Generating Sequential Triangle Strips by Using Hopfield Nets

Jiří Šíma

Institute of Computer Science Academy of Sciences of the Czech Republic

joint work with Radim Lněnička

J. Šíma, R. Lněnička: Sequential triangle strip generator based on Hopfield networks. To appear in *Neural Computation*, 21(2), 2009.

Motivation from Graphics and Visualization

Observe the surfaces → triangulation = a set of triangles

- 3D graphics rendering hardware: memory bus bandwidth bottleneck in the processor-to-graphics pipeline
- the coordinates of edges that are shared by two triangles can be transmitted only once
- efficient encoding of triangulated surfaces by using so-called *sequential triangle strips*
- supported by graphics libraries (e.g. IGL, PHIGS, Inventor, OpenGL)

Sequential Triangle Strip (Tristrip)

an ordered sequence of $m \geq 3$ vertices $\sigma = (v_1, \ldots, v_m)$ encoding $n(\sigma) = m-2$ different triangles $\{v_p, v_{p+1}, v_{p+2}\}$ for $1 \leq p \leq m-2$ such that their shared edges follow alternating left and right turns

 $\begin{array}{l} \mbox{tristrip} \ (1,2,3,4,5,6,3,7,1) \ \mbox{encodes 7 triangles} \ \{1,2,3\}, \\ \{2,3,4\}, \ \{3,4,5\}, \ \{4,5,6\}, \ \{5,6,3\}, \ \{6,3,7\}, \ \{3,7,1\} \end{array}$

a tristrip with n triangles allows transmitting of only n+2 (rather than 3n) vertices

a triangulated surface model T with n triangles that is decomposed into k tristrips $\Sigma = \{\sigma_1, \ldots, \sigma_k\}$ requires only n + 2k vertices to be transmitted

Stripification Problem: decompose a given triangulation T into the fewest tristrips Σ

the stripification problem is NP-complete (Estkowski, Mitchell, Xiang, 2002)

Hopfield Networks

- fundamental neural network model introduced by John Hopfield in 1982
- inspired by Ising spin glass model in statistical physics
- convergence guarantees (energy function)
- natural hardware implementations by analog electrical networks and optical computers
- influential associative memory model (low storage capacity)
- fast approximate solution of combinatorial optimization problems (e.g. traveling salesman problem)

Architecture:

- s computational units (neurons), indexed as $N = \{1, \ldots, s\}$, that are connected into an undirected graph $G = (N, \mathcal{E})$
- each edge between *i* and *j* is labeled with an integer symmetric weight

$$w(i,j) = w(j,i)$$

• w(i,j) = 0 means no connection between i and j; assume w(j,j) = 0 for $j = 1, \ldots, s$

Discrete-Time Sequential Computation

the evolution of the network state

$$\mathbf{y}^{(t)} = (y_1^{(t)}, \dots, y_s^{(t)}) \in \{0, 1\}^s$$

at discrete time instants $t = 0, 1, 2, \ldots$

- 1. initial state $y^{(0)}$, e.g. $y^{(0)} = (0, ..., 0)$
- 2. at discrete time $t \ge 0$ the *excitation*

$$\xi_j^{(t)} = \sum_{i=1}^s w(i,j) y_i^{(t)} - h_j \quad \text{for } j = 1, \dots, s$$

where h_j is an integer *threshold* of unit j

3. at the next time instant t + 1 one (e.g. randomly) selected neuron j computes its new *state (output)*

$$y_j^{(t+1)} = H\left(\xi_j^{(t)}\right)$$

where $H : \Re \longrightarrow \{0, 1\}$ is the *Heaviside* activation function:

$$H(\xi) = \begin{cases} 1 & \text{for } \xi \ge 0\\ 0 & \text{for } \xi < 0 \end{cases}$$

while $y_i^{(t+1)} = y_i^{(t)}$ for $i \neq j$

Convergence

macroscopic time $\tau = 0, 1, 2, \ldots$: all the units in the network are updated within one macroscopic step

a Hopfield net converges or reaches a stable state $\mathbf{y}^{(\tau^*)}$ at macroscopic time $\tau^* \geq 0$ if

$$\mathbf{y}^{(\tau^*)} = \mathbf{y}^{(\tau^*+1)}$$

Energy Function:

$$E(\mathbf{y}) = -\frac{1}{2} \sum_{j=1}^{s} \sum_{i=1}^{s} w(i,j) y_i y_j + \sum_{j=1}^{s} h_j y_j$$

- bounded function
- decreasing along any nonconstant computation path $(\xi_i^{(t)} \neq 0 \text{ is assumed without loss of generality})$

 \longrightarrow Starting from any initial state, the Hopfield network converges towards some stable state corresponding to a local minimum of E. (Hopfield, 1982)

Combinatorial Optimization

the cost function of a hard combinatorial optimization problem is encoded into the energy of a Hopfield net which is minimized in the course of computation

Minimum Energy Problem: given a Hopfield net, find its state with minimum energy

the minimum energy problem is NP-complete (Barahona, 1982)

Boltzmann machine = stochastic Hopfield network:

randomly selected neuron j computes its new state:

$$y_j^{(t+1)} = 1$$
 with probability $P\left(\xi_j^{(t)}
ight)$

(i.e. $y_j^{(t+1)} = 0$ with probability $1 - P(\xi_j^{(t)})$) where $P: \Re \longrightarrow (0, 1)$ is the *probabilistic* activation function:

$$P(\xi) = \frac{1}{1 + e^{-2\xi/T^{(\tau)}}},$$

 $T^{(\tau)}>0$ is a temperature at microscopic time $\tau\geq 0$

Simulated Annealing: starting with sufficiently high initial $T^{(0)}$, the temperature gradually decreases, e.g.

