
34th International Conference on Artificial Neural Networks
September 9-12, 2025, Kaunas, Lithuania

The Power of Max Pooling Layer

Jǐŕı Š́ıma
sima@cs.cas.cz

Institute of Computer Science
Czech Academy of Sciences, Prague, Czechia

joint work with Jérémie Cabessa
jeremie.cabessa@uvsq.fr

DAVID Laboratory
Paris-Saclay University, Versailles, France



Max Pooling Layers

• convolutional neural networks (CNNs) are widely used across AI domains such
as computer vision, natural language processing, speech recognition

• pooling layers are basic building blocks of CNNs

• two main types of pooling layers commonly used are maximum and average

– downsample the spatial dimensions of feature
maps

– remove redundant information
– improve robustness to variations, distortions,

and noise in input data
– enhance efficiency in computation and memory
– help mitigate overfitting

• numerous studies show that max pooling is effective in practice

2/11



Motivations
CNNs are composed of heterogeneous layers:

Convolutional & Fully Connected: ReLU unit with the rectified linear activation:

R

(
w0 +

n∑
i=1

wi xi

)
where R(x) = ReLU(x) = max(0, x)

vs. Max or Average Pooling: max
(
x1, . . . , xn

)
or

1
n

n∑
i=1

xi

for x1, . . . , xn ≥ 0 (as outputs from ReLU units)

unification: Can max pooling layers be implemented by ReLU units?
(e.g., trivial for average pooling: w0 = 0 and wi = 1/n for i ∈ {1, . . . , n})

• unified computation by matrix processor (e.g. TPU, Tensor Core GPU, MMU)

• applying algorithms for deep neural networks (DNNs) with ReLU to CNNs
e.g., AppMax for error estimation of approximated DNNs (our initial motivation)

• theoretical issue: computational power of max pooling in terms of ReLU units

3/11



Potential Depth Hierarchy for (Maximum) ReLU DNNs
Arora et al., 2018: DNNs (with ReLU units and linear output) compute exactly

the class of continuous piecewise linear (CPWL) functions
Upper Bound: any CPWL function in n variables is computable by a ReLU DNN
with ⌈log2(n + 1)⌉ hidden layers

→ max(x1, . . . , xn) (for all x1, . . . , xn ∈ R) can thus be implemented
using ⌈log2(n + 1)⌉ hidden layers of (linearly many) ReLU units

Depth Hierarchy Conjecture: the classes of functions computable by ReLU DNNs
form a strict hierarchy as the depth increases, up to the logarithmic upper bound
equivalent to the Lower Bound: any ReLU DNN computing max(x1, . . . , xn, 0)
requires strictly more than k = log2 n hidden layers (Hertrich et al., 2023)

• holds for k = 1: any DNN computing max(x1, x2, 0) (for all x1, x2 ∈ R)
requires at least two hidden layers of ReLU units (Mukherjee, Basu, 2017)

• k = log2 log2 n hidden layers insufficient for H-conforming ReLU DNNs:
each ReLU unit acts linearly (as ReLU is identity or 0) under any fixed ordering
of input values (Grillo et al., 2025)

• matching lower bound: ⌈log2(n + 1)⌉ hidden layers required for integer
weights (Haase et al., 2023)

4/11



Log-Depth ReLU DNN for Computing the Maximum
constructions of a DNN computing max(x1, . . . , xn) (for all x1, . . . , xn ∈ R),
e.g., using ⌈log2 n⌉ hidden layers, 3(n − 1) ReLU units, and weights −1, 1
(folklore: Arora et al., 2018; Hertrich et al., 2023; Matoba et al., 2023)

our slight improvement in size: restricted to nonnegative inputs (i.e. ReLU unit
outputs) and allows layer-skipping connections:
Theorem 1. The maximum of n ≥ 2 nonnegative real numbers x1, . . . , xn

can be computed by a DNN of size n ReLU units, depth ⌈log2 n⌉ + 1 non-
input layers, and bipolar weights −1, 1.

Idea of Proof: binary tree composed of max units

depth
⌈log2 n⌉

max(x1, x2) = R(x1 −x2)+x2

for x1, x2 ≥ 0

5/11



Example of a ReLU NN Computing max(x1, . . . , x8)
(based on Theorem 1)

real inputs: x1, . . . , x8 ≥ 0 , depth: 4 (non-input) layers , size: 8 ReLU units ,
weights: −1 (dashed arrows) or 1 (solid arrows)

Drawback: logarithmic depth and sparse connections → inefficient for evaluation,
e.g., via matrix operations

6/11



Constant-Depth ReLU DNN for Computing the Maximum
in general, contradicts the depth hierarchy hypothesis → additional assumption:

maximum and the gap between the largest two numbers are bounded
our quadratic-size construction where the bounds trade off depth vs. weight:

Theorem 2. Let x1, . . . , xn be n ≥ 2 nonnegative real numbers. Denote
by µ1 = max{x1, . . . , xn} and µ2 = max{x1, . . . , xn} \ {µ1} ∪ {0}
their largest two values (or zero). Then for any integer r ≥ 0, the
maximum µ1 can be computed by a ReLU DNN Nr of size rn2 + n + 1,
depth 2r + 2, and weights −1, 1, −

√
w,

√
w (w ≥ 1) such that

(w + 1)r ≥
µ1

µ1 − µ2
if µ1 > 0 , or w = 1 otherwise.

