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Efficient Processing of Deep Neural Networks (DNNs)

(Sze, Chen, Yang, Emer, Morgan & Claypool Publishers, 2020)

The energy efficiency of DNNs on low-power, battery-operated embedded hardware
(e.g., cellphones, smartwatches, augmented reality glasses) is a critical challenge.

—— reducing the energy cost of DNNs:

1. Specialized Hardware Accelerators for DNN inference, based on GPUs,
FPGAs, in-memory computing, etc.

2. Approximate Computing in error-tolerant applications (e.g. image classifi-
cation) save large amounts of energy with minimal accuracy loss by reducing:

e Model Size: pruning, compression, weight sharing, approximate multipliers

® Arithmetic Precision: fixed-point operations, reduced weight bit-width, nonuni-
form quantization

The aim of this study: Estimate the maximum cross-entropy loss of approx-
imated classification DNNs.
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Formal Model of DNNs

The architecture of a DNN A is a connected directed acyclic graph (V, E)
composed of neurons, where edges (¢,7) € E C V X V are labeled with

weights wj; € R.
Y C V output neurons

@ O C)) z; ifj € X

R(&) ifjEV\(XUY) output (state) of

O et neuron 3 € V
O O (| Spcy €k if 7 € Y sofmax function

O ﬂ\ R(&) = ReLU(&) = max(0,&) activation function

d d ’w]zb & = Z wj;Y; excitationof 3 € V \ X
(ASK I

jo={1€V | (i,5) € E} inputstoneuronj € V\ X

N\

N\

V \ (X UY) hidden neurons
coe O .o o @)X = {0,1,...,n} C V input neurons including
formal 0 € X (yo = 1) for biases wjo for j € V' \ X

(1y...,%y,) € [0,1]™ external input to N

w.l.o.g., excluding (max) pooling layers ( max(y1,y2) = R(y1 — y2) + y2 )
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1. Tool: Shortcut Weights

The excitation &; of any neuron 7 € V \ X is a continuous piecewise linear
function of the external input (due to ReLU is piecewise linear)

— €J:ZW]zyz for(y17°°°7yn)€E
e X
within a subset = C [0, 1]™ of the input space, where W, are referred to as
the shortcut weights (bias) from input neurons ¢ € X to neuron 3 € V' \ X.

For an input (x1,...,x,) € [0,1]", let 25 C [0, 1]™ be its neighborhood
within which &; are linear for all 7 € V' \ X under fixed shortcut weights, where
S=8x,...,z,) ={7€V\(XUY) | <0}
denotes the set of hidden neurons saturated at zero output, y; = R(§;) = 0.

— Eg is a convex polytope—an intersection of finitely many half-spaces:

B  [<o0ifjes
gﬂ_gwﬂyz{zo ifj ¢ S

0<y; <1 forre X

Efficient Computation of the shortcut weights via feedforward propagation
(skipping S) for 3 € V \ X:

forg e V(X UY)

1 ifk=1

0 otherwise

Wji = Z Wik Wy, forallt € X (sz = {

for k,1 € X)
k€j—\S
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2. Tool: Continuous Piecewise Linear Interpolation of e*

/ e”0 it x < ag
~ N.(x) = { m;x + b; ifa, <x < a;

My 1 -+ br_|_1 if x > Apy2

o e < N, (x) forx € (—o0,a, 2]

%
o e% = N_.(a;) fori € {0,...,7r + 2}

“‘—
.
\\\\\
.
enst

>
aq ap = Qp Grp1Grig T

Theorem. There are r unique points @y, ...,a, inside [ag, a.y1] that
minimaize

r a;4q edi+l — e%i—-1
Z/ (m;x + b; — e*) dx — e = :
i=0 ¥ %

a;+1 — A;—1

Evaluating the linear interpolation using ReLU networks:
r+1 T

N.(x) = e + Z R (m;x + b; — e%) — Z R (m;x + b; — e®i+1)
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Cross-Entropy Loss of Approximated Classification DNNs

—~—

N is an approximated DNN of AV, sharing the same input neurons (f = X)) and
the same number of output neurons (|Y'| = |Y'|) (tilde denotes parameters of N)

e.g., the weights of N are rounded to a given number of binary digits in their
floating-point representations