$$T^{(\tau)} = \frac{T^{(0)}}{\log(1+\tau)} \qquad \text{for } \tau > 0$$

Notation & Definitions

- T is a set of n triangles = a triangulated surface model (2-manifold of genus 0 with possible boundaries)
- each edge is incident to at most two triangles
- *B* and *I* are the sets of *boundary* and *internal* edges that are shared by exactly one and two triangles, respectively
- Sequential Cycle = a "cycled tristrip" $c = (v_1, \ldots, v_m)$ (*m* is even) such that $v_{m-1} = v_1$, $v_m = v_2$

sequential cycle (1, 2, 3, 4, 5, 6, 1, 2)

- $I_c = \{\{v_p, v_{p+1}\}; 1 \leq p \leq m-2\}$ is the set of internal edges of sequential cycle c (red dashed line)
- $B_c = \{\{v_p, v_{p+2}\}; 1 \le p \le m-2\}$ is the set of boundary edges of sequential cycle c (dotted line)
- $\bullet \ {\cal C}$ is the set of all sequential cycles in T

Generating the Set of All Sequential Cycles $\ensuremath{\mathcal{C}}$

- start with any internal edge e of T and traverse e either clockwise or counter-clockwise
- go on along a corresponding tristrip by alternating the left and right turns

 \longrightarrow this tristrip

- 1. ends up in a boundary edge of the surface
- 2. terminates before some of its edge is traversed for the second time but in the opposite direction
- 3. comes back to the initial edge e which is traversed solely clockwise or solely counter-clockwise i.e. the tristrip is properly cycled and included in C
 - the procedure is repeated until all internal edges are traversed both clockwise and counter-clockwise
 - the computational time for generating C is proportional to the number of edges in T (each internal edge is traversed exactly twice) which is linear in terms of n = |T|

Representative Internal Edges

to each sequential cycle $c \in C$, assign a unique *representative* internal edge $e_c \in I_c$ using the following procedure:

- 1. start with any $c \in C$ and choose any edge from I_c to be its representative edge e_c
- 2. stop if all the sequential cycles do have their representative edges
- 3. denote by c' the sequential cycle having no representative edge so far which shares its internal edge $e_c \in I_c \cap I_{c'}$ with c if such c' exists;

otherwise let c' be any sequential cycle with no representative internal edge

- 4. choose any edge from $I_{c'} \setminus \{e_c\}$ to be the representative edge $e_{c'}$ of c'
- 5. c := c' and go to 2

Correctness:

 $I_{c'} \setminus \{e_c\} \neq \emptyset$ contains no representative edge when performing step 4

 \longrightarrow each $c \in \mathcal{C}$ has a unique representative edge e_c

The Construction of Hopfield Network \mathcal{H}_{T}

for generating the stripifications for a given THopfield network \mathcal{H}_T is composed of two parts:

$$N = N_1 \cup N_2$$

- **1.** the first part N_1 encodes tristrips of a stripification Σ :
 - N_1 contains two neurons ℓ_e and r_e for each internal edge $e \in I$:

$$N_1 = \{\ell_e, r_e \mid e \in I\}$$

- two triangles in T that share internal edge e are connected in a tristrip $\sigma \in \Sigma$ iff either $y_{\ell_e} = 1$ (σ traverses e counter-clockwise) or $y_{r_e} = 1$ (σ traverses e clockwise)
- \mathcal{H}_T converges to the states that encode disjoint correct tristrips which alternate the left and right turns

2. the second part N_2 prevents \mathcal{H}_T from converging to the states that encode cycled tristrips along the sequential cycles from \mathcal{C}

- such infeasible states may have less energy than those encoding the optimal stripifications
- N_2 contains two neurons a_c and d_c for each sequential cycle $c \in C$:

$$N_2 = \{a_c, d_c \mid c \in \mathcal{C}\}$$

 \longrightarrow the size of \mathcal{H}_T is $|N| = 2|I| + 2|\mathcal{C}| = O(n)$

The Architecture of \mathcal{H}_T (first part) 1. for each internal edge $e = \{v_1, v_2\} \in I$

L_e = {e, e₁, e₂, e₃, e₄} is the set of edges of the two triangles {v₁, v₂, v₃}, {v₁, v₂, v₄} that share edge e → J_e = {ℓ_f, r_f; f ∈ L_e∩I} are associated neurons
symmetric negative weights

 $w(\ell_e, i) = -7 \quad \text{for } i \in J_e \setminus \{r_{e_2}, \ell_e, r_{e_4}\}$ $w(r_e, i) = -7 \quad \text{for } i \in J_e \setminus \{\ell_{e_1}, r_e, \ell_{e_3}\}$ $(h_{\ell_e} = h_{r_e} = -5) \text{ force a tristrip to traverse edge } e$ either counter-clockwise if $y_{\ell_e} = 1$ $\longrightarrow \quad y_i = 0 \text{ for all } i \in J_e \setminus \{r_{e_2}, \ell_e, r_{e_4}\}$ or clockwise if $y_{r_e} = 1$ $\longrightarrow \quad y_i = 0 \text{ for all } i \in J_e \setminus \{\ell_{e_1}, r_e, \ell_{e_3}\}$

The Architecture of \mathcal{H}_T (second part) **2.** for each sequential cycle $c \in \mathcal{C}$

• $j_c = \begin{cases} \ell_{e_c} & \text{if } c \text{ traverses } e_c \text{ counter-clockwise} \\ r_{e_c} & \text{if } c \text{ traverses } e_c \text{ clockwise} \end{cases}$

neuron j_c can be activated, i.e. a possible tristrip σ can go along sequential cycle c via e_c only if $y_{d_c} = 1$

