
32nd International Conference on Neural Information Processing
November 20-24, 2025, OIST, Okinawa, Japan

Cross-Entropy Loss of Approximated Deep Neural Networks

Jǐŕı Š́ıma
sima@cs.cas.cz

joint work with Petra Vidnerová
petra@cs.cas.cz

Institute of Computer Science
Czech Academy of Sciences, Prague, Czechia



Efficient Processing of Deep Neural Networks (DNNs)
(Sze, Chen, Yang, Emer, Morgan & Claypool Publishers, 2020)

The energy efficiency of DNNs on low-power, battery-operated embedded hardware
(e.g., cellphones, smartwatches, augmented reality glasses) is a critical challenge.

−→ reducing the energy cost of DNNs:

1. Specialized Hardware Accelerators for DNN inference, based on GPUs,
FPGAs, in-memory computing, etc.

2. Approximate Computing in error-tolerant applications (e.g. image classifi-
cation) save large amounts of energy with minimal accuracy loss by reducing:
• Model Size: pruning, compression, weight sharing, approximate multipliers
• Arithmetic Precision: fixed-point operations, reduced weight bit-width, nonuni-

form quantization

The aim of this study: Estimate the maximum cross-entropy loss of approx-
imated classification DNNs.

2/10



Formal Model of DNNs
The architecture of a DNN N is a connected directed acyclic graph (V, E)
composed of neurons, where edges (i, j) ∈ E ⊂ V × V are labeled with
weights wji ∈ R.

Y ⊆ V output neurons

yj =


xj if j ∈ X

R(ξj) if j ∈ V \ (X ∪ Y )
e

ξj∑
k∈Y eξk

if j ∈ Y sofmax function

output (state) of
neuron j ∈ V

R(ξ) = ReLU(ξ) = max(0, ξ) activation function
ξj =

∑
i∈j←

wjiyi excitation of j ∈ V \X

j← = {i ∈ V | (i, j) ∈ E} inputs to neuron j ∈ V \X

X = {0, 1, . . . , n} ⊆ V input neurons including
formal 0 ∈ X (y0 ≡ 1) for biases wj0 for j ∈ V \X

↑
(x1, . . . , xn) ∈ [0, 1]n external input to N

0 n

w.l.o.g., excluding (max) pooling layers ( max(y1, y2) = R(y1 − y2) + y2 )

V \ (X ∪ Y ) hidden neurons

3/10



1. Tool: Shortcut Weights
The excitation ξj of any neuron j ∈ V \ X is a continuous piecewise linear
function of the external input (due to ReLU is piecewise linear)

→ ξj =
∑
i∈X

Wji yi for (y1, . . . , yn) ∈ Ξ

within a subset Ξ ⊂ [0, 1]n of the input space, where Wji are referred to as
the shortcut weights (bias) from input neurons i ∈ X to neuron j ∈ V \X.
For an input (x1, . . . , xn) ∈ [0, 1]n, let ΞS ⊂ [0, 1]n be its neighborhood
within which ξj are linear for all j ∈ V \X under fixed shortcut weights, where

S = S(x1, . . . , xn) = {j ∈ V \ (X ∪ Y ) | ξj < 0}
denotes the set of hidden neurons saturated at zero output, yj = R(ξj) = 0.
→ ΞS is a convex polytope—an intersection of finitely many half-spaces:

ξj =
∑
i∈X

Wji yi

{
< 0 if j ∈ S
≥ 0 if j /∈ S

for j ∈ V \ (X ∪ Y )

0 ≤ yi ≤ 1 for i ∈ X

Efficient Computation of the shortcut weights via feedforward propagation
(skipping S) for j ∈ V \X:

Wji =
∑

k∈j←\S

wjk Wki for all i ∈ X

(
Wki =

{
1 if k = i

0 otherwise for k, i ∈ X

)
4/10



2. Tool: Continuous Piecewise Linear Interpolation of ex

≈ Ne(x) =

 ea0 if x ≤ a0
mix + bi if ai < x ≤ ai+1
mr+1x + br+1 if x > ar+2

→
• ex ≤ Ne(x) for x ∈ (−∞, ar+2]
• eai = Ne(ai) for i ∈ {0, . . . , r + 2}

Theorem. There are r unique points a1, . . . , ar inside [a0, ar+1] that
minimize

r∑
i=0

∫ ai+1

ai

(mix + bi − ex) dx

(
→ eai =

eai+1 − eai−1

ai+1 − ai−1

)
.

Evaluating the linear interpolation using ReLU networks:

Ne(x) = ea0 +
r+1∑
i=0

R (mix + bi − eai)−
r∑

i=0

R (mix + bi − eai+1)
5/10



Cross-Entropy Loss of Approximated Classification DNNs

Ñ is an approximated DNN ofN , sharing the same input neurons (X̃ = X) and
the same number of output neurons (|Ỹ | = |Y |) (tilde denotes parameters of Ñ )

e.g., the weights of Ñ are rounded to a given number of binary digits in their
floating-point representations

The classification error of Ñ for an input (x1, . . . , xn) ∈ [0, 1]n, measured by
the cross-entropy loss between the softmax categorical probability distributions of
N and Ñ :

L(x1, . . . , xn) = −
∑
k∈Y

yk ln ỹk

(upper bounds the Kullback-Leibler divergence of N from Ñ )

Theorem. It is NP-hard to find the maximum of the cross-entropy loss L
over the input space [0, 1]n.

