‘..""--iu:

34th International Conference on Artificial Né-ural_ Neétworks
eptember 9-12,-2025, Kaunas, Lithuania

The Power of Max Pooling Layer

Jiri Sima
sima@cs.cas.cz

) Institute of Computer Science
Czech Academy of Sciences, Prague, Czechia

joint work with Jérémie Cabessa
jeremie.cabessa@uvsq.fr

DAVID Laboratory
Olcwid Paris-Saclay University, Versailles, France

Max Pooling Layers

e convolutional neural networks (CNNs) are widely used across Al domains such
as computer vision, natural language processing, speech recognition

® pooling layers are basic building blocks of CNNs

® two main types of pooling layers commonly used are maximum and average

.
5[1]811

12[2[3]6] “imns®
718114] 3]
4|9]5/[10

Max pooling

12

11

9

14

Average pooling

5

7

7

8

— downsample the spatial dimensions of feature
maps

— remove redundant information

— improve robustness to variations, distortions,
and noise in input data

— enhance efficiency in computation and memory

— help mitigate overfitting

® numerous studies show that max pooling is effective in practice

2/11

Motivations
CNNs are composed of heterogeneous layers:

Convolutional & Fully Connected: RelLU unit with the rectified linear activation:
R (fwo + Z w; a:z) where R(x) = RelLU(x) = max(0, x)
i=1

1 mn
vs. Max or Average Pooling: max (:1:1, e mn) or — g T;
n

for £15...,x, > 0 (as outputs from ReLU units) =1

unification: Can max pooling layers be implemented by ReLU units?
(e.g., trivial for average pooling: wg =0 and w; = 1/n fori € {1,...,n})
e unified computation by matrix processor (e.g. TPU, Tensor Core GPU, MMU)

e applying algorithms for deep neural networks (DNNs) with ReLU to CNNs
e.g., AppMax for error estimation of approximated DNNs (our initial motivation)

® theoretical issue: computational power of max pooling in terms of ReLU units

3/11

Potential Depth Hierarchy for (Maximum) ReLU DNNs

Arora et al., 2018: DNNs (with ReLU units and linear output) compute exactly
the class of continuous piecewise linear (CPWL) functions

Upper Bound: any CPWL function in m variables is computable by a ReLU DNN
with [log,(mn + 1)] hidden layers

— max(xy,...,x,) (forall x1,...,x, € R) can thus be implemented
using [log,(m + 1)] hidden layers of (linearly many) ReLU units

Depth Hierarchy Conjecture: the classes of functions computable by ReLU DNNs
form a strict hierarchy as the depth increases, up to the logarithmic upper bound

equivalent to the Lower Bound: any ReLU DNN computing max (x4, ..., x,,0)
requires strictly more than k = log, n hidden layers (Hertrich et al., 2023)

@ holds for kK = 1: any DNN computing max(xy, 22, 0) (for all 1, 2 € R)
requires at least two hidden layers of ReLU units (Mukherjee, Basu, 2017)

e k = log,log,n hidden layers insufficient for H-conforming ReLU DNNs:
each ReLU unit acts linearly (as ReLU is identity or 0) under any fixed ordering
of input values (Grillo et al., 2025)

e matching lower bound: [log,(n + 1)] hidden layers required for integer
weights (Haase et al., 2023) 411

Log-Depth ReLU DNN for Computing the Maximum

constructions of a DNN computing max(x,...,x,) (for all £1,...,x, € R),
e.g., using [log, n| hidden layers, 3(nn — 1) ReLU units, and weights —1, 1
(&ﬂkkwe:Arora et al., 2018; Hertrich et al., 2023; Matoba et al., 2023)

our slight improvement in size: restricted to nonnegative inputs (i.e. ReLU unit
outputs) and allows layer-skipping connections:

Theorem 1. The maximum of n > 2 nonnegative real numbers &1y ..., Ty
can be computed by a DNN of size n ReL U units, depth [log, n| + 1 non-
input layers, and bipolar weights —1, 1.

