Neural Networks Between Integer and Rational Weights

Jiří Šíma

Institute of Computer Science The Czech Academy of Sciences

The Neural Network Model

- Architecture: s computational units (neurons), indexed as $V = \{1, \ldots, s\}$, connected into a directed graph (V, A) where $A \subseteq V \times V$
- ullet each edge $(i,j)\in A$ from unit i to j is labeled with a real weight $w_{ji}\in \mathbb{R}$ $(w_{ji}=0 ext{ iff } (i,j)
 otiN A)$
- each neuron $j \in V$ is associated with a real bias $w_{j0} \in \mathbb{R}$ (i.e. a weight of $(0,j) \in A$ from an additional neuron $0 \in V$)
- Computational Dynamics: the evolution of network state (output) $\mathbf{y}^{(t)} = (y_1^{(t)}, \dots, y_s^{(t)}) \in [0, 1]^s$

at discrete time instant $t=0,1,2,\ldots$

Discrete-Time Computational Dynamics

1. initial state $\mathbf{y}^{(0)} \in [0,1]^s$

2. at discrete time instant $t\geq 0$, an excitation is computed as

$$\xi_{j}^{(t)} = w_{j0} + \sum_{i=1}^{s} w_{ji} y_{i}^{(t)} = \sum_{i=0}^{s} w_{ji} y_{i}^{(t)}$$
 for $j = 1, \dots, s$

where unit $0 \in V$ has constant output $y_0^{(t)} \equiv 1$ for every $t \geq 0$

Discrete-Time Computational Dynamics (continued)

3. at the next time instant t + 1, only the neurons $j \in \alpha_{t+1}$ from a selected subset $\alpha_{t+1} \subseteq V$ update their states:

$$y_j^{(t+1)} = \left\{egin{array}{ll} m{\sigma}(m{\xi}_j) & ext{ for } j \in lpha_{t+1} \ y_j^{(t)} & ext{ for } j \in V \setminus lpha_{t+1} \end{array}
ight.$$

where $\sigma:\mathbb{R}\longrightarrow [0,1]$ is an activation function, e.g.

$$\sigma(\xi) = \begin{cases} 1 & \text{for } \xi \ge 1 \\ \xi & \text{for } 0 < \xi < 1 \\ 0 & \text{for } \xi \le 0 \end{cases}$$
 the saturated-linear function

Neural Networks as Language Acceptors

- ullet language (problem) $L\subseteq\Sigma^*$ over a finite alphabet Σ
- input string $x_1 \dots x_n \in \Sigma^n$ of arbitrary length $n \ge 0$ is sequentially presented, symbol after symbol, via input neurons $i \in X = \operatorname{enum}(\Sigma) \subseteq V$:

$$y_i^{(d(au-1))} = egin{cases} 1 & ext{ for } i = ext{enum}(x_ au) \ 0 & ext{ for } i
eq ext{enum}(x_ au) \end{array}$$
 at macroscopic time $au = 1, \dots, n$

where integer $d \geq 1$ is the time overhead for processing a single input symbol

ullet output neuron out $\in V$ signals whether input $x_1 \dots x_n \stackrel{?}{\in} L$:

$$y_{ ext{out}}^{(T(n))} = egin{cases} 1 & ext{if } x_1 \dots x_n \in L \ 0 & ext{if } x_1 \dots x_n
ot\in L \end{cases}$$

where T(n) is the computational time in terms of input length n

The Computational Power of Neural Networks

depends on the information contents of weight parameters:

- 1. integer weights: finite automaton (Minsky, 1967)
- 2. rational weights: Turing machine (Siegelmann, Sontag, 1995) polynomial time \equiv complexity class P
- 3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time \equiv nonuniform complexity class P/poly exponential time \equiv any I/O mapping

The Computational Power of Neural Networks

depends on the information contents of weight parameters:

- 1. integer weights: finite automaton (Minsky, 1967)
- 2. rational weights: Turing machine (Siegelmann, Sontag, 1995) polynomial time \equiv complexity class P
 - polynomial time & increasing Kolmogorov complexity of real weights \equiv a proper hierarchy of nonuniform complexity classes between P and P/poly (Balcázar, Gavaldà, Siegelmann, 1997)
- 3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time \equiv nonuniform complexity class P/poly exponential time \equiv any I/O mapping

The Computational Power of Neural Networks

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)

a gap between integer a rational weights w.r.t. the Chomsky hierarchy regular (Type-3) \times recursively enumerable (Type-0) languages

2. rational weights: Turing machine (Siegelmann, Sontag, 1995) polynomial time \equiv complexity class P

polynomial time & increasing Kolmogorov complexity of real weights ≡
a proper hierarchy of nonuniform complexity classes between P and P/poly
(Balcázar, Gavaldà, Siegelmann, 1997)

3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time \equiv nonuniform complexity class P/poly exponential time \equiv any I/O mapping

Neural Networks Between Integer and Rational Weights

TWO analog neurons with rational weights (+ a few integer-weight neurons) can implement a 2-stack pushdown automaton \equiv Turing machine

 \longrightarrow What is the computational power of ONE extra analog neuron ?