6/10



Upper-Bounding L Using ReLU Networks Ñck & Nc

within the convex polytope ΞS around a data point (x1, . . . , xn) ∈ T of cate-
gory c ∈ Y from a test/training set T ⊂ [0, 1]n, where S = S(x1, . . . , xn),
restricted to inputs in ΞS that are classified by N into the category c with
probability at least p (e.g., p = 0.8):

yc ≥ p (1)
softmax←−

∑
j∈Y \{c}

eξj−ξc
ξj − ξc ≤ 0 ≤ ar+2

≤
∑

j∈Y \{c}

Ne (ξj − ξc) = Nc(x1, . . . , xn) ≤ 1
p
− 1

L(x1, . . . , xn) =
∑
k∈Y

yk ln
1
ỹk

≤ yc ln
1
ỹc

+ (1− yc) max
k∈Ỹ \{c}

ln
1
ỹk

softmax= max
k∈Ỹ \{c}

ln
∑
j∈Ỹ

eξ̃j−ξ̃k+yc(ξ̃k−ξ̃c) (1)
≤ ln max

k∈Ỹ \{c}

∑
j∈Ỹ

eξ̃j−ξ̃k+R(ξ̃k−ξ̃c)−pR(ξ̃c−ξ̃k)

ξ̃j − ξ̃k + R
(

ξ̃k − ξ̃c

)
−pR

(
ξ̃c − ξ̃k

)
≤ ar+2

≤ ln max
k∈Ỹ \{c}

∑
j∈Ỹ

Ne

(
ξ̃j − ξ̃k + R

(
ξ̃k − ξ̃c

)
− pR

(
ξ̃c − ξ̃k

))
= ln max

k∈Ỹ \{c}
Ñck(x1, . . . , xn)

7/10



AppMax Method
Input: DNN N , its approximation Ñ , (x1, . . . , xn) ∈ T of category c ∈ Y

Output: an upper bound on max
(y1,...,yn)∈

⋃
k∈Ỹ \{c} Ξ∗k

L(y1, . . . , yn)

Algorithm: For each k ∈ Ỹ \ {c} do

• Compose N ∗ from Ñck & Nc .
• Determine the saturated neurons S∗ = S∗(x1, . . . , xn) in N ∗.
• Compute the shortcut weights W ∗

ji ofN ∗ for all j ∈ V ∗\X∗ and i ∈ X∗.
• Solve the linear program (LP) to find (y1, . . . , yn) that

maximize Ñck(y1, . . . , yn) (→ σk) over the polytope Ξ∗k ⊆ ΞS∗

defined by ξ∗j =
∑
i∈X

W ∗
ji yi

{
≤ 0 if j ∈ S∗

≥ 0 if j /∈ S∗
for j ∈ V ∗\(X∗∪Y ∗) ,

Nc(x1, . . . , xn) ≤ 1
p
− 1

(
where ea0 ≤ 1

p
− 1 ≤ ear+2

)
,

ξ̃j−ξ̃k+R
(

ξ̃k − ξ̃c

)
−pR

(
ξ̃c − ξ̃k

)
≤ ar+2 , (y1, . . . , yn) ∈ [0, 1]n.

and output ln maxk∈Ỹ \{c} σk 8/10



Experiments

• DNN: N with 3 fully connected layers (784–64–32–10) and 32-bit weights,
trained on the MNIST dataset; approximated as Ñ with rounded 4 bit weights

• Software Libraries: PyTorch (deep learning), SciPy (linear programming)

• Source Code: publicly available at
https://github.com/PetraVidnerova/ClassificationRoundingErrors

• Test Set: T with 1135 data points of class c = 1, on which N and Ñ
achieve 100% and 99.91% accuracy, respectively

• Linear Interp. of ex: r = 14 optimal points & a0 = −5, ar+1 = 5, ar+2 = 20

Number of “misclassified polytopes” around data points in T , including so-called
misclassified inputs with the maximum estimated upper bound of cross-entropy
loss, which are classified correctly as c = 1 by N with probability at least p,
but misclassified as κ ̸= c by Ñ :

p 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99
misclassified 134 71 30 11 8 0 0 0 0



Histograms of probabilities yc and yκ over the misclassified inputs:

N Ñ

p = 0.3

p = 0.5

p = 0.7

9/10



Future Research Directions

• Broaden AppMax evaluation to other datasets (e.g., CIFAR-100, ImageNet).

• The most suitable error variant (KL divergence, cross-entropy loss, accuracy)
and its optimal upper bound.

• AppMax for classification DNNs with softmax, via nonlinear Karush-Kuhn-
Tucker optimization.

• Approximate global error by estimating the probabilities of convex polytopes
from their volumes, measured using the average mean width (evaluated by LP).

• Identify DNN components that can be neglected (e.g., specific weights to be
rounded) under explicitly bounded output error.

10/10


