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The Neural Network Model

e Architecture: s computational units (neurons), indexed as V- = {1,...,s},
connected into a directed graph (V, A) where A CV XV

e cach edge (2,7) € A from unit 2 to j is labeled with a real weight w;; € R
(wj; = 0iff (4,5) ¢ A)

e each neuron 7 € V is associated with a real bias wjp € R
(i.e. a weight of (0,7) € A from an additional neuron 0 € V)

e Computational Dynamics: the evolution of network state (output)

y® =@, ...y eo,1]°

at discrete time instantt = 0,1,2,...



Discrete-Time Computational Dynamics

1. initial state y(® € [0, 1]*

2. at discrete time instant £ > 0, an excitation is computed as

&) = wijo+ > wiiy” =D wiy?)  forj=1,...
1=0

1=1

where unit 0 € V' has constant output y((,t) = 1foreveryt > 0



Discrete-Time Computational Dynamics (continued)

3. at the next time instant £ 4 1, only the neurons 3 € a1 from a selected
subset ;11 € V update their states:

D — a (&) for j € agq1
J % for j € V \ e

where o : R — [0, 1] is an activation function, e.g.

1 for£ > 1
o(&) =< & for0 <€ <1 the saturated-linear function
0 for £ <0



Neural Networks as Language Acceptors

e language (problem) L C 3* over a finite alphabet X

e input string x;...x,, € X" of arbitrary length n > 0 is sequentially
presented, symbol after symbol, via input neurons 2 € X = enum(X) C V.

T— 1 fore = T .
y,(d( ) — { or & = enum(r) at macroscopic time 7 = 1,...,n

0 forz # enum(x;)

where integer d > 1 is the time overhead for processing a single input symbol

?
e output neuron out € V signals whether input 1 ..., € L:

Tm) |1 fxi...x, € L
ot 10 fey... ¢, € L

where T'(n) is the computational time in terms of input length n



The Computational Power of Neural Networks

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)

2. rational weights: Turing machine (Siegelmann, Sontag, 1995)

polynomial time = complexity class P

3. arbitrary real weights: “super-Turing” computation (Siegelmann, Sontag, 1994)
polynomial time = nonuniform complexity class P/poly

exponential time = any |/O mapping
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The Computational Power of Neural Networks

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)

a gap between integer a rational weights w.r.t. the Chomsky hierarchy

regular (Type-3) X recursively enumerable (Type-0) languages

2. rational weights: Turing machine (Siegelmann, Sontag, 1995)

polynomial time = complexity class P

polynomial time & increasing Kolmogorov complexity of real weights =

a proper hierarchy of nonuniform complexity classes between P and P/poly

(Balcdzar, Gavalda, Siegelmann, 1997)

3. arbitrary real weights: “super-Turing” computation (Siegelmann, Sontag, 1994)

polynomial time = nonuniform complexity class P/poly

exponential time = any |/O mapping



Neural Networks Between Integer and Rational Weights

TWO analog neurons with rational weights (4 a few integer-weight neurons) can

implement a 2-stack pushdown automaton = Turing machine
—— What is the computational power of ONE extra analog neuron ?

A Neural Network with an Extra Analog Neuron (NN1A):

all the weights to neurons are integers except for ONE neuron s with rational weights:

|
ek

7 ' ey —1 :
wjiE{Q ; ’ , 1€{0,...,s}

|
V)

or equivalently: rational weights + all the neurons but ONE analog unit employ
the Heaviside activation function:

1 for& >0 .
a'j(ﬁ)—{o for € < 0 j=1,...,s—1



The Representation Theorem for NN1A
(Our Main Technical Result)

a language L C X* that is accepted by a NN1A, can be written as

r=1

p—1 Pref
L=h (U (L<e, N L, ) - Ar> NRy| NR

(options: L.y, Ly, "Le¢ 5 Ly NLse 5y Lee, M Lo, L<1)
where

e Ay,..., A, is a partition of a finite alphabet A

o SPref denotes the largest prefix-closed subset of S U A U {e}

e R, Ry C A* are regular languages

o h: A* — XY™ is a letter-to-letter morphism

o L. , L., C A* are so-called cut languages for rational thresholds

O0=c1<c<:---<c,=1



Cut Languages

a cut language L. contains all the finite 3-expansions a;...a, € A* of
numbers that are less than a threshold ¢ € R (similarly for L+..):

L_.= {al...anEA* (O.al...an)ﬁ:Zakﬁ_k<c}
k=1

(3-expansions: base-(3 representations of numbers using digits from A where

e 3 € Ris a base (radix) such that |3| > 1
e ) # A C R is a finite set of digits

a generalization of integer-base positional numeral systems, e.g.

e decimal expansions: 3 = 10 and A = {0,1,2,...,9}
eg. 2 =1(0.75)10="7-10"1+5-1072

e binary expansions: 3 = 2 and A = {0,1}
eg. 2=1(0.11); =1-27141.272



Infinite B-Expansions (rényi, 1957; Parry, 1960)

an infinite word ajasas -+ € A% is a 3-expansion of number

(0.ajaza3-:-)g = Z a3
k=1

Uniqueness:

1. for integer base 3 > 0 and A = {0,1,...,83 — 1}, any number from
[0, 1] has a unique B-expansion except for those with finite (3-expansions,

eg. 2=(0.75)10=(0.75000...)10=(0.74999...)10

2. for non-integer base 3, almost every number has a continuum of distinct
(B3-expansions (Sidorov, 2003)

Example: 1<3<2 A={0,1}, Ds= (0, ﬁ)
e 1 < 3 < ¢ where p = (14 +/5)/2 ~ 1.618034 is the golden ratio:

every € Dg hasa continuum of distinct (3-expansions (Erdss et al., 1990)

o o < 3 < q where g = 1.787232 is the Komornik-Loreti constant:
countably many & € Dg have unique (3-expansions (Glendinning,Sidorov,2001)

o g < (3 < 2: acontinuum of € Dg with unique 3-expansions



Eventually Periodic 3-Expansions
a1as ... 0, (Qp+1QK42 - Qpy)~

® a1a3...0a1, € AP is a preperiodic part of length k;
(purely periodic 3-expansions satisfy k; = 0)

® A, 1Ak, +2+--Q;, € A" is a repetend of length m = ky — k1 > 0
whose minimum is the period of 3-expansion

¢ (0.a1az...0a% Q108 12---0%)3 = (0.a1az...ax )+ B Fp

Z?:l a’k1+kﬁ_k

1—g-m

is a periodic point

where 9 = (0.@%, 1 1Qk 12 -+ - Oky)3 =

Example: 8=32 A={0,1}, 1(10)* =11010101010 ...

22 _ 3\ ! B 6
1—5:(0.11)%:(0.1)%+<§) -0 where Qzl_(%)_zzg



Eventually Quasi-Periodic 3-Expansions

. w
IB—eXpanS|0n a]_ e o o akl a/k1+1 e o o akz a/k2_|_1 e o o ak3 a/k3+1 e o o ak4 e o o E A

is eventually quasi-periodic if thereis 0 < k; < ks < - -+ such that

O — (O.ak1+1...ak2)5= (O.ak2+1...ak3)3: (O.ak3+1...ak4)5=---

® ajaz...ap, € AP is a preperiodic part of length k;
(purely quasi-periodic (3-expansions satisfy k; = 0)

