Neural Networks Between Integer and Rational Weights

Jiří Šíma

Institute of Computer Science
The Czech Academy of Sciences

The Neural Network Model

- Architecture: s computational units (neurons), indexed as $V=\{1, \ldots, s\}$, connected into a directed graph $(\boldsymbol{V}, \boldsymbol{A})$ where $\boldsymbol{A} \subseteq \boldsymbol{V} \times \boldsymbol{V}$
- each edge $(\boldsymbol{i}, \boldsymbol{j}) \in \boldsymbol{A}$ from unit \boldsymbol{i} to \boldsymbol{j} is labeled with a real weight $\boldsymbol{w}_{\boldsymbol{j} \boldsymbol{i}} \in \mathbb{R}$ $\left(w_{j i}=0 \operatorname{iff}(i, j) \notin A\right)$
\bullet each neuron $\boldsymbol{j} \in \boldsymbol{V}$ is associated with a real bias $\boldsymbol{w}_{j 0} \in \mathbb{R}$ (i.e. a weight of $(0, j) \in \boldsymbol{A}$ from an additional neuron $0 \in \boldsymbol{V}$)
- Computational Dynamics: the evolution of network state (output)

$$
\mathbf{y}^{(t)}=\left(y_{1}^{(t)}, \ldots, y_{s}^{(t)}\right) \in[0,1]^{s}
$$

at discrete time instant $\boldsymbol{t}=\mathbf{0}, \mathbf{1}, 2, \ldots$

Discrete-Time Computational Dynamics

1. initial state $\mathbf{y}^{(0)} \in[0,1]^{s}$
2. at discrete time instant $\boldsymbol{t} \geq \mathbf{0}$, an excitation is computed as

$$
\boldsymbol{\xi}_{j}^{(t)}=\boldsymbol{w}_{j 0}+\sum_{i=1}^{s} \boldsymbol{w}_{j i} \boldsymbol{y}_{i}^{(t)}=\sum_{i=0}^{s} \boldsymbol{w}_{j i} \boldsymbol{y}_{i}^{(t)} \quad \text { for } j=1, \ldots, s
$$

where unit $0 \in V$ has constant output $y_{0}^{(t)} \equiv \mathbf{1}$ for every $t \geq 0$

Discrete-Time Computational Dynamics (continued)

3. at the next time instant $t+1$, only the neurons $j \in \boldsymbol{\alpha}_{t+1}$ from a selected subset $\alpha_{t+1} \subseteq V$ update their states:

$$
y_{j}^{(t+1)}= \begin{cases}\sigma\left(\xi_{j}\right) & \text { for } j \in \alpha_{t+1} \\ y_{j}^{(t)} & \text { for } j \in V \backslash \alpha_{t+1}\end{cases}
$$

where $\sigma: \mathbb{R} \longrightarrow[\mathbf{0}, \mathbf{1}]$ is an activation function, e.g.

$$
\sigma(\xi)=\left\{\begin{array}{ll}
\mathbf{1} & \text { for } \boldsymbol{\xi} \geq \mathbf{1} \\
\boldsymbol{\xi} & \text { for } 0<\xi<1 \\
\mathbf{0} & \text { for } \boldsymbol{\xi} \leq \mathbf{0}
\end{array} \quad\right. \text { the saturated-linear function }
$$

Neural Networks as Language Acceptors

- language (problem) $L \subseteq \Sigma^{*}$ over a finite alphabet $\boldsymbol{\Sigma}$
\bullet input string $x_{1} \ldots x_{n} \in \Sigma^{n}$ of arbitrary length $n \geq 0$ is sequentially presented, symbol after symbol, via input neurons $\boldsymbol{i} \in \boldsymbol{X}=\operatorname{enum}(\boldsymbol{\Sigma}) \subseteq \boldsymbol{V}$:
$\boldsymbol{y}_{i}^{(d(\tau-1))}=\left\{\begin{array}{ll}1 & \text { for } i=\operatorname{enum}\left(\boldsymbol{x}_{\tau}\right) \\ 0 & \text { for } i \neq \operatorname{enum}\left(\boldsymbol{x}_{\tau}\right)\end{array} \quad\right.$ at macroscopic time $\tau=1, \ldots, n$
where integer $d \geq 1$ is the time overhead for processing a single input symbol
- output neuron out $\in V$ signals whether input $x_{1} \ldots x_{n} \stackrel{?}{\in} L$:

$$
y_{\text {out }}^{(T(n))}= \begin{cases}1 & \text { if } x_{1} \ldots x_{n} \in L \\ 0 & \text { if } x_{1} \ldots x_{n} \notin L\end{cases}
$$

where $\boldsymbol{T}(\boldsymbol{n})$ is the computational time in terms of input length \boldsymbol{n}