• unit d_c computes the disjunction of the outputs from neurons ℓ_e, r_e associated with the boundary edges $e \in B'_c = B_c \setminus L_{e_c}$ of sequential cycle c

 $\longrightarrow y_{d_c} = 1$ iff $(\exists e \in B'_c) y_{\ell_e} = 1$ or $y_{r_e} = 1$ iff there is another tristrip σ' traversing a boundary edge $e \in B'_c$ of sequential cycle c and crossing c, which prevents a possible σ to be cycled along c

• auxiliary unit a_c balances the contribution of active d_c to the energy E when j_c is passive

The Complexity of the Reduction

1. number of units in \mathcal{H}_T :

$$|N| = |N_1| + |N_2| = 2|I| + 2|\mathcal{C}|$$

each internal edge can be traversed by at most two sequential cycles (clockwise or counter-clockwise), i.e. $|\mathcal{C}| \leq 2|I|$

$$\longrightarrow |N| \le 4|I| = O(n)$$

2. number of connections in \mathcal{H}_T :

$$\begin{aligned} |\mathcal{E}| &\leq \sum_{e \in I} \underbrace{|J_e \setminus \{r_{e_2}, \ell_e, r_{e_4}\}|}_{7} + \sum_{e \in I} \underbrace{|J_e \setminus \{\ell_{e_1}, r_e, \ell_{e_3}\}|}_{7} \\ &+ \sum_{c \in \mathcal{C}} \underbrace{|\{\{d_c, j_c\}, \{a_c, j_c\}, \{d_c, a_c\}\}|}_{3} + \sum_{c \in \mathcal{C}} 2|B_c'| \end{aligned}$$

each internal edge can be a boundary for at most two sequential cycles, i.e. $\sum_{c\in\mathcal{C}}|B_c'|\leq 2|I|$

 $\longrightarrow |\mathcal{E}| \le 2 \cdot 7|I| + 3|\mathcal{C}| + 2 \cdot 2|I| = O(n)$

 \longrightarrow the Hopfield network \mathcal{H}_T has a linear number of units and connections in terms of n = |T| and can be constructed in linear time

The Correctness of the Reduction

a stripification Σ is *equivalent* with Σ' if their corresponding tristrips encode the same sets of triangles

e.g., $\Sigma\sim\Sigma'$ may differ in a tristrip encoding the triangles of a sequential cycle which is split at two different positions

Theorem 1 Let \mathcal{H}_T be a Hopfield network corresponding to a triangulation T with n triangles and denote by $Y^* \subseteq \{0,1\}^s$ the set of all stable states that can be reached during the sequential computation by \mathcal{H}_T starting at the zero initial state. Then each state $\mathbf{y} \in Y^*$ encodes a correct stripification $\Sigma_{\mathbf{y}}$ of T and has energy

 $E(\mathbf{y}) = -5(n - |\Sigma_{\mathbf{y}}|) \,.$

In addition, there is a one-to-one correspondence between the classes of equivalent optimal stripifications $[\Sigma]_{\sim}$ having the minimum number of tristrips for T and the states in Y^* with the minimum energy $\min_{\mathbf{y}\in Y^*} E(\mathbf{y})$.

Comments:

- another NP-completeness proof for the minimum energy problem in Hopfield networks
- arbitrary initial states if the weight $w(d_c, j_c) = 7$ is asymmetric (i.e. $w(j_c, d_c) = 0$) which does not break the convergence of \mathcal{H}_T to the states $\mathbf{y} \in Y^*$

Idea of Proof

Energy Calculation:

recall $E(\mathbf{y}) = -\frac{1}{2} \sum_{j=1}^{s} \sum_{i=1}^{s} w(i,j) y_i y_j + \sum_{j=1}^{s} h_j y_j$

1. a contribution to E from $y_j = 1$ for $j \in \{\ell_e, r_e\}$ such that $e \neq e_c$: $h_j = -5$

2. a contribution to *E* from $y_{j_c} = 1$ for $j_c \in \{\ell_{e_c}, r_{e_c}\}$ $(\longrightarrow y_{d_c} = 1, y_{a_c} = 0)$: $-\frac{1}{2}w(d_c, j_c) - \frac{1}{2}w(j_c, d_c) + h_{d_c} + h_{j_c} = -7 + 1 + 1 = -5$ for $y_{j_c} = 0$ and $y_{d_c} = 1 \longrightarrow y_{a_c} = 1$: $-w(d_c, a_c) + h_{d_c} + h_{a_c} = -2 + 1 + 1 = 0$

energy $E(\mathbf{y})$ for $\mathbf{y} \in Y^*$: $E(\mathbf{y}) = -\mathbf{5} \cdot |\{j \in N_1; y_j = 1\}|$ $= -5 \cdot \sum_{\sigma \in \Sigma_{\mathbf{y}}} (n(\sigma) - 1) = -5 (n - |\Sigma_{\mathbf{y}}|)$

Problem with Unreachable States:

define a directed graph $G = (\mathcal{C}, \mathcal{A})$ whose nodes are sequential cycles:

 $(c_1, c_2) \in \mathcal{A}$ iff $e_{c_1} \in B'_{c_2}$

consider a directed cycle in G, e.g. $(c_1, c_2), (c_2, c_1) \in \mathcal{A}$:

a stable state \mathbf{y} satisfying

1.
$$y_{j_{c_1}} = y_{j_{c_2}} = 1$$

2. $y_j = 0$ for all $j \in \{\ell_e, r_e; e \in B'_{c_1} \cup B'_{c_2}\} \setminus \{j_{c_1}, j_{c_2}\}$

is unreachable by \mathcal{H}_T from the zero initial state $(j_{c_1} \text{ or } j_{c_2} \text{ is activated only if a unit from } \{\ell_e, r_e; e \in B'_{c_1} \cup B'_{c_2}\}$ is active)