® Ay, y1...Q,,, € A™i is a quasi-repetend of length m; = k;11 — k; > 0

e (0.a1az2az...)3=(0.a1az... akl)g—l—ﬁ_"’lg where for every 7 > 1,

(0.ar, 1---ar, )= — —— = p s a periodic point
— quasi-repetends can be mutually replaced with each other arbitrarily

e a generalization of eventually periodic (3-expansions:

ak1+1...ak2:ak2+1...ak3zak3+1...ak4:---



An Example of Quasi-Periodic 3-Expansion

5] 1 7
base B = 97 digits A = {07 97 Z} , periodic point g = 1

7T 1 711 711 1
0.-0| =(0.-=0|] =[0.-=Z0)] =(0.-==Z0
4 ], 2/ 1422 ). 14222 |,
2 2

e

et 1 2 _ i) Ry (3" _s3
—n—2
42 2 1— (37" 4
n times %

—> 0= % has uncountably many distinct quasi-periodic 3-expansions:

3 7 1 1 7 1 1 7 1 1 7 1 1
—=lo. - ... 0=-Z...20=-Z2....0=-Z2...20 -
4 4 2 2 4 2 2 4 ,2 2 4 2 2

ny, times no times ns times n, times

where 121, 19, N3, . . . is any infinite sequence of nonnegative integers

D Ot



Quasi-Periodic Numbers

c € R is B3-quasi-periodic within A if every infinite 3-expansion of ¢ is eventually
quasi-periodic

Examples:

e c from the complement of the Cantor set is 3-quasi-periodic within {0, 2} :

c has no 3-expansion at all

e c—= % is g—quasi—periodic within A = {O, %, % i

5 . 3 . .. . T
all the S-expansions of 3 using digits from A, are eventually quasi-periodic
ec=3 = (0. 0011)s is not 2-quasi-periodic within A = {0, 1} :

greedy (i.e. lexicographically maximal) g—expansion 100000001 ... of %
is not eventually periodic



Cut Languages Within the Chomsky Hierarchy

(Sima, Savicky, LATA 2017)

Theorem 1 A cut language L . is regular iff ¢ is (3-quasi-periodic within A.
Example: any regular language L C A* where {1, a3} C A such that

LN {ay, as}? = {ajas, azaq}, is not a cut language

Theorem 2 [et 3 € Q and A C Q. Every cut language L . with threshold
c € Q is context-sensitive.

Theorem 3 If c is not 3-quasi-periodic within A, then the cut language L ..
Is not context-free.

Corollary 1 Any cut language L . is either regular or non-context-free
(depending on whether c is a (3-quasi-periodic number within A).



The Computational Power of NN1A

the results on cut languages + representation theorem for NN1A:
1 Pref *
L — h (((Ule (L<C'r M L<Cr—|—1) ’ AT’) M RO> M R)
where 3 = wlss , A= {Zf;(} WsiYi

s—1 wy;
Zz’:() Wy Yi

Yigeee9Ys—1 S {091}}U{071}?
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J €V \(XU{s}) st wjs #0,
Y1y 9Ys—1 € {09 1}} U {09 1}
Theorem 4 Let N be a NNIA and assume 0 < |wss| < 1. Define 3 € Q,
A C Q, and C C Q using the weights of N . If every c € C' is 3-quasi-periodic
within A, then IN accepts regular language.

Theorem b5 There is a language accepted by a NN1A, which is not context-free.

Theorem 6 Any language accepted by a NNI1A is context-sensitive.



Conclusions

e we have characterized the class of languages accepted by NN1As—integer-
weight neural networks with an extra rational-weight neuron, using cut languages

e we have shown an interesting link to active research on [3-expansions in
non-integer bases

e we have refined the analysis of the computational power of neural networks
between integer and rational weights within the Chomsky hierarchy:

integer-weight NNs = regular languages (Type 3)
a sufficient condition when NN1A accepts regular language (Type 3)
a language accepted by NN1A that is not context-free (Type 2)
NN1As C context-sensitive languages (Type 1)

rational-weight NNs = recursively enumerable languages (Type 0)

e Open problems:

— a necessary condition when NN1A accepts a regular language
— the analysis for wss € R or |wgs| > 1

— a proper hierarchy of NNs e.g. with increasing quasi-period of weights