The Computational Power of Neural Networks

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)
2. rational weights: Turing machine (Siegelmann, Sontag, 1995)
polynomial time \equiv complexity class P
3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time \equiv nonuniform complexity class $P /$ poly exponential time \equiv any I/O mapping

The Computational Power of Neural Networks

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)
2. rational weights: Turing machine (Siegelmann, Sontag, 1995)
polynomial time \equiv complexity class P
polynomial time \& increasing Kolmogorov complexity of real weights \equiv a proper hierarchy of nonuniform complexity classes between P and $P /$ poly (Balcázar, Gavaldà, Siegelmann, 1997)
3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time \equiv nonuniform complexity class $\mathrm{P} /$ poly exponential time \equiv any I/O mapping

The Computational Power of Neural Networks

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)
a gap between integer a rational weights w.r.t. the Chomsky hierarchy regular (Type-3) \times recursively enumerable (Type-0) languages
2. rational weights: Turing machine (Siegelmann, Sontag, 1995)
polynomial time \equiv complexity class P
polynomial time \& increasing Kolmogorov complexity of real weights \equiv a proper hierarchy of nonuniform complexity classes between P and $P /$ poly (Balcázar, Gavaldà, Siegelmann, 1997)
3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time \equiv nonuniform complexity class $\mathrm{P} /$ poly exponential time \equiv any I / O mapping

Neural Networks Between Integer and Rational Weights

TWO analog neurons with rational weights (+ a few integer-weight neurons) can implement a 2 -stack pushdown automaton \equiv Turing machine
\longrightarrow What is the computational power of ONE extra analog neuron?

A Neural Network with an Extra Analog Neuron (NN1A):
all the weights to neurons are integers except for ONE neuron s with rational weights:

$$
w_{j i} \in\left\{\begin{array}{ll}
\mathbb{Z} & \begin{array}{l}
j=1, \ldots, s-1 \\
\mathbb{Q} \\
j=s
\end{array}
\end{array}, \quad i \in\{0, \ldots, s\}\right.
$$

or equivalently: rational weights + all the neurons but ONE analog unit employ the Heaviside activation function:

$$
\sigma_{j}(\xi)=\left\{\begin{array}{ll}
1 & \text { for } \xi \geq 0 \\
0 & \text { for } \xi<0
\end{array} \quad j=1, \ldots, s-1\right.
$$

The Representation Theorem for NN1A

(Our Main Technical Result)
a language $L \subset \Sigma^{*}$ that is accepted by a NN1A, can be written as

$$
L=h\left(\left(\left(\bigcup_{r=1}^{p-1}\left(\overline{L_{<c_{r}}} \cap L_{<c_{r+1}}\right) \cdot \boldsymbol{A}_{r}\right)^{\text {Pref }} \cap \boldsymbol{R}_{0}\right)^{*} \cap \boldsymbol{R}\right)
$$

(options: $\overline{\boldsymbol{L}_{>0}}, \boldsymbol{L}_{>c_{r}} \cap \boldsymbol{L}_{<c_{r+1}}, \boldsymbol{L}_{>c_{r}} \cap \overline{\boldsymbol{L}_{>c_{r+1}}}, \overline{\boldsymbol{L}_{<c_{r}}} \cap \overline{\boldsymbol{L}_{<c_{r+1}}}, \overline{\boldsymbol{L}_{<1}}$)
where