 \times it can be proved that ${\bf y}$ is not optimal

Computer Experiments

Program HTGEN

- ANSI C program available online at http://www.cs.cas.cz/~sima/htgen-en.html
- Input: a Wavefront .obj file describing triangulated surface model T (i.e. a list of triangular faces together with geometric vertex coordinates)
- \bullet generates a corresponding Hopfield network \mathcal{H}_{T}
- performs computations of \mathcal{H}_T including the simulated annealing with the optional parameters:
 - initial temperature $T^{(0)}$
 - stopping criterion ε = the maximum percentage of unstable units at the end of stochastic computation
- Output: an .objf file with a stripification Σ_y of T (i.e. a list of tristrips) which is extracted from the final stable state y ∈ Y* of H_T at microscopic time τ*

Used Computer

- notebook HP Compaq nx6110 1.6GHz with 512MB RAM, running Linux operating system
- the running time is stated in seconds including the system overhead but not including the time needed for the construction of \mathcal{H}_T (mostly less than one second)

Used Models

- 3D geometric models represented via polygonal meshes from several repositories
- sometimes triangulated using the software package LODestar or converted into the .obj format

	Triang	ulated]	Hopfiel	d Net \mathcal{H}_T	
Model	Number of Vertices	Number of Triangles	Number of Seq. Cycles	Number of Neurons	Number of Connections
asteroid250	110	216	20	688	3544
asteroid500	223	442	12	1350	5445
asteroid1k	477	950	18	2886	11757
asteroid2.5k	1211	2418	30	7314	30039
asteroid5k	2422	4840	43	14606	60237
asteroid10k	4916	9828	62	29608	122476
asteroid20k	9902	19800	89	59578	246971
asteroid40k	19814	39624	126	119124	494550
asteroid60k	29798	59592	155	179086	743981
asteroid80k	39782	79560	179	239038	993437
asteroid100k	49649	99294	200	298282	1239987
asteroid200k	99467	198930	284	597358	2484945
asteroid300k	149802	299600	349	899498	3742939
shuttle	476	616	0	1528	4490
f-16	2344	4592	9	13794	48643
cessna	6763	7446	10	16882	46083
lung	3121	6076	4	18064	63116
triceratops	2832	5660	2	16984	59532
Roman	10473	20904	0	62548	218426
bunny	34834	69451	1	208132	727951
dragon	437645	871414	334	2610640	9144021

Examples of Used Models

Asteroid1k Model (950 triangles)

Triceratops Model (5660 triangles)

The Number of Trials of Simulated Annealing

the dependence of the achieved stripification quality (i.e. the best number of tristrips) on the number of performed trials of simulated annealing:

	Best Number of Tristrips						
Number of Trials	asteroid2.5k	asteroid10k	Roman				
10	244	929	2442				
20	227	929	2425				
30	228	897	2410				
40	221	941	2405				
50	228	938	2403				
60	224	905	2408				
70	219	908	2392				
80	223	918	2412				
90	220	945	2401				
100	223	939	2380				
200	214	935	2364				
400	219	893	2395				
600	208	905	2372				
800	217	895	2364				
1000	211	915	2380				

 \longrightarrow the stripification quality does not substantially increase with the increasing number of trials and the results averaged over 10 to 30 trials are reasonably reliable

The Choice of Parameters $T^{(0)}$ and ε

- the dependence of the resulting number of tristrips and the running time on both the initial temperature $T^{(0)}$ and the stopping criterion ε
- illustrated on the asteroid40k model
- results averaged over 10 trials
- each cell in the following table contains
 - Average Number of Tristrips
 - Best Number of Tristrips
 - Average Computation Time in Seconds
 - Average Macroscopic Time

 \longrightarrow at the cost of additional running time the quality of stripifications improves with increasing $T^{(0)}$ and decreasing ε

