Asia Pacific Neural Network Society ICONIP 2019

12th – 15th Dec 2019 - Sydney, Australia

One Analog Neuron Cannot Recognize Deterministic Context-Free Languages

Jiří Šíma & Martin Plátek

sima@cs.cas.cz

Institute of Computer Science Czech Academy of Sciences, Prague The Computational Power of Neural Networks (NNs)

(discrete-time recurrent NNs with the saturated-linear activation function) **depends on the information contents of weight parameters:**

- 1. integer weights: finite automaton (Minsky, 1967)
- 2. rational weights: Turing machine (Siegelmann, Sontag, 1995) polynomial time ≡ complexity class P polynomial time & increasing Kolmogorov complexity of real weights ≡ a proper hierarchy of nonuniform complexity classes between P and P/poly (Balcázar, Gavaldà, Siegelmann, 1997)
- 3. arbitrary real weights: "super-Turing" computation (Siegelmann, Sontag, 1994) polynomial time ≡ nonuniform complexity class P/poly exponential time ≡ any I/O mapping

Motivation: filling the gap between **integer** and **rational** weights w.r.t. **Chomsky hierarchy**: **regular** (Type 3) × **recursively enumerable** (Type 0) languages

The Traditional Chomsky Hierarchy

The Formal Language Hierarchy

Neural Networks with Increasing Analogicity

from binary ($\{0,1\}$) to analog ([0,1]) neurons' states

 α **ANN** = a **binary-state** NN with **integer** weights + α **extra analog-state** neurons with **rational** weights

$$y_{j}^{(t+1)} = \sigma_{j} \left(\sum_{i=0}^{s} w_{ji} y_{i}^{(t)} \right) \qquad j = 1, \dots, s \qquad \text{updating the neuron states}$$

$$\sigma_{j}(\xi) = \begin{cases} \sigma(\xi) = \begin{cases} 1 & \text{for } \xi \geq 1 \\ \xi & \text{for } 0 < \xi < 1 \\ 0 & \text{for } \xi \leq 0 \end{cases} \qquad j = 1, \dots, \alpha \qquad \text{function} \end{cases}$$

$$H(\xi) = \begin{cases} 1 & \text{for } \xi \geq 0 \\ 0 & \text{for } \xi < 0 \end{cases} \qquad j = \alpha + 1, \dots, s \qquad \text{Heaviside function} \end{cases}$$

Neural Networks with Increasing Analogicity

equivalently from integer to rational weights

 α ANN = a binary-state NN with integer weights + α extra analog-state neurons with rational weights

The Analog Neuron Hierarchy

the computational power of α ANNs

increases with the number α of extra analog-state neurons:

integer weightsrational weights
$$\downarrow$$
 \downarrow FAs \equiv 0ANNs \subseteq 1ANNs \subseteq 2ANNs \subseteq 3ANNs $\subseteq ... \equiv$ TMs \uparrow \times \uparrow \uparrow Type 3Chomsky hierarchyType 0Type 1, 2 ?

The Separation of 1ANNs: OANNs \subseteq **1ANNs** (Šíma, 2017):

- upper bound: 1ANNs \subset LBAs \equiv CSLs (Type 1)
- lower bound: 1ANNs $\not\subset$ PDAs \equiv CFLs (Type 2)

$$L_1 = \left\{ x_1 \dots x_n \in \{0,1\}^* \, \Big| \, \sum_{k=1}^n x_{n-k+1} \left(rac{3}{2}
ight)^{-k} < 1
ight\} \in extsf{1ANNs} \setminus extsf{CFLs}$$

Quasi-Periodic Numbers (Šíma, Savický, 2017):

for a fixed real base (radix) β ($|\beta| > 1$) and a finite set $A \neq \emptyset$ of real digits, we say that a real number x is quasi-periodic if every its β -expansion

$$x=(0\,.\,a_1\,a_2\,a_3\,.\,.\,)_eta=\sum_{k=1}^\infty a_k\,eta^{-k}$$
 where $a_k\in A$

(i.e. non-standard positional numeral system) is eventually quasi-periodic:

$$\begin{pmatrix} 0 \cdot \underbrace{a_1 \dots a_{m_1}}_{\text{preperiodic part}} \underbrace{a_{m_1+1} \dots a_{m_2}}_{\text{quasi-repetend quasi-repetend}} \underbrace{a_{m_2+1} \dots a_{m_3}}_{\text{quasi-repetend}} \underbrace{a_{m_3+1} \dots a_{m_4}}_{\text{quasi-repetend}} \dots \end{pmatrix}_{\beta}$$

such that

$$\left(0.\overline{a_{m_1+1}\ldots a_{m_2}}\right)_{\beta} = \left(0.\overline{a_{m_2+1}\ldots a_{m_3}}\right)_{\beta} = \left(0.\overline{a_{m_3+1}\ldots a_{m_4}}\right)_{\beta} = \cdots$$

Example: the plastic $\beta \approx 1.324718$ $(\beta^3 - \beta - 1 = 0)$, $A = \{0, 1\}$

$$1 = (0.0 \ 100 \ 00110111 \ 00111 \ 100...)_{\beta}$$

with quasi-repetends: $(0.\overline{100})_{\beta} = (0.\overline{0(011)^{i}1})_{\beta} = \beta$ for every $i \ge 1$