- $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{p}}$ is a partition of a finite alphabet \boldsymbol{A}
- $S^{\text {Pref }}$ denotes the largest prefix-closed subset of $S \cup A \cup\{\varepsilon\}$
- $\boldsymbol{R}, \boldsymbol{R}_{\mathbf{0}} \subseteq \boldsymbol{A}^{*}$ are regular languages
- $\boldsymbol{h}: \boldsymbol{A}^{*} \longrightarrow \Sigma^{*}$ is a letter-to-letter morphism
- $\boldsymbol{L}_{<c_{r}}, \boldsymbol{L}_{>c_{r}} \subseteq \boldsymbol{A}^{*}$ are so-called cut languages for rational thresholds

$$
0=c_{1} \leq c_{2} \leq \cdots \leq c_{p}=1
$$

Cut Languages

a cut language $\boldsymbol{L}_{<c}$ contains all the finite $\boldsymbol{\beta}$-expansions $\boldsymbol{a}_{1} \ldots \boldsymbol{a}_{\boldsymbol{n}} \in \boldsymbol{A}^{*}$ of numbers that are less than a threshold $\boldsymbol{c} \in \mathbb{R}$ (similarly for $\left.\boldsymbol{L}_{>c}\right)$:

$$
L_{<c}=\left\{a_{1} \ldots a_{n} \in A^{*} \mid\left(0 . a_{1} \ldots a_{n}\right)_{\beta}=\sum_{k=1}^{n} a_{k} \beta^{-k}<c\right\}
$$

$\boldsymbol{\beta}$-expansions: base- $\boldsymbol{\beta}$ representations of numbers using digits from \boldsymbol{A} where

- $\beta \in \mathbb{R}$ is a base (radix) such that $|\beta|>1$
- $\emptyset \neq A \subset \mathbb{R}$ is a finite set of digits
a generalization of integer-base positional numeral systems, e.g.
- decimal expansions: $\beta=10$ and $\boldsymbol{A}=\{0,1,2, \ldots, 9\}$ e.g. $\frac{3}{4}=(0.75)_{10}=7 \cdot 10^{-1}+5 \cdot 10^{-2}$
\bullet binary expansions: $\beta=2$ and $A=\{0,1\}$
e.g. $\frac{3}{4}=(0.11)_{2}=1 \cdot 2^{-1}+1 \cdot 2^{-2}$

Infinite $\boldsymbol{\beta}$-Expansions (Rényi, 1957; Parry, 1960)

an infinite word $a_{1} a_{2} a_{3} \cdots \in \boldsymbol{A}^{\omega}$ is a β-expansion of number

$$
\left(0 . a_{1} a_{2} a_{3} \cdots\right)_{\beta}=\sum_{k=1}^{\infty} a_{k} \beta^{-k}
$$

Uniqueness:

1. for integer base $\boldsymbol{\beta}>0$ and $\boldsymbol{A}=\{0,1, \ldots, \boldsymbol{\beta}-1\}$, any number from $[0,1]$ has a unique β-expansion except for those with finite β-expansions, e.g. $\frac{3}{4}=(0.75)_{10}=(0.75000 \ldots)_{10}=(0.74999 \ldots)_{10}$
2. for non-integer base $\boldsymbol{\beta}$, almost every number has a continuum of distinct $\boldsymbol{\beta}$-expansions (Sidorov, 2003)
Example: $1<\beta<2, \quad A=\{0,1\}, \quad D_{\beta}=\left(0, \frac{1}{\beta-1}\right)$

- $1<\beta<\varphi$ where $\varphi=(1+\sqrt{5}) / 2 \approx 1.618034$ is the golden ratio: every $\boldsymbol{x} \in \boldsymbol{D}_{\boldsymbol{\beta}}$ has a continuum of distinct $\boldsymbol{\beta}$-expansions (Erdös et al., 1990)
- $\varphi \leq \beta<q$ where $q \approx 1.787232$ is the Komornik-Loreti constant: countably many $\boldsymbol{x} \in \boldsymbol{D}_{\boldsymbol{\beta}}$ have unique $\boldsymbol{\beta}$-expansions (Glendinning, Sidorov, 2001)
- $q \leq \boldsymbol{\beta}<2$: a continuum of $\boldsymbol{x} \in \boldsymbol{D}_{\boldsymbol{\beta}}$ with unique $\boldsymbol{\beta}$-expansions