	$\downarrow T^{(0)} \vec{\varepsilon}$	6	5.5	5	4.5	4	3.5	3	2.5	2	1.5	1	
	1.5	$12076 \\ 11980 \\ 3.8$	$12070 \\ 12014 \\ 3.8$	$12095 \\ 12029 \\ 3.6$	$12110 \\ 12033 \\ 3.7$	$12126 \\ 12077 \\ 3.4$	$12082 \\ 12011 \\ 3.8$	$12108 \\ 11991 \\ 3.9$	$12094 \\ 11988 \\ 3.8$	$12058 \\ 11958 \\ 4.4$	$12055 \\ 11933 \\ 4.5$	$12033 \\ 11955 \\ 4.4$	
	3	5.0 10774	5.0 10780 10674	5.0 10809	5.0 10789	5.0 10750	5.0 10740	5.0 10518	5.0 10519	$\frac{5.9}{10534}$	6.0 10330	$\frac{6.0}{10254}$	
10000		4.4 6.0	$4.6 \\ 6.0$	$4.3 \\ 6.0$	$4.5 \\ 6.0$		$5.0 \\ 6.2$		$ 5.0 \\ 7.0 $	$5.1 \\ 7.0$	5.7 8.0	6.2 9.0	10000
	4.5	$9964 \\ 9849 \\ 5.0 \\ 7.0$	$9991 \\ 9925 \\ 5.3 \\ 7.1$	$9972 \\ 9895 \\ 5.0 \\ 7.0$	$9981 \\ 9924 \\ 5.2 \\ 7.0$	$9639 \\ 9591 \\ 5.5 \\ 8.0$	$9635 \\ 9584 \\ 5.9 \\ 8.2$	$9390 \\ 9289 \\ 6.6 \\ 9.0$	$9377 \\ 9230 \\ 6.5 \\ 9.2$	$9154 \\ 9058 \\ 7.3 \\ 10.0$	$8997 \\ 8941 \\ 7.7 \\ 11.1$	$8598 \\ 8513 \\ 9.4 \\ 13.9$	9000
	6	$9483 \\ 9396 \\ 5.5 \\ 8.0$	$9515 \\ 9388 \\ 5.9 \\ 8.1$	$9117 \\ 9042 \\ 6.4 \\ 9.0$	$9126 \\ 9063 \\ 6.7 \\ 9.0$		$8831 \\ 8760 \\ 6.8 \\ 10.0$	$8556 \\ 8454 \\ 7.8 \\ 11.0$	$8328 \\ 8171 \\ 8.3 \\ 12.0$	$8161 \\ 8045 \\ 8.9 \\ 13.1$	$7814 \\ 7703 \\ 10.4 \\ 15.3$	$7404 \\ 7313 \\ 13.2 \\ 19.8$	8000
9000	7.5	$8833 \\ 8761 \\ 7.0 \\ 10.1$	$\begin{array}{r} 8824 \\ 8693 \\ 6.8 \\ 10.1 \end{array}$	$8682 \\ 8413 \\ 7.0 \\ 10.5$	$8517 \\ 8398 \\ 8.0 \\ 11.1$	$8231 \\ 8170 \\ 8.1 \\ 12.0$	$8006 \\ 7922 \\ 9.0 \\ 13.0$	$7786 \\ 7694 \\ 9.7 \\ 14.0$	$7605 \\ 7381 \\ 10.3 \\ 15.0$	$7274 \\ 7221 \\ 11.5 \\ 17.1$	$6855 \\ 6812 \\ 14.2 \\ 20.9$	$6428 \\ 6278 \\ 18.4 \\ 27.1$	7000
	9	$8373 \\ 8251 \\ 8.4 \\ 11.9$	$8332 \\ 8178 \\ 8.5 \\ 12.0$	$8060 \\ 7990 \\ 8.8 \\ 13.0$	$7874 \\ 7721 \\ 9.6 \\ 13.9$	$7682 \\ 7547 \\ 9.9 \\ 14.8$	$7440 \\ 7276 \\ 10.8 \\ 16.0$	$7173 \\ 7072 \\ 11.6 \\ 17.5$	$\begin{array}{c} 6893 \\ 6826 \\ 13.0 \\ 19.4 \end{array}$	$\begin{array}{c} 6510 \\ 6412 \\ 15.0 \\ 22.7 \end{array}$	$\begin{array}{c} 6096 \\ 5996 \\ 18.6 \\ 27.9 \end{array}$	$5593 \\ 5510 \\ 25.0 \\ 38.0$	6000
	10.5	$8041 \\ 7931 \\ 9.3 \\ 14.0$	$7772 \\ 7627 \\ 10.4 \\ 15.2$	$7546 \\ 7409 \\ 10.8 \\ 16.1$	$7364 \\ 7310 \\ 11.7 \\ 17.0$	$7124 \\ 7035 \\ 12.1 \\ 18.4$	$6867 \\ 6758 \\ 13.8 \\ 19.8$	$6592 \\ 6523 \\ 15.0 \\ 22.1$	$\begin{array}{c} 6229 \\ 6111 \\ 16.5 \\ 25.2 \end{array}$	$5838 \\ 5712 \\ 19.4 \\ 30.0$	$5377 \\ 5308 \\ 24.9 \\ 38.0$	$\begin{array}{r} 4849 \\ 4788 \\ 35.0 \\ 53.4 \end{array}$	5000
8000	12	$7631 \\ 7513 \\ 11.4 \\ 17.1$	$7408 \\ 7290 \\ 12.3 \\ 18.3$	$7084 \\ 6892 \\ 13.2 \\ 19.9$	$6859 \\ 6698 \\ 14.7 \\ 21.3$	$\begin{array}{c} 6582 \\ 6433 \\ 15.5 \\ 23.1 \end{array}$	$\begin{array}{c} 6272 \\ 6202 \\ 17.9 \\ 26.1 \end{array}$	$\begin{array}{r} 5932 \\ 5822 \\ 19.1 \\ 29.1 \end{array}$	$5605 \\ 5512 \\ 22.4 \\ 33.6$	$5236 \\ 5098 \\ 26.3 \\ 40.3$	$\begin{array}{r} 4784 \\ 4657 \\ 33.8 \\ 51.3 \end{array}$	$4255 \\ 4171 \\ 48.2 \\ 74.7$	