A Neural Network with an Extra Analog Neuron (NN1A):

all the weights to neurons are integers except for ONE neuron s with rational weights:

$$w_{ji} \in egin{cases} \mathbb{Z} & j=1,\ldots,s-1 \ \mathbb{Q} & j=s \end{cases}, \hspace{0.2cm} i \in \{0,\ldots,s\}$$

or equivalently: rational weights + all the neurons but ONE analog unit employ the Heaviside activation function:

$$\sigma_j(\xi) = egin{cases} 1 & ext{ for } \xi \geq 0 \ 0 & ext{ for } \xi < 0 \end{pmatrix} \qquad j=1,\ldots,s-1$$

The Representation Theorem for NN1A (Our Main Technical Result)

a language $L \subset \Sigma^*$ that is accepted by a NN1A, can be written as

$$L = h \left(\left(\left(igcup_{r=1}^{p-1} \left(\overline{L_{< c_r}} \cap L_{< c_{r+1}}
ight) \cdot A_r
ight)^{Pref} \cap R_0
ight)^st \cap R
ight)$$

 $\left(\text{options: } \overline{L_{>0}}, \ L_{>c_r} \cap L_{< c_{r+1}}, \ L_{>c_r} \cap \overline{L_{>c_{r+1}}}, \ \overline{L_{< c_r}} \cap \overline{L_{< c_{r+1}}}, \ \overline{L_{< 1}}\right)$ where

- A_1, \ldots, A_p is a partition of a finite alphabet A
- S^{Pref} denotes the largest prefix-closed subset of $S\cup A\cup\{arepsilon\}$
- ullet R , $R_0 \subseteq A^*$ are regular languages
- $h: A^* \longrightarrow \Sigma^*$ is a letter-to-letter morphism
- $L_{< c_r}$, $L_{> c_r} \subseteq A^*$ are so-called **cut languages** for rational thresholds $0=c_1\leq c_2\leq \cdots \leq c_p=1$

Cut Languages

a cut language $L_{<c}$ contains all the finite β -expansions $a_1 \dots a_n \in A^*$ of numbers that are less than a threshold $c \in \mathbb{R}$ (similarly for $L_{>c}$):

$$L_{< c} = \left\{a_1 \dots a_n \in A^* \; \middle|\; (0 \, . \, a_1 \dots a_n)_eta = \sum_{k=1}^n a_k eta^{-k} < c
ight\}$$

eta-expansions: base-eta representations of numbers using digits from A where

- $eta \in \mathbb{R}$ is a base (radix) such that |eta| > 1
- $\emptyset
 eq A \subset \mathbb{R}$ is a finite set of digits

a generalization of integer-base positional numeral systems, e.g.

• decimal expansions: eta=10 and $A=\{0,1,2,\ldots,9\}$ e.g. $rac{3}{4}=(0.75)_{10}=7\cdot 10^{-1}+5\cdot 10^{-2}$

$$ullet$$
 binary expansions: $eta=2$ and $A=\{0,1\}$ e.g. $rac{3}{4}=(0\,.\,11)_2=1\cdot2^{-1}+1\cdot2^{-2}$

Infinite β-Expansions (Rényi, 1957; Parry, 1960)

an infinite word $a_1a_2a_3\dots\in A^\omega$ is a eta-expansion of number

$$(0\,.\,a_1a_2a_3\cdots)_eta=\sum_{k=1}^\infty a_keta^{-k}$$

Uniqueness:

1. for integer base $\beta > 0$ and $A = \{0, 1, \dots, \beta - 1\}$, any number from [0, 1] has a unique β -expansion except for those with finite β -expansions,

e.g.
$$\frac{3}{4} = (0.75)_{10} = (0.75000...)_{10} = (0.74999...)_{10}$$

2. for non-integer base β , almost every number has a continuum of distinct β -expansions (Sidorov, 2003)

Example: 1 < eta < 2, $A = \{0, 1\}$, $D_{eta} = \left(0, \frac{1}{\beta - 1}\right)$