Eventually Periodic $\boldsymbol{\beta}$-Expansions

$$
a_{1} a_{2} \ldots a_{k_{1}}\left(a_{k_{1}+1} a_{k_{1}+2} \ldots a_{k_{2}}\right)^{\omega}
$$

- $a_{1} a_{2} \ldots a_{k_{1}} \in A^{k_{1}}$ is a preperiodic part of length \boldsymbol{k}_{1} (purely periodic $\boldsymbol{\beta}$-expansions satisfy $\boldsymbol{k}_{1}=0$)
- $\boldsymbol{a}_{k_{1}+1} a_{k_{1}+2} \ldots \boldsymbol{a}_{k_{2}} \in \boldsymbol{A}^{m}$ is a repetend of length $\boldsymbol{m}=\boldsymbol{k}_{2}-\boldsymbol{k}_{1}>\mathbf{0}$ whose minimum is the period of $\boldsymbol{\beta}$-expansion
$\left.\bullet\left(0 . a_{1} a_{2} \ldots a_{k_{1}} \overline{a_{k_{1}+1}} a_{k_{1}+2} \ldots a_{k_{2}}\right)\right)_{\beta}=\left(0 . a_{1} a_{2} \ldots a_{k_{1}}\right)_{\beta}+\beta^{-k_{1}} \varrho$
where $\varrho=\left(0 . \overline{\boldsymbol{a}_{k_{1}+1} \boldsymbol{a}_{k_{1}+2} \ldots \boldsymbol{a}_{k_{2}}}\right)_{\beta}=\frac{\sum_{k=1}^{m} \boldsymbol{a}_{k_{1}+\boldsymbol{k}} \boldsymbol{\beta}^{-k}}{1-\boldsymbol{\beta}^{-m}} \quad$ is a periodic point

Example: $\quad \beta=\frac{3}{2}, \quad A=\{0,1\}, \quad 1(10)^{\omega}=11010101010 \ldots$
$\frac{22}{15}=(0.1 \overline{10})_{\frac{3}{2}}=(0.1)_{\frac{3}{2}}+\left(\frac{3}{2}\right)^{-1} \cdot \varrho \quad$ where $\varrho=\frac{\left(\frac{3}{2}\right)^{-1}}{1-\left(\frac{3}{2}\right)^{-2}}=\frac{6}{5}$

Eventually Quasi-Periodic β-Expansions

$\boldsymbol{\beta}$-expansion $a_{1} \ldots a_{k_{1}} a_{k_{1}+1} \ldots a_{k_{2}} a_{k_{2}+1} \ldots a_{k_{3}} a_{k_{3}+1} \ldots a_{k_{4}} \ldots \in A^{\omega}$
is eventually quasi-periodic if there is $0 \leq k_{1}<k_{2}<\cdots$ such that
$\varrho=\left(0 . \overline{a_{k_{1}+1} \ldots a_{k_{2}}}\right)_{\beta}=\left(0 . \overline{a_{k_{2}+1} \ldots a_{k_{3}}}\right)_{\beta}=\left(0 . \overline{a_{k_{3}+1} \ldots \boldsymbol{a}_{k_{4}}}\right)_{\beta}=\cdots$

- $a_{1} a_{2} \ldots a_{k_{1}} \in A^{k_{1}}$ is a preperiodic part of length \boldsymbol{k}_{1} (purely quasi-periodic $\boldsymbol{\beta}$-expansions satisfy $\boldsymbol{k}_{1}=\mathbf{0}$)
- $\boldsymbol{a}_{k_{i}+1} \ldots \boldsymbol{a}_{k_{i+1}} \in \boldsymbol{A}^{m_{i}}$ is a quasi-repetend of length $\boldsymbol{m}_{\boldsymbol{i}}=\boldsymbol{k}_{\boldsymbol{i + 1}}-\boldsymbol{k}_{\boldsymbol{i}}>\mathbf{0}$
- $\left(0 . a_{1} a_{2} a_{2} \ldots\right)_{\beta}=\left(0 . a_{1} a_{2} \ldots a_{k_{1}}\right)_{\beta}+\beta^{-k_{1}} \varrho$ where for every $i \geq 1$,

$$
\left(0 . \overline{\boldsymbol{a}_{k_{i}+1} \ldots \boldsymbol{a}_{k_{i+1}}}\right)_{\beta}=\frac{\sum_{k=1}^{m_{i}} \boldsymbol{a}_{k_{i}+k} \boldsymbol{\beta}^{-k}}{\mathbf{1}-\boldsymbol{\beta}^{-m_{i}}}=\varrho \quad \text { is a periodic point }
$$

