in the sequence of configurations between c2
j and c2

j+1

we find a configuration whose worktape head position is within the distance of
d2(n) ≥ d1(n) from the worktape head position of c2

j+1 which contradicts the
assumption that c1

j+1 is after c2
j+1. Hence, u ∈ L

m
d2
U ,p,c2

. ut

We see that for the language L from Theorem 5, L /∈ E(Cmd
U ,c) ⊇ C =df

E(Ccomp,md
U ,c) holds. In order to obtain a hierarchy we search for d1 ≥ d and

c1 ≥ c such that L ∈ C1 =df C
comp,m

d1
U ,c1

. According to Lemma 6, this will give
C ⊆ C1 for complete classes C and C1, which together with L ∈ C1 \ C will
provide the desired hierarchy.

Recall from the proof of Theorem 5 that L = Lmd(n+1),pM ,c(n+1). We will
define machine M ′ such that L(M ′) = L. We will first describe the main ideas
of how M ′ computes. At the beginning of its computation, M ′ constructs on its
worktape two segments of lengths 4 log(d(n+1)) and log(c(n+1)), respectively.
Then M ′ simulates M so that M ′ shifts the two segments along the worktape
together with the worktape head of M . The first segment of length 4 log(d(n+1))
serves for identifying the time instant at which the current configuration of M
belongs to the d(n + 1)-subsequence. For this purpose, it suffices to keep and
update the current head position, the minimum and maximum head positions—
all these three positions measured as a (possibly oriented) distance from the head

8 S. Žák and J. Š́ıma

position of the previous-element configuration from the d(n + 1)-subsequence.
In addition, this includes a test whether a current maximum distance between
two head positions equals d(n + 1) which requires the value d(n + 1) to be
precomputed and shifted within this first segment. Hence, the length of the first
segment follows. Similarly, the second segment of length log(c(n + 1)) serves for
halting the computation after c(n+1) configurations of the d(n+1)-subsequence.

In fact, the implementation of the ideas above requires a slightly longer seg-
ments due to the fact that the worktape alphabet of M ′ is restricted to {0, 1}
according to our definition of Turing machine. In particular, it suffices to replace
each bit by a pair of bits. The first bit of this pair indicates ”marked/non-
marked” which is used e.g. for comparing two parts of segments, and the second
one represents the value of the original bit. So, the introduced segments must
be twice as long as above.

Obviously, L(M ′) = L. Moreover, L(M ′) ∈ Ccomp,md′
U ,c′ for

d′ = d(n + 1) + 8 log(d(n + 1)) + 2 log(c(n + 1)) + K , (1)
c′ = c(n + 1) + D (2)

where K = |pM ′ | is a constant and D : N → N is a function of n which
compensates for the consumption of the source for constructing the segments
and computing the values of d(n + 1) and c(n + 1).

The hierarchy result is summarized in the following theorem.

Theorem 7. Let U be a fixed universal machine, c be a recursive complexity
bound, and d, d : N → N , be a recursive nondecreasing function satisfying
d > log2. Let functions c′ : N → N and d′ : N → N be defined by formula (2)
and (1), respectively. Then Ccomp,md

U ,c $ Ccomp,md′
U ,c′ .

8 Conclusions

In this paper we have introduced a new distance complexity measure for com-
putations on Turing machines with one worktape. This measure can be used
for investigating the buffering aspects of Turing computations. As a first step
along this direction, we have proven quite strong separation and hierarchy re-
sults. The presented theorems can even be strengthened to unary languages (by
modifications in Definition 2 of diagonalizer M). Many questions concerning
e.g. the comparison to other complexity measures, reductions, completeness and
complexity classes remain open for further research.

We have also formulated our diagonalization method for general Blum-like
complexity measures which is interesting by its own. Analogous theorems can
possibly be proven for other types of machines such as those with auxiliary
pushdown or counter, or with oracle etc.

A Turing Machine Distance Hierarchy 9

References

1. Allender, E., Beigel, R., Hertrampf, U., Homer, S.: Almost-everywhere complexity
hierarchies for nondeterministic time. Theoretical Computer Science 115(2), 225–
241 (1993)

2. Blum, M.: A machine-independent theory of the complexity of recursive functions.
Journal of the ACM 14(2), 322–336 (1967)

3. Cook, S.A.: A hierarchy for nondeterministic time complexity. Journal of Computer
and System Sciences 7(4), 343–353 (1973)

4. Geffert, V.: Space hierarchy theorem revised. In: Proceedings of the MFCS 2001
Twenty-Sixth Symposium on Mathematical Foundations of Computer Science.
LNCS, vol. 2136, pp. 387–397 (2001)

5. Kinne, J., van Melkebeek, D.: Space hierarchy results for randomized models. In:
Proceedings of the STACS 2008 Twenty-Fifth Annual Symposium on Theoretical
Aspects of Computer Science. pp. 433–444 (2008)

6. Seiferas, J.I.: Relating refined space complexity classes. Journal of Computer and
System Sciences 14(1), 100–129 (1977)

7. Seiferas, J.I., Fischer, M.J., Meyer, A.R.: Separating nondeterministic time com-
plexity classes. Journal of the ACM 25(1), 146–167 (1978)

8. Sudborough, I.H.: Separating tape bounded auxiliary pushdown automata classes.
In: Proceedings of the STOC’77 Ninth Annual ACM Symposium on Theory of
Computing. pp. 208–217 (1977)

9. Žák, S.: A turing machine time hierarchy. Theoretical Computer Science 26, 327–333
(1983)