Idea of Proof: binary tree composed of max units

r
@ max(a:l, CUQ) p— R(a:l — 282) —|—$2

e) AN ferana >0

depth 0 1
Mogon] 1 (=) () (o) (ned)

7 7 7 7 v,) v,) Y, R

L"L'l Ty I3 : . * H

5/11

Example of a ReLU NN Computing max(x1,...,xs)
(based on Theorem 1)

real inputs: ®1,...,xg > 0, depth: 4 (non-input) layers, size: 8 ReLU units,

weights: —1 (dashed arrows) or 1 (solid arrows)

Drawback: logarithmic depth and sparse connections — inefficient for evaluation,

e.g., via matrix operations
6/11

Constant-Depth ReLU DNN for Computing the Maximum

in general, contradicts the depth hierarchy hypothesis — additional assumption:

maximum and the gap between the largest two numbers are bounded

our quadratic-size construction where the bounds trade off depth vs. weight:

Theorem 2. Let x1,...,2x, be n > 2 nonnegative real numbers. Denote
by p1 = max{xy,..., Ty} and po = max{xy,...,x,} \ {p1} U {0}
their largest two wvalues (or zero). Then for any integer r > 0, the
maximum pq can be computed by a ReLU DNN N, of size rn? +n + 1,
depth 2r + 2, and weights —1,1, —/w, /w (w > 1) such that

H1

M1 — M2

(w+1)" > if i > 0, or w = 1 otherwise.

Idea of Proof: let W > uy/(p1 — p2) > 0 be sufficiently large, then

for each 3 € {1,...,n}, decide if x; = p1 = max(xy,...,xy) using:
._n RN _Jmitey =
R (a:g ;R(W(azz :m))) = {0 f oy < g s

since > " R(W(x; —x;)) > W(p1 — p2) > p1 whenever z; < p1q

the large weight W = (w + 1)" is split into 27 layers with weights /w -

Example of a ReLU NN A5 Computing maz(x1, T2, T3)
(based on Theorem 2)

Nog: r=2
depth: 6 (non-input) layers
size: 22 RelLU units

weights:
- dashed thin arrows: —1

- solid thin arrows: 1
- dashed thick arrows: —+/w
- solid thick arrows: /w

real inputs: &1, x2,x3 > 0

8/11

Example of Calculating the Maximum for Integers:

integer Ty ...y Ly, i€ 1 — po > 1 (for g # po)
— Ni: size: n? 4+ n + 1 RelLU units,
weights: —1,1, y/w, —y/w for w > max(pu; — 1,1)

the fixed weights depend on an a priori unknown maximum to compute
N/ correctly vs. the maximum is bounded in realistic computer numerics:

depth: 4 (non-input) layers,

Depth—Weight Trade-off For Computer Data Types
e unsigned integer with standard b-bit precision for b = 16, 32, 64
— w1 <2°—1 and py —py > 1
the weight max(y/w, 1) of NV, in Theorem 2, valid for w = 2 —1—1:

depth of Nr 4 (Nl) 6 (NQ) 8 (Ng) 10 (N4) 12 (N5) 22 (Nlo) 32 (N15)
16-bit ushort 256.00 15.97 6.28 3.88 2.87 1.43 1.05
32-bit uint 65536.00 | 256.00| 40.31 15.97 9.14 2.87 1.85
64-bit ulong | 4294967296.00 | 65536.00 | 1625.50 | 256.00 84.45 9.14 4.28

9/11

e floating-point (IEEE 754) with standard b-bit precision for b = 16, 32, 64
including e = 4,7, 10 bits for exponent

— S 226(1 _ 2—b—l—e—|—1) and [— L2 Z 2—2b—b—|—e—l—4

the weight max(y/w, 1) of N, in Theorem 2, valid for

w = \’“/226“—3(2')—6—1 —1)—1:

depth of N, 8 (N3) |22 (M) | 44 (N2o) | 102 (Ns0) | 302 (Nis0) | 1002 (Ns00)
16-bit half (e = 4) 101.59 3.88 1.74 1 1 1
32-bit single (e = 7) | 7.90E13| 14766.09 | 121.52 6.75 1.62 1
64-bit double (e = 10) | 1.83E105 | 3.79E31| 6.16E15 | 2068279.89 127.41 4.17

Lower Bound

Theorem 3. There is no depth-2 ReL U neural network that computes the

maximum of more than two nonnegative real numbers.

10/11

Summary
® investigated the computational power of max pooling in terms of ReLU units
® log-depth, linear-size ReLU DNN for max of n nonnegative numbers (Thm. 1)

e constant-depth, quadratic-size ReLU NN for max of bounded, limited-precision
nonnegative inputs (Thm. 2), e.g., integer or floating-point data types

e unified evaluation of CNNs via matrix operations

® application example: AppMax method for estimating the maximum error of
low-energy approximated CNNs, based on linear programming
(Sima, Vidnerova, ECML PKDD 2025 & ICONIP 2025)

® lower bound: no depth-2 ReLU NN can compute max of 3 nonnegative reals
(Thm. 3) — max pooling cannot be replaced by a single convolutional layer

® open problem: extend the lower bound to nonconstant (logarithmic) depth
— establish strict depth hierarchy for ReLU DNNs

11/11