Idea of Proof: let W ≥ µ1/(µ1 − µ2) > 0 be sufficiently large, then
for each j ∈ {1, . . . , n}, decide if xj = µ1 = max(x1, . . . , xn) using:

R

(
xj −

n∑
i=1

R(W (xi − xj))

)
=
{

xj if xj = µ1
0 if xj < µ1 :

since
∑n

i=1 R(W (xi − xj)) ≥ W (µ1 − µ2) ≥ µ1 whenever xj < µ1

the large weight W = (w + 1)r is split into 2r layers with weights
√

w
7/11



Example of a ReLU NN N2 Computing max(x1, x2, x3)
(based on Theorem 2)

N2 : r = 2

depth: 6 (non-input) layers

size: 22 ReLU units

weights:
- dashed thin arrows: −1
- solid thin arrows: 1
- dashed thick arrows: −

√
w

- solid thick arrows:
√

w

real inputs: x1, x2, x3 ≥ 0

8/11



Example of Calculating the Maximum for Integers:
integer x1, . . . , xn, i.e. µ1 − µ2 ≥ 1 (for µ1 ̸= µ2)

→ N1 : depth: 4 (non-input) layers , size: n2 + n + 1 ReLU units ,
weights: −1, 1,

√
w, −

√
w for w ≥ max(µ1 − 1, 1)

the fixed weights depend on an a priori unknown maximum to compute
N1 correctly vs. the maximum is bounded in realistic computer numerics:

Depth–Weight Trade-off For Computer Data Types
• unsigned integer with standard b-bit precision for b = 16, 32, 64

→ µ1 ≤ 2b − 1 and µ1 − µ2 ≥ 1

the weight max(
√

w, 1) of Nr in Theorem 2, valid for w = r
√

2b − 1 − 1 :

depth of Nr 4 (N1) 6 (N2) 8 (N3) 10 (N4) 12 (N5) 22 (N10) 32 (N15)
16-bit ushort 256.00 15.97 6.28 3.88 2.87 1.43 1.05
32-bit uint 65536.00 256.00 40.31 15.97 9.14 2.87 1.85

64-bit ulong 4294967296.00 65536.00 1625.50 256.00 84.45 9.14 4.28

9/11



• floating-point (IEEE 754) with standard b-bit precision for b = 16, 32, 64
including e = 4, 7, 10 bits for exponent

→ µ1 ≤ 22e(1 − 2−b+e+1) and µ1 − µ2 ≥ 2−2b−b+e+4

the weight max(
√

w, 1) of Nr in Theorem 2, valid for

w = r

√
22e+1−3(2b−e−1 − 1) − 1 :

depth of Nr 8 (N3) 22 (N10) 44 (N20) 102 (N50) 302 (N150) 1002 (N500)
16-bit half (e = 4) 101.59 3.88 1.74 1 1 1

32-bit single (e = 7) 7.90E13 14766.09 121.52 6.75 1.62 1
64-bit double (e = 10) 1.83E105 3.79E31 6.16E15 2068279.89 127.41 4.17

Lower Bound

Theorem 3. There is no depth-2 ReLU neural network that computes the
maximum of more than two nonnegative real numbers.

10/11



Summary

• investigated the computational power of max pooling in terms of ReLU units

• log-depth, linear-size ReLU DNN for max of n nonnegative numbers (Thm. 1)

• constant-depth, quadratic-size ReLU NN for max of bounded, limited-precision
nonnegative inputs (Thm. 2), e.g., integer or floating-point data types

• unified evaluation of CNNs via matrix operations

• application example: AppMax method for estimating the maximum error of
low-energy approximated CNNs, based on linear programming

(Šı́ma, Vidnerová, ECML PKDD 2025 & ICONIP 2025)

• lower bound: no depth-2 ReLU NN can compute max of 3 nonnegative reals
(Thm. 3) → max pooling cannot be replaced by a single convolutional layer

• open problem: extend the lower bound to nonconstant (logarithmic) depth
→ establish strict depth hierarchy for ReLU DNNs

11/11