	13.5	$7240 \\ 7170 \\ 14.3 \\ 21.0$	$6939 \\ 6766 \\ 15.3 \\ 22.9$	$\begin{array}{c} 6694 \\ 6585 \\ 16.0 \\ 24.6 \end{array}$	$\begin{array}{c} 6372 \\ 6274 \\ 17.9 \\ 26.7 \end{array}$	$\begin{array}{c} 6102 \\ 6004 \\ 19.7 \\ 29.8 \end{array}$	$5794 \\ 5679 \\ 21.6 \\ 32.7$	$5399 \\ 5314 \\ 24.8 \\ 37.9$	$5030 \\ 4917 \\ 29.1 \\ 44.6$	$4678 \\ 4561 \\ 35.1 \\ 53.8$	$\begin{array}{r} 4234 \\ 4176 \\ 46.0 \\ 71.0 \end{array}$	$3726 \\ 3647 \\ 69.5 \\ 106.5$	4000
7000	15	$\begin{array}{c} 6806 \\ 6571 \\ 17.9 \\ 26.6 \end{array}$	$\begin{array}{c} 6551 \\ 6387 \\ 18.7 \\ 28.5 \end{array}$	$\begin{array}{c} 6228 \\ 6125 \\ 21.0 \\ 31.5 \end{array}$	$5954 \\ 5856 \\ 22.9 \\ 34.2$	$5616 \\ 5464 \\ 24.7 \\ 38.0$	$5247 \\ 5164 \\ 28.8 \\ 42.9$	$\begin{array}{r} 4934 \\ 4813 \\ 33.0 \\ 49.9 \end{array}$	$\begin{array}{r} 4551 \\ 4494 \\ 39.3 \\ 58.9 \end{array}$	$\begin{array}{r} 4144 \\ 4064 \\ 48.4 \\ 74.1 \end{array}$	$3714 \\ 3605 \\ 64.8 \\ 100.1$	$3179 \\ 3093 \\ 99.5 \\ 155.1$	
	16.5	$\begin{array}{c} 6435 \\ 6288 \\ 22.1 \\ 33.4 \end{array}$	${6134 \atop 5987 \\ 24.5 \\ 36.1 }$	$5822 \\ 5697 \\ 25.9 \\ 39.9$	$5517 \\ 5452 \\ 28.5 \\ 43.5$	$5166 \\ 5049 \\ 32.2 \\ 49.3$	$\begin{array}{r} 4801 \\ 4599 \\ 36.8 \\ 56.8 \end{array}$	$\begin{array}{r} 4424 \\ 4376 \\ 42.6 \\ 65.5 \end{array}$	$\begin{array}{r} 4084 \\ 4007 \\ 51.2 \\ 79.3 \end{array}$	$3652 \\ 3514 \\ 65.5 \\ 100.6$	$3226 \\ 3105 \\ 91.8 \\ 141.2$	$2778 \\ 2690 \\ 142.9 \\ 222.3$	3000
	18	$\begin{array}{c} 6096 \\ 6011 \\ 27.8 \\ 41.7 \end{array}$	$5815 \\ 5723 \\ 30.1 \\ 45.6$	$5455 \\ 5403 \\ 33.0 \\ 50.4$	$5123 \\ 5000 \\ 36.8 \\ 56.5$	$\begin{array}{r} 4803 \\ 4715 \\ 41.8 \\ 63.7 \end{array}$	$4426 \\ 4337 \\ 48.4 \\ 73.3$	$\begin{array}{c} 4029 \\ 3925 \\ 56.6 \\ 86.8 \end{array}$	$3658 \\ 3549 \\ 68.5 \\ 106.2$	$3274 \\ 3215 \\ 89.5 \\ 136.7$	$2854 \\ 2774 \\ 124.7 \\ 192.6$	$2363 \\ 2281 \\ 206.3 \\ 320.6$	
6000	19.5	$5754 \\ 5656 \\ 35.0 \\ 53.3$	$5404 \\ 5328 \\ 38.1 \\ 58.6$	$5084 \\ 4958 \\ 42.5 \\ 64.9$	$4775 \\ 4684 \\ 47.8 \\ 73.6$	$\begin{array}{r} 4365 \\ 4255 \\ 53.9 \\ 82.9 \end{array}$	$\begin{array}{c} 4028 \\ 3921 \\ 62.4 \\ 95.6 \end{array}$	$3637 \\ 3518 \\ 75.0 \\ 115.3$	$3268 \\ 3195 \\ 91.7 \\ 141.5$	$\begin{array}{r} 2835 \\ 2759 \\ 123.2 \\ 188.6 \end{array}$	$2449 \\ 2364 \\ 177.8 \\ 275.3$	$2050 \\ 1956 \\ 301.1 \\ 467.9$	
	21	$5477 \\ 5267 \\ 43.7 \\ 66.9$	$5095 \\ 4985 \\ 48.0 \\ 74.3$	$\begin{array}{r} 4786 \\ 4692 \\ 54.6 \\ 83.0 \end{array}$	$\begin{array}{r} 4431 \\ 4331 \\ 61.5 \\ 93.6 \end{array}$	$4008 \\ 3813 \\ 70.5 \\ 108.2$	$3642 \\ 3483 \\ 82.4 \\ 127.0$	$3279 \\ 3236 \\ 100.6 \\ 154.7$	$\begin{array}{c} 2893 \\ 2796 \\ 125.2 \\ 193.7 \end{array}$	$2530 \\ 2480 \\ 167.6 \\ 259.4$	$\begin{array}{c} 2129 \\ 2072 \\ 251.5 \\ 387.8 \end{array}$	$1790 \\ 1753 \\ 442.2 \\ 686.0$	2000
