

The Power of Max Pooling Layer

Jiří Šíma

sima@cs.cas.cz

Institute of Computer Science

Czech Academy of Sciences, Prague, Czechia

joint work with Jérémie Cabessa

jeremie.cabessa@uvsq.fr

DAVID Laboratory
Paris-Saclay University, Versailles, France

Max Pooling Layers

- convolutional neural networks (CNNs) are widely used across Al domains such as computer vision, natural language processing, speech recognition
- pooling layers are basic building blocks of CNNs
- two main types of pooling layers commonly used are maximum and average

- downsample the spatial dimensions of feature maps
- remove redundant information
- improve robustness to variations, distortions, and noise in input data
- enhance efficiency in computation and memory
- help mitigate overfitting
- numerous studies show that max pooling is effective in practice

Motivations

CNNs are composed of heterogeneous layers:

Convolutional & Fully Connected: ReLU unit with the rectified linear activation:

$$R\left(w_0 + \sum_{i=1}^n w_i\,x_i
ight)$$
 where $R(x) = \mathsf{ReLU}(x) = \max(0,x)$

vs. Max or Average Pooling: $\max \left(x_1, \ldots, x_n\right)$ or $\frac{1}{n} \sum_{i=1}^n x_i$ for $x_1, \ldots, x_n \geq 0$ (as outputs from ReLU units)

unification: Can max pooling layers be implemented by ReLU units? (e.g., trivial for average pooling: $w_0=0$ and $w_i=1/n$ for $i\in\{1,\ldots,n\}$)

- unified computation by matrix processor (e.g. TPU, Tensor Core GPU, MMU)
- applying algorithms for deep neural networks (DNNs) with ReLU to CNNs
 e.g., AppMax for error estimation of approximated DNNs (our initial motivation)
- theoretical issue: computational power of max pooling in terms of ReLU units

Potential Depth Hierarchy for (Maximum) ReLU DNNs

Arora et al., 2018: DNNs (with ReLU units and linear output) compute exactly the class of $continuous\ piecewise\ linear\ (CPWL)\ functions$

Upper Bound: any CPWL function in n variables is computable by a ReLU DNN with $\lceil \log_2(n+1) \rceil$ hidden layers

 $o \max(x_1,\ldots,x_n)$ (for all $x_1,\ldots,x_n\in\mathbb{R}$) can thus be implemented using $\lceil\log_2(n+1)
ceil$ hidden layers of (linearly many) ReLU units

Depth Hierarchy Conjecture: the classes of functions computable by ReLU DNNs form a strict hierarchy as the depth increases, up to the logarithmic upper bound equivalent to the Lower Bound: any ReLU DNN computing $\max(x_1, \ldots, x_n, 0)$ requires strictly more than $k = \log_2 n$ hidden layers (Hertrich et al., 2023)

- ullet holds for k=1: any DNN computing $\max(x_1,x_2,0)$ (for all $x_1,x_2\in\mathbb{R}$) requires at least two hidden layers of ReLU units (Mukherjee, Basu, 2017)
- $k = \log_2 \log_2 n$ hidden layers insufficient for H-conforming ReLU DNNs: each ReLU unit acts linearly (as ReLU is identity or 0) under any fixed ordering of input values (Grillo et al., 2025)
- ullet matching lower bound: $\lceil \log_2(n+1) \rceil$ hidden layers required for integer weights (Haase et al., 2023)

Log-Depth ReLU DNN for Computing the Maximum

constructions of a DNN computing $\max(x_1,\ldots,x_n)$ (for all $x_1,\ldots,x_n\in\mathbb{R}$), e.g., using $\lceil\log_2 n\rceil$ hidden layers, 3(n-1) ReLU units, and weights -1,1 (folklore: Arora et al., 2018; Hertrich et al., 2023; Matoba et al., 2023) our slight improvement in size: restricted to nonnegative inputs (i.e. ReLU unit outputs) and allows layer-skipping connections:

Theorem 1. The maximum of $n \geq 2$ nonnegative real numbers x_1, \ldots, x_n can be computed by a DNN of size n ReLU units, depth $\lceil \log_2 n \rceil + 1$ noninput layers, and bipolar weights -1, 1.

Idea of Proof: binary tree composed of max units

Example of a ReLU NN Computing $max(x_1, \ldots, x_8)$

(based on Theorem 1)

real inputs: $x_1,\ldots,x_8\geq 0$, depth: 4 (non-input) layers , size: 8 ReLU units , weights: -1 (dashed arrows) or 1 (solid arrows)

Drawback: logarithmic depth and sparse connections → inefficient for evaluation, e.g., via matrix operations

Constant-Depth ReLU DNN for Computing the Maximum

in general, contradicts the depth hierarchy hypothesis → additional assumption: maximum and the gap between the largest two numbers are bounded our quadratic-size construction where the bounds trade off depth vs. weight:

Theorem 2. Let x_1, \ldots, x_n be $n \geq 2$ nonnegative real numbers. Denote by $\mu_1 = \max\{x_1, \ldots, x_n\}$ and $\mu_2 = \max\{x_1, \ldots, x_n\} \setminus \{\mu_1\} \cup \{0\}$ their largest two values (or zero). Then for any integer $r \geq 0$, the maximum μ_1 can be computed by a ReLU DNN \mathcal{N}_r of size $rn^2 + n + 1$, depth 2r + 2, and weights $-1, 1, -\sqrt{w}, \sqrt{w}$ ($w \geq 1$) such that

$$(w+1)^r \ge \frac{\mu_1}{\mu_1 - \mu_2}$$
 if $\mu_1 > 0$, or $w = 1$ otherwise.

