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Energy Aspects of Neural Networks

e the activity of neurons in the brain is quite sparse, with only about 1% of
neurons firing (Lennie, 2003)

e biological neurons require more energy to transmit a spike than not to fire

e in contrast, the design of artificial neural circuits does not usually take the
energy aspects into account, e.g. on average, every second unit fires during a
computation



Energy Complexity of Threshold Circuits

Uchizawa, Douglas, Maass (2006):
energy complexity of feedforward perceptron networks (threshold circuits)
= the maximum number of firing units taken over all the input values to the circuit

e related by tradeoff results to other complexity measures:
— network size = the number of neurons
(Uchizawa, Takimoto, 2008; Uchizawa, Takimoto, Nishizeki, 2011)

— circuit depth = parallel computation time
(Uchizawa, Nishizeki, Takimoto, 2010; Uchizawa, Takimoto, 2008)

— fan-in = the maximum number of inputs to a single unit
(Suzuki, Uchizawa, Zhou, 2011)

e a tool for proving the lower bounds in circuit complexity
(Uchizawa, Takimoto, Nishizeki, 2011)

? Energy Complexity of Recurrent Networks ?



Model of Recurrent (Perceptron) Networks

e Architecture: s computational units (neurons, perceptrons, threshold gates)
V ={1,...,s} connected into a directed graph

where s is the size of the network

e cach edge from neuron i to j is labeled with an integer weight w(7, j)
(w(z, ) = 0 iff there is no edge (i, 7))

e Computational Dynamics: the evolution of network state

vy = iy 0y e {01}

at discrete time instant ¢ =0,1,2, ...



Computational Dynamics

1. initial state y©

2. at discrete time instant ¢ > 0 the excitation
t ot . .
&= "wli gy —h(g) forj=1,....s
i=1

where h(j) is an integer threshold of unit j

3. at the next time instant ¢ + 1, the neurons j € ;1 from a selected subset
as11 €V updates their states (outputs)

(t41) { 1 for g}t) >

Ui 1o for f;t) <0

while y§t+1) = ;-t) for j &

Energy Complexity = the maximum number of firing neurons ijl y](-t)

time instant ¢ > 0, taken over all possible computation

at any



Recurrent Neural Networks as Language Acceptors

(Horne, Hush, 1996; Indyk, 1995; Siegelmann, Sontag, 1995 etc.)

e language (problem) L C {0, 1}* over binary alphabet

e input string x = x1...x, € {0,1}" of arbitrary length n > 0 is sequentially
presented bit after bit via input neuron in € V/,
y(T(i—l))

. = x; fori=1,....n

where integer 7 > 1 is a time overhead (period) for processing a single bit

?
e output neuron out € V signals whether x € L,

) |1 forx € L
out ] 0 forz & L



Computational Power of Recurrent Perceptron Networks

e recurrent networks having at most 2° different network states from {0, 1}*
correspond to finite automata recognizing regular languages

e a deterministic finite automaton A with m states can simply be implemented
using 2m+ 1 neurons, one for each 0 or 1 state transition of A (Minsky, 1967)

this naive O(m) implementation requires only a constant energy

e optimal-size implementations of a deterministic finite automaton with m states
by neural nets with ©(y/m) neurons (Horne, Hush, 1996; Indyk, 1995).

? Energy complexity of an optimal-size neural network simulating
a given deterministic finite automaton ?



Main Result: Tradeoff Between Energy and Time Overhead

Theorem 1 For any function e satisfying e = Q(logs) and e = O(s), a given
deterministic finite automaton A with m states can be simulated by a neural

network N of optimal size s = ©(y/m) neurons with time overhead T = O(s/e)
per one input bit, using the energy O(e).

Simple Idea of Proof:

e cach of the m states of A can be encoded using p = [log]| + 1 bits including
a one-bit indicator of final states

e transition function 9 : @) x {0,1} — @ of A (producing the new state from

the old one and the current input bit) can be viewed as a vector Boolean function
f:{0,1}*" — {0,1}?



Idea of Proof (Continuation)

e function f is implemented by four-layer perceptron network of optimal size
s = O(/2?) = O(y/m) using the method of threshold circuit synthesis due
to Lupanov (1973)

e the recurrent connections leading from the fourth to the first layer replace the
current state by the new one

e the dominant-size layer of O(s) neurons is properly partitioned into O(s/e)
blocks of O(e) units each

e control units ensure that these blocks are updated successively one by one so
that the energy consumption O(e) is guaranteed while the time overhead for
processing a single input bit is O(s/e)



Technical Schema of Low-Energy Neural Automata
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The Lower Bounds

Theorem 2 Let TlogT = o(logs). There exists a neural network of size s
neurons simulating a finite automaton with time overhead T per one input bit
which needs energy e such that loge = () (% log s).

ldea of Proof: the technique due to Uchizawa, Takimoto (2008) based on com-
munication complexity argument

Corollary 1

1. If 7 = O(1), then e > s° for some § such that 0 < § < 1 and for infinitely

many s. X our construction e = O(s)
1

2. If 7 = O(loglogs), then e = Q) (Sbg—‘;@) = QO (210?;1_55) for any  such
that 0 < o < 1. -

0g 10g S _
3. If7 = O(log" s) forsome() < oo < 1, thene = (), (5 log” s ) = O ((log s)logl 53)

log® s

for any 0 such that 0 > «. X our construction ¢ = O ( i )



Conclusions and Open Problem

e We have, for the first time, applied the energy complexity measure to recurrent
neural nets which has recently been introduced and studied for feedforward
perceptron networks.

e \We have presented a low-energy implementation of finite automata by optimal-
size neural nets with the tradeoff between the time overhead for processing one
input bit and the energy varying from the logarithm to the full network size.

e We have also achieved lower bounds for the energy consumption of neural
finite automata which are valid for at most sublogarithmic time overheads and
are still not tight.

e An open problem remains for further research whether these bounds can be
improved.