	22.5	$5194 \\ 5018 \\ 55.4 \\ 84.5$	$\begin{array}{r} 4846 \\ 4728 \\ 62.9 \\ 95.9 \end{array}$	$\begin{array}{r} 4483 \\ 4355 \\ 67.9 \\ 105.6 \end{array}$	$4085 \\ 3932 \\ 78.8 \\ 121.8$	$3697 \\ 3596 \\ 91.2 \\ 140.2$	$3329 \\ 3178 \\ 109.0 \\ 167.2$	$2951 \\ 2888 \\ 132.0 \\ 204.5$	$2616 \\ 2512 \\ 170.4 \\ 263.2$	$2215 \\ 2163 \\ 232.8 \\ 359.6$	$1875 \\ 1772 \\ 354.9 \\ 549.7$	$1502 \\ 1404 \\ 657.5 \\ 1018.5$	
	24	$5008 \\ 4920 \\ 70.0 \\ 108.0$	$4565 \\ 4492 \\ 79.2 \\ 121.8$	$\begin{array}{r} 4201 \\ 4111 \\ 88.0 \\ 136.5 \end{array}$	$3781 \\ 3596 \\ 100.4 \\ 155.6$	$3382 \\ 3295 \\ 117.8 \\ 183.5$	$3049 \\ 2951 \\ 140.9 \\ 219.4$	$2687 \\ 2627 \\ 175.3 \\ 272.0$	$\begin{array}{c} 2308 \\ 2223 \\ 229.9 \\ 355.7 \end{array}$	$1965 \\ 1882 \\ 319.7 \\ 497.2$	$1668 \\ 1609 \\ 506.7 \\ 783.4$	$1304 \\ 1237 \\ 963.1 \\ 1495.9$	
5000	25.5	$4699 \\ 4526 \\ 89.9 \\ 137.8$	$4270 \\ 4193 \\ 99.4 \\ 153.2$	$3962 \\ 3904 \\ 112.8 \\ 175.4$	$3533 \\ 3484 \\ 130.7 \\ 202.0$	$3119 \\ 3022 \\ 153.4 \\ 236.6$	$2758 \\ 2681 \\ 184.4 \\ 286.1$	$2419 \\ 2359 \\ 233.0 \\ 362.9$	$2078 \\ 1990 \\ 313.4 \\ 484.2$	$1752 \\ 1682 \\ 442.0 \\ 686.6$	$1427 \\ 1340 \\ 710.1 \\ 1102.3$	$1112 \\ 1073 \\ 1397.4 \\ 2175.0$	
	27	$\begin{array}{r} 4480 \\ 4382 \\ 113.1 \\ 175.1 \end{array}$	$\begin{array}{r} 4087 \\ 4020 \\ 129.3 \\ 198.9 \end{array}$	$3695 \\ 3538 \\ 147.0 \\ 227.3$	$3321 \\ 3118 \\ 170.0 \\ 262.8$	$\begin{array}{r} 2914 \\ 2845 \\ 199.2 \\ 308.1 \end{array}$	$2477 \\ 2392 \\ 247.1 \\ 382.4$	$2138 \\ 2049 \\ 313.0 \\ 485.8$	$ \begin{array}{r} 1854 \\ 1729 \\ 428.0 \\ 663.9 \end{array} $	$\begin{array}{r} 1560 \\ 1425 \\ 621.8 \\ 963.5 \end{array}$	$\begin{array}{r} 12\overline{48} \\ 1210 \\ 1017.7 \\ 1580.4 \end{array}$	$978 \\931 \\2086.0 \\3243.8$	1000
	28.5	$\begin{array}{c} 4252 \\ 4071 \\ 145.5 \\ 224.4 \end{array}$	$3853 \\ 3738 \\ 163.9 \\ 252.5$	$3462 \\ 3345 \\ 186.8 \\ 288.3$	$3084 \\ 3035 \\ 218.8 \\ 341.3$	$\begin{array}{r} 2658 \\ 2523 \\ 265.3 \\ 410.8 \end{array}$	$\begin{array}{c} 2297 \\ 2207 \\ 323.5 \\ 502.2 \end{array}$	$ \begin{array}{r} 1994 \\ 1882 \\ 414.0 \\ 645.9 \end{array} $	$\begin{array}{r} 1634 \\ 1545 \\ 574.6 \\ 893.8 \end{array}$	$\begin{array}{r} 1376 \\ 1296 \\ 859.8 \\ 1337.5 \end{array}$	$\begin{array}{r} 1083 \\ 976 \\ 1465.3 \\ 2273.7 \end{array}$	$\begin{array}{r} 807 \\ 710 \\ 3120.6 \\ 4825.9 \end{array}$	
	30	$\begin{array}{c} 4118 \\ 3986 \\ 183.0 \\ 282.9 \end{array}$	$3676 \\ 3555 \\ 209.0 \\ 323.2$	$3272 \\ 3144 \\ 241.5 \\ 372.1$	$2835 \\ 2683 \\ 287.0 \\ 444.0$	$2488 \\ 2375 \\ 343.4 \\ 535.1$	$\begin{array}{c} 2099 \\ 1971 \\ 429.1 \\ 666.4 \end{array}$	$1756 \\ 1657 \\ 564.4 \\ 876.2$	$1478 \\ 1376 \\ 784.9 \\ 1219.6$	$1227 \\ 1112 \\ 1212.6 \\ 1882.5$	$966 \\ 893 \\ 2108.2 \\ 3264.3$	$702 \\ 590 \\ 4593.4 \\ 7143.1$	
		40	00	30	00		20	00		10	00		