Idea of Proof: let $W \geq \mu_1/(\mu_1 - \mu_2) > 0$ be sufficiently large, then for each $j \in \{1, \ldots, n\}$, decide if $x_j = \mu_1 = \max(x_1, \ldots, x_n)$ using:

$$R\left(x_j-\sum_{i=1}^n R(oldsymbol{W}(x_i-x_j))
ight)=\left\{egin{array}{ll} x_j & ext{ if } x_j=\mu_1\ 0 & ext{ if } oldsymbol{x_j}<\mu_1 \end{array}
ight.$$

since $\sum_{i=1}^n R(W(x_i-x_j)) \geq W(\mu_1-\mu_2) \geq \mu_1$ whenever $x_j < \mu_1$

the large weight $oldsymbol{W} = (w+1)^r$ is split into 2r layers with weights \sqrt{w}

Example of a ReLU NN \mathcal{N}_2 Computing $max(x_1,x_2,x_3)$

(based on Theorem 2)

$\mathcal{N}_2: r=2$

depth: 6 (non-input) layers

size: 22 ReLU units

weights:

- dashed thin arrows: -1
- solid thin arrows: 1
- dashed thick arrows: $-\sqrt{w}$
- solid thick arrows: \sqrt{w}

real inputs: $x_1, x_2, x_3 \geq 0$

Example of Calculating the Maximum for Integers:

integer
$$x_1,\ldots,x_n$$
, i.e. $\mu_1-\mu_2\geq 1$ (for $\mu_1
eq \mu_2$)

$$o$$
 \mathcal{N}_1 : depth: 4 (non-input) layers, size: n^2+n+1 ReLU units, weights: $-1,1,\sqrt{w},-\sqrt{w}$ for $w\geq \max(\mu_1-1,1)$

the fixed weights depend on an a priori unknown maximum to compute \mathcal{N}_1 correctly vs. the maximum is bounded in realistic computer numerics:

Depth-Weight Trade-off For Computer Data Types

• unsigned integer with standard b-bit precision for b = 16, 32, 64

$$ightarrow$$
 $\mu_1 \leq 2^{b}-1$ and $\mu_1-\mu_2 \geq 1$

the $\operatorname{weight} \max(\sqrt{w},1)$ of \mathcal{N}_r in Theorem 2, valid for $w=\sqrt[r]{2^b-1}-1$:

depth of \mathcal{N}_r	4 (N ₁)	$6 \left(\mathcal{N}_2 \right)$	8 (N_3)	10 (\mathcal{N}_4)	12 (N ₅)	22 (N ₁₀)	32 (N ₁₅)
16-bit ushort	256.00	15.97	6.28	3.88	2.87	1.43	1.05
32-bit uint	65536.00	256.00	40.31	15.97	9.14	2.87	1.85
64-bit ulong	4294967296.00	65536.00	1625.50	256.00	84.45	9.14	4.28

• floating-point (IEEE 754) with standard b-bit precision for b=16,32,64 including e=4,7,10 bits for exponent

$$o \mu_1 \leq 2^{2^e} (1 - 2^{-b+e+1})$$
 and $\mu_1 - \mu_2 \geq 2^{-2^b-b+e+4}$

the weight $\max(\sqrt{w}, 1)$ of \mathcal{N}_r in Theorem 2, valid for

$$w=\sqrt[r]{2^{2^{e+1}-3}(2^{b-e-1}-1)}-1$$
 :

depth of \mathcal{N}_r	8 (\mathcal{N}_3)	22 (\mathcal{N}_{10})	$44~(\mathcal{N}_{20})$	102 (\mathcal{N}_{50})	302 (\mathcal{N}_{150})	$1002\left(\mathcal{N}_{500} ight)$
16-bit half $(e=4)$	101.59	3.88	1.74	1	1	1
32-bit single $(e=7)$	7.90E13	14766.09	121.52	6.75	1.62	1
64-bit double $(e=10)$	1.83E105	3.79E31	6.16E15	2068279.89	127.41	4.17

Lower Bound

Theorem 3. There is no depth-2 ReLU neural network that computes the maximum of more than two nonnegative real numbers.

Summary

- investigated the computational power of max pooling in terms of ReLU units
- ullet log-depth, linear-size ReLU DNN for \max of n nonnegative numbers (Thm. 1)
- constant-depth, quadratic-size ReLU NN for max of bounded, limited-precision nonnegative inputs (Thm. 2), e.g., integer or floating-point data types
- unified evaluation of CNNs via matrix operations
- application example: AppMax method for estimating the maximum error of low-energy approximated CNNs, based on linear programming
 (Šíma, Vidnerová, ECML PKDD 2025 & ICONIP 2025)
- lower bound: no depth-2 ReLU NN can compute \max of 3 nonnegative reals (Thm. 3) \rightarrow max pooling cannot be replaced by a single convolutional layer
- open problem: extend the lower bound to nonconstant (logarithmic) depth
 - → establish strict depth hierarchy for ReLU DNNs