The classification error of A for an input (15...,2,) € [0,1]™, measured by
the cross-entropy loss between the softmax categorical probability distributions of

Nandﬁ:

L(xy,...,x,) = —Zyklng/];;
keYy

(upper bounds the Kullback-Leibler divergence of A from /./\7)

Theorem. It is NP-hard to find the mazimum of the cross-entropy loss L
over the input space [0, 1]™.
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Upper-Bounding L Using ReLU Networks ./\//70/;c & Ne

within the convex polytope ZEg around a data point (€1,...,x,) € T of cate-
gory ¢ € Y from a test/training set T' C [0, 1]™, where S = S(x1,...,Ty),
restricted to inputs in Zg that are classified by AN into the category ¢ with
probability at least p (e.g., p = 0.8):

Ye 2 P (1)
softmax e S &e _0_a+2
Y e ST N (& — £) = Nul@r,ooymn) <L -1
J€Y \{c} jey\{c}
1 1 1
L(mlw"awn):ZyklnzgyclnT_l_(l_yc) max In —
kCY Yk Ye keY\{c} Yk

oftmaxax lnzesg Extye(&r—tc) < In max Y e &j—ExTR(&r—Ec) —PR(€c—Ek)

k:EY\{c} ey k:EY\{c} iey

or(E Ss)_ lnkgf\‘i}gfjv (53 & + R (évk — £~c) — pR (gc — é}))

=1 c Y
. ké‘;‘f\‘ﬁ}N’“(wl’ » n) 7/10



AppMax Method

Input: DNN N/, its approximation ﬁ (15...,2,) €T of category c € Y

Output: an upper bound on max L(y1y..-5Yn)
(y1,---,yn) € Ukef’\{c} E;::

Algorithm: Foreach k € Y \ {¢} do
e Compose N'* from J/\/’\c/k & N..
e Determine the saturated neurons S* = S*(xy,...,x,) in N'*.

e Compute the shortcut weights W% of N*forallj € V*\ X*andi € X*.
e Solve the linear program (LP) to find (y1,...,¥y,) that

maximize Nex(Y1y-..5,Yn) (— o) over the polytope =

| . <0 ifje s . o\ [ o
defined by 5;.‘:Zsz.yi{;O H;S for j € V\(X*UY™),
1€X —

Nc(wh coey :l)n) S % — 1 (Where e’ < zl? —1< e“?"+2) ,
§—&+R (& —&)—PR(&— &) < ariz, (Yi,---,ua) € 0,1]

and output In mMax, y\ .1 Ok 8/10



Experiments

e DINN: N with 3 fully connected layers (784-64-32-10) and 32-bit weights,
trained on the MNIST dataset; approximated as A/ with rounded 4 bit weights

e Software Libraries: PyTorch (deep learning), SciPy (linear programming)

e Source Code: publicly available at
https://github.com/PetraVidnerova/ClassificationRoundingErrors

e Test Set: T with 1135 data points of class ¢ = 1, on which A and K/'/
achieve 100% and 99.91% accuracy, respectively

e Linear Interp. of e*: r = 14 optimal points & ag = =5, a,.1 = 5, a,;2 = 20

Number of “misclassified polytopes” around data points in T', including so-called
misclassified inputs with the maximum estimated upper bound of cross-entropy
loss, which are classified correctly as ¢ = 1 by N with probability at least p,
but misclassified as kK # ¢ by N:

P 030 040 050 060 070 0.80 090 095 0.9
misclassified 134 71 30 11 8 0 0 0 0




Histograms of probabilities y. and y,. over the misclassified inputs:
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Future Research Directions

e Broaden AppMax evaluation to other datasets (e.g., CIFAR-100, ImageNet).

® The most suitable error variant (KL divergence, cross-entropy loss, accuracy)
and its optimal upper bound.

o AppMax for classification DNNs with softmax, via nonlinear Karush-Kuhn-
Tucker optimization.

® Approximate global error by estimating the probabilities of convex polytopes
from their volumes, measured using the average mean width (evaluated by LP).

e Identify DNN components that can be neglected (e.g., specific weights to be
rounded) under explicitly bounded output error.
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