

12th - 15th Dec 2019 - Sydney, Australia

One Analog Neuron Cannot Recognize Deterministic Context-Free Languages

Jiří Šíma \& Martin Plátek

sima@cs.cas.cz

Institute of Computer Science Czech Academy of Sciences, Prague

The Computational Power of Neural Networks (NNs)

(discrete-time recurrent NNs with the saturated-linear activation function) depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)
2. rational weights: Turing machine (Siegelmann, Sontag, 1995) polynomial time \equiv complexity class P
polynomial time \& increasing Kolmogorov complexity of real weights \equiv a proper hierarchy of nonuniform complexity classes between P and $P /$ poly
(Balcázar, Gavaldà, Siegelmann, 1997)
3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994)
polynomial time \equiv nonuniform complexity class $\mathrm{P} /$ poly exponential time \equiv any I/O mapping

Motivation: filling the gap between integer and rational weights w.r.t. Chomsky hierarchy:
regular (Type 3) \times recursively enumerable (Type 0) languages

The Traditional Chomsky Hierarchy

The Formal Language Hlerarchy

Neural Networks with Increasing Analogicity

from binary $(\{0,1\})$ to analog $([0,1])$ neurons' states
α ANN $=$ a binary-state NN with integer weights
$+\alpha$ extra analog-state neurons with rational weights
$\boldsymbol{y}_{j}^{(t+1)}=\sigma_{j}\left(\sum_{i=0}^{s} \boldsymbol{w}_{j i} \boldsymbol{y}_{i}^{(t)}\right) \quad j=1, \ldots, s \quad$ updating the neuron states
$\sigma_{j}(\xi)=\left\{\begin{array}{lll}\sigma(\xi)=\left\{\begin{array}{lll}1 & \text { for } \xi \geq 1 \\ \xi & \text { for } 0<\xi<1 \\ 0 & \text { for } \xi \leq 0\end{array}\right. & j=1, \ldots, \alpha & \begin{array}{l}\text { saturated-linear } \\ \text { function }\end{array} \\ H(\xi)=\left\{\begin{array}{lll}1 & \text { for } \xi \geq 0 \\ 0 & \text { for } \xi<0\end{array}\right. & j=\alpha+1, \ldots, s & \begin{array}{l}\text { Heaviside } \\ \text { function }\end{array}\end{array}\right.$

Neural Networks with Increasing Analogicity

equivalently from integer to rational weights
α ANN $=$ a binary-state NN with integer weights
$+\alpha$ extra analog-state neurons with rational weights

The Analog Neuron Hierarchy

the computational power of α ANNs
increases with the number α of extra analog-state neurons:

The Separation of 1ANNs: 0ANNs $\varsubsetneqq 1$ ANNs (šíma, 2017):

- upper bound: 1ANNs \subset LBAs \equiv CSLs (Type 1)
- lower bound: 1ANNs $\not \subset$ PDAs \equiv CFLs (Type 2)
$L_{1}=\left\{x_{1} \ldots x_{n} \in\{0,1\}^{*} \left\lvert\, \sum_{k=1}^{n} x_{n-k+1}\left(\frac{3}{2}\right)^{-k}<1\right.\right\} \in 1$ ANNs \backslash CFLs

Quasi-Periodic Numbers (Šíma, Savický, 2017):

for a fixed real base (radix) $\boldsymbol{\beta}(|\beta|>1)$ and a finite set $A \neq \emptyset$ of real digits, we say that a real number \boldsymbol{x} is quasi-periodic if every its β-expansion

$$
x=\left(0 . a_{1} a_{2} a_{3} \ldots\right)_{\beta}=\sum_{k=1}^{\infty} a_{k} \beta^{-k} \quad \text { where } \quad a_{k} \in A
$$