\longrightarrow quasi-repetends can be mutually replaced with each other arbitrarily

- a generalization of eventually periodic $\boldsymbol{\beta}$-expansions:

$$
\boldsymbol{a}_{k_{1}+1} \ldots \boldsymbol{a}_{k_{2}}=\boldsymbol{a}_{k_{2}+1} \ldots \boldsymbol{a}_{k_{3}}=\boldsymbol{a}_{k_{3}+1} \ldots \boldsymbol{a}_{k_{4}}=\ldots
$$

An Example of Quasi-Periodic $\boldsymbol{\beta}$-Expansion

base $\beta=\frac{5}{2}, \quad$ digits $A=\left\{0, \frac{1}{2}, \frac{7}{4}\right\}, \quad$ periodic point $\varrho=\frac{3}{4}$
$\left(0 \cdot \overline{\frac{7}{4} 0}\right)_{\frac{5}{2}}=\left(0 \cdot \overline{\frac{7}{4} \frac{1}{2} 0}\right)_{\frac{5}{2}}=\left(0 \cdot \overline{\frac{7}{4} \frac{1}{2} \frac{1}{2} 0}\right)_{\frac{5}{2}}=\left(0 \cdot \overline{\frac{7}{4} \frac{1}{2} \frac{1}{2} \frac{1}{2} 0}\right)_{\frac{5}{2}}$
$=\cdots=(0 \cdot \frac{\overline{7}}{\frac{7}{\frac{1}{2} \cdots \frac{1}{2}} 0} \underbrace{}_{n \text { times }}=\cdots=\frac{\frac{7}{4}\left(\frac{5}{2}\right)^{-1}+\sum_{i=2}^{n+1} \frac{1}{2} \cdot\left(\frac{5}{2}\right)^{-i}}{1-\left(\frac{5}{2}\right)^{-n-2}}=\frac{3}{4}$
$\longrightarrow \varrho=\frac{3}{4}$ has uncountably many distinct quasi-periodic β-expansions:
$\frac{3}{4}=(0 \cdot \frac{7}{4} \underbrace{\frac{1}{2} \cdots \frac{1}{2}}_{n_{1} \text { times }} 0 \frac{7}{4} \underbrace{\frac{1}{2} \cdots \frac{1}{2}}_{n_{2} \text { times }} 0 \frac{7}{4} \underbrace{\frac{1}{2} \cdots \frac{1}{2}}_{n_{3} \text { times }} 00 \frac{7}{4} \underbrace{\frac{1}{2} \cdots \frac{1}{2}}_{n_{4} \text { times }} 0 \cdots)_{\frac{5}{2}}$
where $n_{1}, n_{2}, n_{3}, \ldots$ is any infinite sequence of nonnegative integers

Quasi-Periodic Numbers

$\boldsymbol{c} \in \mathbb{R}$ is $\boldsymbol{\beta}$-quasi-periodic within \boldsymbol{A} if every infinite $\boldsymbol{\beta}$-expansion of \boldsymbol{c} is eventually quasi-periodic

Examples:

- \boldsymbol{c} from the complement of the Cantor set is 3 -quasi-periodic within $\{0,2\}$: \boldsymbol{c} has no $\boldsymbol{\beta}$-expansion at all
- $c=\frac{3}{4}$ is $\frac{5}{2}$-quasi-periodic within $\boldsymbol{A}=\left\{0, \frac{1}{2}, \frac{7}{4}\right\}$:
all the $\frac{5}{2}$-expansions of $\frac{3}{4}$ using digits from \boldsymbol{A}, are eventually quasi-periodic
- $c=\frac{40}{57}=(0.0 \overline{011})_{\frac{3}{2}}$ is not $\frac{3}{2}$-quasi-periodic within $A=\{0,1\}$: greedy (i.e. lexicographically maximal) $\frac{3}{2}$-expansion $100000001 \ldots$ of $\frac{40}{57}$ is not eventually periodic