- $1 < \beta < \varphi$ where $\varphi = (1 + \sqrt{5})/2 \approx 1.618034$ is the golden ratio: every $x \in D_{\beta}$ has a continuum of distinct β -expansions (Erdös et al., 1990)
- $\varphi \leq \beta < q$ where $q \approx 1.787232$ is the Komornik-Loreti constant: countably many $x \in D_{\beta}$ have unique β -expansions (Glendinning,Sidorov,2001)
- $q \leq eta < 2$: a continuum of $x \in D_eta$ with unique eta-expansions

Eventually Periodic β -Expansions

$$a_1a_2\ldots a_{k_1}\,(a_{k_1+1}a_{k_1+2}\ldots a_{k_2})^\omega$$

- $a_1a_2\ldots a_{k_1}\in A^{k_1}$ is a preperiodic part of length k_1 (purely periodic eta-expansions satisfy $k_1=0$)
- $a_{k_1+1}a_{k_1+2}\ldots a_{k_2}\in A^m$ is a repetend of length $m=k_2-k_1>0$ whose minimum is the period of eta-expansion

$$ullet \ (0\,.\,a_1a_2\dots a_{k_1}\,\overline{a_{k_1+1}a_{k_1+2}\dots a_{k_2}})_eta = (0\,.\,a_1a_2\dots a_{k_1})_eta + eta^{-k_1}arrho$$

where
$$\varrho = (0 \cdot \overline{a_{k_1+1}a_{k_1+2}\dots a_{k_2}})_eta = rac{\sum_{k=1}^m a_{k_1+k}eta^{-k}}{1-eta^{-m}}$$
 is a periodic point

Example: $\beta = \frac{3}{2}$, $A = \{0, 1\}$, $1 (10)^{\omega} = 1 \, 10 \, 10 \, 10 \, 10 \, 10 \, \dots$

$$\frac{22}{15} = (0.1\overline{10})_{\frac{3}{2}} = (0.1)_{\frac{3}{2}} + \left(\frac{3}{2}\right)^{-1} \cdot \varrho \quad \text{where} \quad \varrho = \frac{\left(\frac{3}{2}\right)^{-1}}{1 - \left(\frac{3}{2}\right)^{-2}} = \frac{6}{5}$$

Eventually Quasi-Periodic β -Expansions

$$eta$$
-expansion $a_1\ldots a_{k_1}a_{k_1+1}\ldots a_{k_2}a_{k_2+1}\ldots a_{k_3}a_{k_3+1}\ldots a_{k_4}\ldots\in A^\omega$

is eventually quasi-periodic if there is $0 \leq k_1 < k_2 < \cdots$ such that

$$arrho=(0\,.\,\overline{a_{k_1+1}\dots a_{k_2}})_eta=(0\,.\,\overline{a_{k_2+1}\dots a_{k_3}})_eta=(0\,.\,\overline{a_{k_3+1}\dots a_{k_4}})_eta=\cdots$$

- $a_1a_2\ldots a_{k_1}\in A^{k_1}$ is a preperiodic part of length k_1 (purely quasi-periodic eta-expansions satisfy $k_1=0$)
- $a_{k_i+1} \dots a_{k_{i+1}} \in A^{m_i}$ is a quasi-repetend of length $m_i = k_{i+1} k_i > 0$

•
$$(0.a_1a_2a_2...)_eta=(0.a_1a_2...a_{k_1})_eta+eta^{-k_1}arrho$$
 where for every $i\ge 1$,

$$(0\,.\,\overline{a_{k_i+1}\dots a_{k_{i+1}}})_eta=rac{\sum_{k=1}^{m_i}a_{k_i+k}eta^{-k}}{1-eta^{-m_i}}=arrho$$
 is a periodic point

 \longrightarrow quasi-repetends can be mutually replaced with each other arbitrarily

• a generalization of eventually periodic β -expansions:

$$a_{k_1+1}\dots a_{k_2} = a_{k_2+1}\dots a_{k_3} = a_{k_3+1}\dots a_{k_4} = \cdots$$

An Example of Quasi-Periodic β -Expansion

base
$$\beta = \frac{5}{2}$$
, digits $A = \left\{0, \frac{1}{2}, \frac{7}{4}\right\}$, periodic point $\varrho = \frac{3}{4}$
 $\left(0, \frac{7}{4}, 0\right)_{\frac{5}{2}} = \left(0, \frac{7}{4}, \frac{1}{2}, 0\right)_{\frac{5}{2}} = \left(0, \frac{7}{4}, \frac{1}{2}, \frac{1}{2}, 0\right)_{\frac{5}{2}} = \left(0, \frac{7}{4}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0\right)_{\frac{5}{2}}$
 $= \cdots = \left(0, \frac{7}{4}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0\right)_{\frac{5}{2}} = \cdots = \frac{\frac{7}{4}(\frac{5}{2})^{-1} + \sum_{i=2}^{n+1}, \frac{1}{2}, \frac{5}{2})^{-i}}{1 - (\frac{5}{2})^{-n-2}} = \frac{3}{4}$
 $\rightarrow \varrho = \frac{3}{4}$ has uncountably many distinct quasi-periodic β -expansions:
 $\frac{3}{4} = \left(0, \frac{7}{4}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2}, \frac{1$

where n_1, n_2, n_3, \ldots is any infinite sequence of nonnegative integers

Quasi-Periodic Numbers

 $c\in\mathbb{R}$ is β -quasi-periodic within A if every infinite β -expansion of c is eventually quasi-periodic