1ANNs with Quasi-Periodic "Weights" (QP-1ANNs):

 w_{11} is the self-loop weight of the one analog-state neuron ($0 < |w_{11}| < 1$) $oldsymbol{eta}=1/w_{11}$ is the base $A = \left\{ \sum_{i=0\,;\,i
eq 1}^{s} rac{w_{1i}}{w_{11}} y_i \ \middle| \ y_2, \dots, y_s \in \{0,1\}
ight\} \ \cup \ \{0,eta\}$ are the digits $egin{aligned} m{X} = \left\{ \sum_{i=0\,;\,i
eq 1}^{s} rac{w_{ji}}{w_{j1}} \, y_i \, \Big| \, \, j
eq 1 \,, \, w_{j1}
eq 0 \,, \, y_2, \dots, y_s \in \{0,1\}
ight\} \cup \{0,1\} \end{aligned}$ **definition** of a QP-1ANN: every $x \in X$ is **quasi-periodic** (e.g. 1ANNs with Pisot β + other weights from $\mathbb{Q}(\beta)$ are QP-1ANNs) **Regular 1ANNs** (even with real weights) (Šíma, 2017): $QP-1ANNs \equiv 0ANNs \equiv FAs \equiv REG$ (Type 3) **Example:** 1ANNs with rational weights + the self-loop weight $w_{11} = 1/\beta$ where e.g. β is an integer or the plastic constant (≈ 1.324718) or the golden ratio (≈ 1.618034)

The Collapse of the Analog Neuron Hierarchy (Šíma, 2018) $3ANNs = 4ANNs = 5ANNs = ... \equiv TMs \equiv RE$ (Type 0) three analog-state neurons can simulate any TMs

The Separation of 2ANNs(Šíma, 2019) $1ANNs \subsetneq$ 2ANNs

the "counting" language $L_{\#} = \{0^n 1^n \mid n \ge 1\} \in 2$ ANNs $\setminus 1$ ANNs $L_{\#}$ is a (non-regular) deterministic context-free language (DCFL) accepted by a deterministic push-down automaton (DPDA)

• $L_{\#} \in \mathsf{DCFLs} \equiv \mathsf{DPDAs} \subset \mathsf{2ANNs}$

two analog-state neurons can simulate any **DPDA**

• $L_{\#} \notin 1$ ANNs

one analog-state neuron cannot count up to n (even with real weights)

 \rightarrow **DCFLs** \equiv **DPDAs** $\not\subset$ **1ANNs**

The Main Result: The Stronger Separation of 2ANNs

 $(\mathsf{DCFLs} \setminus \mathsf{REG}) \subseteq (\mathsf{2ANNs} \setminus \mathsf{1ANNs})$

or equivalently $(DCFLs \setminus REG) \cap 1ANNs = \emptyset$ $1ANNs \cap DCFLs = 0ANNs \equiv REG$

Theorem. Any non-regular deterministic context-free language L cannot be recognized by any 1ANN with one extra analog unit having real weights.

Idea of Proof:

by contradiction: suppose $\mathcal{N} \in 1$ ANNs recognizes $L \in \mathsf{DCFLs} \setminus \mathsf{REG}$

a construction of a bigger $\mathcal{N}_\#\in \mathbf{1ANNs}$ which exploits \mathcal{N} as its subnetwork (subroutine) for recognizing the counting language $L_\#$

which implies $L_{\#} \in \mathbf{1ANNs}$ – a contradiction

The Simplest Non-Regular Deterministic CFLs

the counting language $L_{\#} = \{0^n 1^n \mid n \ge 1\}$ can be reduced through a Turing-like reduction to every language in the class **DCFLs** \ **REG**:

Theorem. For every non-regular deterministic context-free language $L \subset \Sigma^*$ over a finite alphabet $\Sigma \neq \emptyset$, there exist words $u, w, z \in \Sigma^*$, nonempty strings $x, y \in \Sigma^+$, an integer $\kappa \geq 0$, and languages $L_k \in \{L, \overline{L}\}$ for $k \in K = \{-\kappa, \ldots, -1, 0, 1, \ldots, \kappa\}$, such that for every pair of integers, $m \geq 0$ and $n \geq \kappa$,

$$ig(ux^mwy^{n+k}z\in L_k ext{ for all }k\in Kig) ext{ iff } m=n$$
 .

Example: $L \subseteq \{0, 1\}^*$ is composed of words that contain more 0s than 1s $\longrightarrow u, w, z$ empty, $x = 0, y = 1, \kappa = 1, L_{-1} = L, L_0 = L_1 = \overline{L}$ $(0^m 1^{n-1} \in L_{-1} = L \& 0^m 1^n \in L_0 = \overline{L} \& 0^m 1^{n+1} \in L_1 = \overline{L})$ iff $(m > n - 1 \& m \le n \& m \le n + 1)$ iff m = n.

contribution to complexity theory: a counterpart to the hardest problem in a complexity class to which every problem is reduced (e.g. NP-completeness)

A Summary of the Analog Neuron Hierarchy

 $\mathsf{FAs} \ \equiv \ \mathsf{0ANNs} \ \subsetneqq \ \mathsf{1ANNs} \ \subsetneqq \ \mathsf{2ANNs} \ \subseteq \ \mathsf{3ANNs} \ \equiv \ \mathsf{TMs}$

Open Problems:

- the separation of the 3rd level: **2ANNs** \subseteq **3ANNs** ?
- strengthening the 2nd level separation to the **nondeterministic CFLs**:

```
(CFLs \setminus REG) \cap 1ANNs = \emptyset?
```

• a proper "natural" hierarchy of NNs between integer and rational weights which can be mapped to known infinite hierarchies of REG/CFLs ?