(i.e. non-standard positional numeral system) is eventually quasi-periodic:

$$
(0 \cdot \underbrace{a_{1} \ldots a_{m_{1}}}_{\begin{array}{c}
\text { preperiodic } \\
\text { part }
\end{array}} \underbrace{a_{m_{1}+1} \ldots a_{m_{2}}}_{\text {quasi-repetend }} \underbrace{a_{m_{2}+1} \ldots a_{m_{3}}}_{\text {quasi-repetend }} \underbrace{\left.a_{m_{3}+1} \ldots a_{m_{1}} \ldots\right)_{\beta}}_{\text {quasi-repetend }}
$$

such that

$$
\left(0 . \overline{a_{m_{1}+1} \ldots a_{m_{2}}}\right)_{\beta}=\left(0 . \overline{a_{m_{2}+1} \ldots a_{m_{3}}}\right)_{\beta}=\left(0 . \overline{a_{m_{3}+1} \ldots a_{m_{4}}}\right)_{\beta}=\cdots
$$

Example: the plastic $\beta \approx 1.324718\left(\beta^{3}-\beta-1=0\right), \quad A=\{0,1\}$

$$
1=(0.0 \underbrace{100} \underbrace{00110111} \underbrace{00111} \underbrace{100} \ldots)_{\beta}
$$

with quasi-repetends: $(0 . \overline{100})_{\beta}=\left(0 . \overline{0(011)^{i} 1}\right)_{\beta}=\beta$ for every $i \geq 1$

1ANNs with Quasi-Periodic "Weights" (QP-1ANNs):

w_{11} is the self-loop weight of the one analog-state neuron ($0<\left|w_{11}\right|<1$)
$\beta=1 / w_{11}$ is the base
$A=\left\{\left.\sum_{i=0 ; i \neq 1}^{s} \frac{w_{1 i}}{w_{11}} \boldsymbol{y}_{i} \right\rvert\, y_{2}, \ldots, \boldsymbol{y}_{s} \in\{0,1\}\right\} \cup\{0, \beta\}$ are the digits
$X=\left\{\left.\sum_{i=0 ; i \neq 1}^{s} \frac{w_{j i}}{w_{j 1}} y_{i} \right\rvert\, j \neq 1, w_{j 1} \neq 0, y_{2}, \ldots, y_{s} \in\{0,1\}\right\} \cup\{0,1\}$
definition of a QP-1ANN: every $\boldsymbol{x} \in \boldsymbol{X}$ is quasi-periodic
(e.g. 1ANNs with Pisot $\boldsymbol{\beta}+$ other weights from $\mathbb{Q}(\boldsymbol{\beta})$ are QP-1ANNs)

Regular 1ANNs (even with real weights) (Šíma, 2017):

$$
\text { QP-1ANNs } \equiv 0 \text { ANNs } \equiv \text { FAs } \equiv \text { REG (Type } 3)
$$

Example: 1ANNs with rational weights + the self-loop weight $w_{11}=1 / \beta$ where e.g. β is an integer or the plastic constant (≈ 1.324718) or the golden ratio (≈ 1.618034)

The Collapse of the Analog Neuron Hierarchy (Šíma, 2018)
$3 \mathrm{ANNs}=4 \mathrm{ANN}=5 \mathrm{ANNs}=\ldots \equiv$ TMs \equiv RE (Type 0)
three analog-state neurons can simulate any TMs

The Separation of 2ANNs (Šíma, 2019)

$$
\text { 1ANNs } \varsubsetneqq 2 \text { ANNs }
$$

the "counting" language $L_{\#}=\left\{0^{n} 1^{n} \mid n \geq 1\right\} \in 2 A N N s \backslash 1 A N N s$
$L_{\#}$ is a (non-regular) deterministic context-free language (DCFL) accepted by a deterministic push-down automaton (DPDA)

- $L_{\#} \in$ DCFLs \equiv DPDAs $\subset 2 A N N s$
two analog-state neurons can simulate any DPDA
- $L_{\#} \notin 1$ ANNs
one analog-state neuron cannot count up to \boldsymbol{n} (even with real weights)
\longrightarrow DCFLs \equiv DPDAs $\not \subset 1$ ANNs

The Main Result: The Stronger Separation of 2ANNs

```
    (DCFLs \REG) \subseteq(2ANNs \1ANNs)
or equivalently (DCFLs \REG)\cap1ANNs = \emptyset
    1ANNs \capDCFLs = OANNs \equiv REG
```

Theorem. Any non-regular deterministic context-free language \boldsymbol{L} cannot be recognized by any 1ANN with one extra analog unit having real weights.