"Contour Lines"

- connect the cells in the table that represent approximately the same quality of stripification
- a given number of tristrips need not be achieved at all for ε greater than some upper threshold
- a given number of tristrips can be obtained already for some small $T^{(0)}$ if ε is below some lower threshold where the contour line stagnates at some level of $T^{(0)}$
- a continuous transition between these two extremes
- the shortest running time for a given number of tristrips is usually achieved within this transition region closer to the lower threshold of ε (cells in blue)

 $\longrightarrow \varepsilon$ can be chosen empirically above its lower threshold where the quality of stripifications scales with $T^{(0)}$ and with the almost optimal running time (see e.g. $\varepsilon = 1$)

The Empirical Average Time Complexity

- the dependence of the computational macroscopic time by HTGEN on the model size (the number of triangles)
- the asteroid model meshes whose sizes scale from 216 up to 198930 triangles
- for fixed values of $T^{(0)}$ and ε HTGEN converges within almost a constant number of macroscopic time steps (except for minor fluctuations for small meshes)

 \longrightarrow average linear time complexity of HTGEN for fixed $T^{(0)}, \ \varepsilon$

Model	Number of Tri- angles	Best Number of Tristrips	Average Number of Tristrips	Average Tristrip Length	Average Macro. Time
asteroid250	216	31	39	6.97	79.98
asteroid500	442	67	82	6.60	45.14
asteroid1k	950	151	171	6.29	59.69
asteroid2.5k	2418	397	429	6.09	62.67
asteroid5k	4840	808	853	5.99	67.43
asteroid10k	9828	1633	1711	6.02	68.17
asteroid20k	19800	3342	3435	5.92	70.26
asteroid40k	39624	6720	6868	5.90	70.41
asteroid60k	59592	10090	10327	5.91	69.51
asteroid80k	79560	13525	13757	5.88	70.35
asteroid100k	99294	16995	17176	5.84	70.07
asteroid200k	198930	34109	34400	5.83	70.25

$\varepsilon = 0.1$,	$T^{(0)} = 5$
	$\varepsilon = 0.1$,

80 Trials, $\varepsilon = 0.3$, $T^{(0)} = 9$

Model	Number of Tri- angles	Best Number of Tristrips	Average Number of Tristrips	Average Tristrip Length	Average Macro. Time
asteroid250	216	18	27	12.00	159.35
asteroid500	442	43	58	10.28	88.54
asteroid1k	950	86	114	11.05	106.62
asteroid2.5k	2418	255	280	9.48	113.84
asteroid5k	4840	518	556	9.34	116.59
asteroid10k	9828	1052	1114	9.34	114.76
asteroid20k	19800	2148	2237	9.22	114.45
asteroid40k	39624	4347	4451	9.12	113.53
asteroid60k	59592	6550	6690	9.10	112.86
asteroid80k	79560	8650	8898	9.20	113.06
asteroid100k	99294	10884	11110	9.12	112.94
asteroid200k	198930	21994	22257	9.04	111.65

50 Trials, $\varepsilon = 0.5$, $T^{(0)} = 13$

Model	Number of Tri- angles	Best Number of Tristrips	Average Number of Tristrips	Average Tristrip Length	Average Macro. Time
asteroid250	216	12	21	18.00	392.76
asteroid500	442	26	43	17.00	180.60
asteroid1k	950	72	88	13.19	191.00
asteroid2.5k	2418	188	208	12.86	199.72
asteroid5k	4840	355	405	13.63	199.76
asteroid10k	9828	762	808	12.90	200.94
asteroid20k	19800	1535	1605	12.90	204.48
asteroid40k	39624	3047	3204	13.00	197.92
asteroid60k	59592	4653	4784	12.81	198.16
asteroid80k	79560	6217	6365	12.80	197.16
asteroid100k	99294	7802	7965	12.73	197.08
asteroid200k	198930	15595	15923	12.76	194.98

Comparing with FTSG

- FTSG is a leading (non-neural) practical program providing the stripifications online within a few tens of milliseconds (Xiang, Held, Mitchell, 1999)
- FTSG v.1.31 was run with its most successful options
- HTGEN performed 30 trials from which the best stripifications were chosen (anyway the best and average results do not differ much)

		HTGEN (30 Trials)				FTSG	
Model	Number of Triangles	ε	$T^{(0)}$	Best Number of Tristrips	$\begin{array}{c} \text{Average} \\ \text{Comp.} \\ \text{Time} \\ \text{(s)} \end{array}$	Options	Number of Tristrips
shuttle	616	0.12	17	95	2.70	-dfs -alt	145
f-16	4592	0.6	26	312	197.57	-dfs -alt	478
triceratops	5660	0.2	20	557	286.33	-bfs	960
lung	6076	0.14	19	613	428.03		857
cessna	7446	0.5	19	1249	241.17	-dfs -alt	1459
bunny	69451	0.7	23	4404	4129.93	-dfs -alt	6191

 \longrightarrow HTGEN provides much better results than FTSG although the running time of HTGEN grows rapidly when the global optimum is being approached

Graphical Comparison

HTGEN: F-16 Model, 312 tristrips

FTSG: F-16 Model, 478 tristrips

HTGEN: Triceratops Model, 557 tristrips

FTSG: Triceratops Model, 960 tristrips

Huge Models

- HTGEN was tested on huge models with hundreds of thousands of triangles
- \bullet simulation parameters: 3 trials, $\ \varepsilon=0.3\,,\ T^{(0)}=10$
- e.g. FTSG generates 133072 tristrips for the dragon model within 7 seconds

Model	Number of Triangles	Best Number of Tristrips	Average Comp. Time	Average Macro. Time	Memory Usage
asteroid300k	299600	29702	32min 56s	147.33	139 MB
dragon	871414	130106	4h 25min 50s	235.00	390 MB

 \longrightarrow HTGEN generates the stripifications even for huge models in doable time frame

Conclusion

- a new heuristic method for generating tristrips, which represents an important problem in computer graphics
- the reduction to the minimum energy problem in Hopfield networks (a one-to-one correspondence)
- a theoretically interesting relation between two combinatorial problems of different types
- the method is practically applicable since the Hopfield net has only a linear number of units and connections
- program HTGEN can generate much smaller numbers of tristrips than those obtained by the leading conventional real-time program FTSG
- HTGEN exhibits empirical linear time complexity for fixed parameters of simulated annealing although the running time grows rapidly near the global optimum

→ HTGEN can be used offline for generating almost optimal stripifications

Open Problems

- a rigorous approximation stripification algorithm with a high performance guarantee
- a generalization of HTGEN for sequential strips with *zero-area* triangles, e.g. (1,**2,3,2**,4,5)