Examples:

• c from the complement of the Cantor set is 3-quasi-periodic within $\{0,2\}$: c has no eta-expansion at all

•
$$c = \frac{3}{4}$$
 is $\frac{5}{2}$ -quasi-periodic within $A = \{0, \frac{1}{2}, \frac{7}{4}\}$:
all the $\frac{5}{2}$ -expansions of $\frac{3}{4}$ using digits from A , are eventually quasi-periodic

•
$$c = \frac{40}{57} = (0.0 \overline{011})_{\frac{3}{2}}$$
 is not $\frac{3}{2}$ -quasi-periodic within $A = \{0, 1\}$:
greedy (i.e. lexicographically maximal) $\frac{3}{2}$ -expansion 100000001... of $\frac{40}{57}$ is not eventually periodic

Cut Languages Within the Chomsky Hierarchy

(Šíma, Savický, LATA 2017)

Theorem 1 A cut language $L_{<c}$ is regular iff c is β -quasi-periodic within A.

Example: any regular language $L \subset A^*$ where $\{\alpha_1, \alpha_2\} \subseteq A$ such that $L \cap \{\alpha_1, \alpha_2\}^2 = \{\alpha_1 \alpha_2, \alpha_2 \alpha_1\}$, is not a cut language

Theorem 2 Let $\beta \in \mathbb{Q}$ and $A \subset \mathbb{Q}$. Every cut language $L_{<c}$ with threshold $c \in \mathbb{Q}$ is context-sensitive.

Theorem 3 If c is not β -quasi-periodic within A, then the cut language $L_{<c}$ is not context-free.

Corollary 1 Any cut language $L_{<c}$ is either regular or non-context-free (depending on whether c is a β -quasi-periodic number within A).

The Computational Power of NN1A

the results on cut languages + representation theorem for NN1A:

$$egin{aligned} L &= h\left(\left(\left(igcup_{r=1}^{p-1} \left(\overline{L_{< c_r}} \cap L_{< c_{r+1}}
ight) \cdot A_r
ight)^{Pref} \cap R_0
ight)^* \cap R
ight) \ ext{where} & eta &= rac{1}{w_{ss}}, \quad A = \left\{ \sum_{i=0}^{s-1} w_{si} y_i \ \middle| \ y_1, \dots, y_{s-1} \in \{0, 1\}
ight\} \cup \{0, 1\}, \ C &= \{c_1, \dots, c_p\} = \left\{ -\sum_{i=0}^{s-1} rac{w_{ji}}{w_{js}} y_i \ \middle| \ j \in V \setminus (X \cup \{s\}) \text{ s.t. } w_{js}
eq 0, \ y_1, \dots, y_{s-1} \in \{0, 1\}
ight\} \cup \{0, 1\} \end{aligned}$$

Theorem 4 Let N be a NN1A and assume $0 < |w_{ss}| < 1$. Define $\beta \in \mathbb{Q}$, $A \subset \mathbb{Q}$, and $C \subset \mathbb{Q}$ using the weights of N. If every $c \in C$ is β -quasi-periodic within A, then N accepts regular language.

Theorem 5 There is a language accepted by a NN1A, which is not context-free.

Theorem 6 Any language accepted by a NN1A is context-sensitive.

Conclusions

- we have characterized the class of languages accepted by NN1As—integerweight neural networks with an extra rational-weight neuron, using cut languages
- \bullet we have shown an interesting link to active research on β -expansions in non-integer bases
- we have refined the analysis of the computational power of neural networks between integer and rational weights within the Chomsky hierarchy:

integer-weight NNs \equiv regular languages (Type 3)

- a sufficient condition when NN1A accepts regular language (Type 3)
 - a language accepted by NN1A that is not context-free (Type 2)

NN1As \subset context-sensitive languages (Type 1)

rational-weight NNs \equiv recursively enumerable languages (Type 0)

• Open problems:

- a necessary condition when NN1A accepts a regular language
- the analysis for $w_{ss} \in \mathbb{R}$ or $|w_{ss}| > 1$
- a proper hierarchy of NNs e.g. with increasing quasi-period of weights