Idea of Proof:
by contradiction: suppose $\boldsymbol{\mathcal { N }} \in 1$ ANNs recognizes $L \in$ DCFLs \backslash REG
a construction of a bigger $\mathcal{N}_{\#} \in 1$ ANNs which exploits \mathcal{N} as its subnetwork (subroutine) for recognizing the counting language $\boldsymbol{L}_{\#}$
which implies $L_{\#} \in 1$ ANNs - a contradiction

The Simplest Non-Regular Deterministic CFLs

the counting language $L_{\#}=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$ can be reduced through a Turing-like reduction to every language in the class DCFLs \backslash REG:

Theorem. For every non-regular deterministic context-free language $\boldsymbol{L} \subset \boldsymbol{\Sigma}^{*}$ over a finite alphabet $\boldsymbol{\Sigma} \neq \emptyset$, there exist words $\boldsymbol{u}, \boldsymbol{w}, \boldsymbol{z} \in \boldsymbol{\Sigma}^{*}$, nonempty strings $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{\Sigma}^{+}$, an integer $\boldsymbol{\kappa} \geq \mathbf{0}$, and languages $L_{k} \in\{L, \bar{L}\}$ for $\boldsymbol{k} \in \boldsymbol{K}=\{-\kappa, \ldots,-\mathbf{1}, \mathbf{0}, \mathbf{1}, \ldots, \kappa\}$, such that for every pair of integers, $\boldsymbol{m} \geq \mathbf{0}$ and $\boldsymbol{n} \geq \boldsymbol{\kappa}$,

$$
\left(\boldsymbol{u} \boldsymbol{x}^{\boldsymbol{m}} \boldsymbol{w} \boldsymbol{y}^{n+k} \boldsymbol{z} \in \boldsymbol{L}_{\boldsymbol{k}} \text { for all } \boldsymbol{k} \in \boldsymbol{K}\right) \quad \text { iff } \quad \boldsymbol{m}=\boldsymbol{n} .
$$

Example: $L \subseteq\{0,1\}^{*}$ is composed of words that contain more 0 s than 1 s

$$
\begin{gathered}
\longrightarrow u, w, z \text { empty, } x=0, y=1, \kappa=1, L_{-1}=L, L_{0}=L_{1}=\bar{L} \\
\left(0^{m} 1^{n-1} \in L_{-1}=L \& 0^{m} 1^{n} \in L_{0}=\bar{L} \& 0^{m} 1^{n+1} \in L_{1}=\bar{L}\right) \\
\text { iff }(m>n-1 \& m \leq n \& m \leq n+1) \text { iff } m=n
\end{gathered}
$$

contribution to complexity theory: a counterpart to the hardest problem in a complexity class to which every problem is reduced (e.g. NP-completeness)

A Summary of the Analog Neuron Hierarchy

$$
\text { FAs } \equiv 0 \text { ANNs } \varsubsetneqq 1 \text { ANNs } \varsubsetneqq 2 \text { ANNs } \subseteq \text { 3ANNs } \equiv \text { TMs }
$$

Open Problems:

- the separation of the 3rd level: 2ANNs \varsubsetneqq 3ANNs ?
- strengthening the 2nd level separation to the nondeterministic CFLs:

$$
(C F L s \backslash R E G) \cap 1 \text { ANNs }=\emptyset ?
$$

- a proper "natural" hierarchy of NNs between integer and rational weights which can be mapped to known infinite hierarchies of REG/CFLs ?