Cut Languages Within the Chomsky Hierarchy

(Šíma, Savický, LATA 2017)
Theorem $1 A$ cut language $\boldsymbol{L}_{<c}$ is regular iff \boldsymbol{c} is β-quasi-periodic within \boldsymbol{A}.
Example: any regular language $L \subset A^{*}$ where $\left\{\alpha_{1}, \alpha_{2}\right\} \subseteq A$ such that $L \cap\left\{\alpha_{1}, \alpha_{2}\right\}^{2}=\left\{\alpha_{1} \alpha_{2}, \alpha_{2} \alpha_{1}\right\}$, is not a cut language

Theorem 2 Let $\boldsymbol{\beta} \in \mathbb{Q}$ and $\boldsymbol{A} \subset \mathbb{Q}$. Every cut language $\boldsymbol{L}_{<c}$ with threshold $c \in \mathbb{Q}$ is context-sensitive.

Theorem 3 If \boldsymbol{c} is not β-quasi-periodic within \boldsymbol{A}, then the cut language $\boldsymbol{L}_{<c}$ is not context-free.

Corollary 1 Any cut language $L_{<c}$ is either regular or non-context-free (depending on whether \boldsymbol{c} is a $\boldsymbol{\beta}$-quasi-periodic number within \boldsymbol{A}).

The Computational Power of NN1A

the results on cut languages + representation theorem for NN1A:

$$
L=h\left(\left(\left(\bigcup_{r=1}^{p-1}\left(\overline{L_{<c_{r}}} \cap L_{<c_{r+1}}\right) \cdot \boldsymbol{A}_{r}\right)^{\text {Pref }} \cap \boldsymbol{R}_{0}\right)^{*} \cap \boldsymbol{R}\right)
$$

where $\beta=\frac{1}{w_{s s}}, \quad A=\left\{\sum_{i=0}^{s-1} w_{s i} \boldsymbol{y}_{i} \mid \boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{s-1} \in\{0,1\}\right\} \cup\{0,1\}$, $C=\left\{c_{1}, \ldots, c_{p}\right\}=\left\{\left.-\sum_{i=0}^{s-1} \frac{w_{j i}}{w_{j s}} \boldsymbol{y}_{i} \right\rvert\, j \in V \backslash(X \cup\{s\})\right.$ s.t. $w_{j s} \neq 0$, $\left.y_{1}, \ldots, \boldsymbol{y}_{s-1} \in\{0,1\}\right\} \cup\{0,1\}$

Theorem 4 Let \boldsymbol{N} be a NN1A and assume $\mathbf{0}<\left|\boldsymbol{w}_{s s}\right|<1$. Define $\beta \in \mathbb{Q}$, $A \subset \mathbb{Q}$, and $C \subset \mathbb{Q}$ using the weights of N. If every $c \in C$ is β-quasi-periodic within \boldsymbol{A}, then \boldsymbol{N} accepts regular language.

Theorem 5 There is a language accepted by a NN1A, which is not context-free.
Theorem 6 Any language accepted by a NN1A is context-sensitive.

Conclusions

- we have characterized the class of languages accepted by NN1As-integerweight neural networks with an extra rational-weight neuron, using cut languages
- we have shown an interesting link to active research on $\boldsymbol{\beta}$-expansions in non-integer bases
- we have refined the analysis of the computational power of neural networks between integer and rational weights within the Chomsky hierarchy: integer-weight NNs \equiv regular languages (Type 3)
a sufficient condition when NN1A accepts regular language (Type 3)
a language accepted by NN1A that is not context-free (Type 2)
NN1As \subset context-sensitive languages (Type 1)
rational-weight NNs \equiv recursively enumerable languages (Type 0)
- Open problems:
- a necessary condition when NN1A accepts a regular language
- the analysis for $w_{s s} \in \mathbb{R}$ or $\left|w_{s s}\right|>1$
- a proper hierarchy of NNs e.g. with increasing quasi-period of weights

