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Motivation from Graphics and Visualization

e 3D geometric models are represented by triangulated
surfaces — triangulation = a set of triangles

e 3D graphics rendering hardware: memory bus band-
width bottleneck in the processor-to-graphics pipeline

e the coordinates of edges that are shared by two
triangles can be transmitted only once

e efficient encoding of triangulated surfaces by using
so-called sequential triangle strips

e supported by graphics libraries (e.g. IGL, PHIGS,
Inventor, OpenGL)



Sequential Triangle Strip (Tristrip)

an ordered sequence of m > 3 vertices 0 = (v1, ..., V)
encoding n(o) = m—2 different triangles {v,, vp+1, Vpi2}
for 1 < p < m — 2 such that their shared edges follow
alternating left and right turns

Example: 2
’ 4

7

tristrip (1,2,3,4,5,6,3,7,1) encodes 7 triangles {1, 2, 3},
12,3,4}, {3, 4,5}, {4,5,6Y, {5,6,3}, {6,3,7}, {3,7,1}

a tristrip with n triangles allows transmitting of only n+2
(rather than 3n) vertices

a triangulated surface model 1" with n triangles that is
decomposed into k tristrips ¥ = {o1,...,0%} requires
only n + 2k vertices to be transmitted

Stripification Problem: decompose a given triangu-
lation 7" into the fewest tristrips X

the stripification problem is NP-complete
(Estkowski,Mitchell,Xiang,2002)



Hopfield Networks

e fundamental neural network model introduced by John
Hopfield in 1982

e inspired by Ising spin glass model in statistical physics
e convergence guarantees (energy function)

e natural hardware implementations by analog electrical
networks and optical computers

e influential associative memory model (low storage
capacity)

e fast approximate solution of combinatorial optimiza-
tion problems (e.g. traveling salesman problem)

Architecture:

e s computational units (neurons), indexed as N =
{1,...,s}, that are connected into an undirected

graph G = (N, &)

e each edge between ¢ and j is labeled with an integer
symmetric weight

w(i, j) = w(j, )
e w(i,j) = 0 means no connection between ¢ and j;
assume w(j,j) =0forj=1,... s



Discrete-Time Sequential Computation

the evolution of the network state

y =", ...y € {0,1)

at discrete time instants t = 0,1,2, ...

1. initial state y\9, e.g. y© = (0,...,0)

2. at discrete time t > 0 the excitation

&V =N "wli gy —hy forj=1,....s
1=1

where h; is an integer threshold of unit j

3. at the next time instant ¢ + 1 one (e.g. randomly)
selected neuron j computes its new state (output)

y§t+1) g (fj(t))

where H : ® — {0, 1} is the Heaviside activation
function:

1 for&>0
H<£)_{O for £ <0,

while y(Hl) = ygt) for v # 7

7



Convergence

macroscopic time T = 0,1,2,...: all the units in the
network are updated within one macroscopic step

a Hopfield net converges or reaches a stable state y'")
at macroscopic time 7" > 0 if

Energy Function:
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e bounded function

e decreasing along any nonconstant computation path
(§§t) # () is assumed without loss of generality)

—— Starting from any initial state, the Hopfield network
converges towards some stable state corresponding to
a local minimum of E. (Hopfield,1982)



Combinatorial Optimization

the cost function of a hard combinatorial optimization
problem is encoded into the energy of a Hopfield net
which is minimized in the course of computation

Minimum Energy Problem: given a Hopfield net, find its
state with minimum energy

the minimum energy problem is NP-complete
(Barahona,1982)

Boltzmann machine = stochastic Hopfield network:

randomly selected neuron j computes its new state:

y"™ =1 with probability P(gf))

(i.e. y](-tﬂ) = 0 with probability 1 — P(§§t>)) where

P : R — (0,1) is the probabilistic activation function:

1
P p—
©)=

T > 0 is a temperature at microscopic time 7 > ()

Simulated Annealing: starting with sufficiently high
initial 79, the temperature gradually decreases, e.g.

() 7(0)

= for 7 >0
log(1+ ) T




Notation & Definitions

e /" is a set of n triangles = a triangulated surface
model (2-manifold of genus 0 with possible boundaries)

e each edge is incident to at most two triangles

e 3 and [ are the sets of boundary and internal edges
that are shared by exactly one and two triangles,
respectively

e Sequential Cycle = a "cycled tristrip” ¢ = (v1,...,vpy)
(m is even) such that v, 1 = vy, v, = V9

Example: 1

sequential cycle (1,2,3,4,5,6,1,2)

o /. = {{vy,vp11};1 < p < m — 2} is the set of
internal edges of sequential cycle ¢ (red dashed line)

o B. = {{vy,vp42}; 1 < p < m — 2} is the set of
boundary edges of sequential cycle ¢ (dotted line)

e C is the set of all sequential cycles in T’



Generating the Set of All Sequential Cycles C

e start with any internal edge e of 1" and traverse e
either clockwise or counter-clockwise

e go on along a corresponding tristrip by alternating the
left and right turns

—— this tristrip

1. ends up in a boundary edge of the surface

2. terminates before some of its edge is traversed for the
second time but in the opposite direction

3. comes back to the initial edge e which is traversed
solely clockwise or solely counter-clockwise

I.e. the tristrip is properly cycled and included in C

e the procedure is repeated until all internal edges are
traversed both clockwise and counter-clockwise

e the computational time for generating C is propor-
tional to the number of edges in T (each internal edge
is traversed exactly twice) which is linear in terms of

n=|T|



Representative Internal Edges

to each sequential cycle ¢ € (, assign a unique
representative internal edge e. € I. using the following
procedure:

1.

start with any ¢ € C and choose any edge from I. to
be its representative edge ..

.stop if all the sequential cycles do have their

representative edges

.denote by ¢ the sequential cycle having no

representative edge so far which shares its internal
edge e. € .M I with ¢ if such ¢ exists;

otherwise let ¢ be any sequential cycle with no
representative internal edge

. choose any edge from [\ {e.} to be the representa-

tive edge ¢ of ¢

5.c¢:=c and go to 2

Correctness:

I

\ {e.} # ( contains no representative edge when

performing step 4

—— each ¢ € C has a unique representative edge e,



The Construction of Hopfield Network H
for generating the stripifications for a given T'

Hopfield network Hp is composed of two parts:

N = Ny U Ny

1. the first part N7 encodes tristrips of a stripification X::

e /V; contains two neurons ¢, and r. for each internal

edge e € I:
le{ﬁe,r€|e€[}

e two triangles in I' that share internal edge e are
connected in a tristrip o € X iff
either y,, = 1 (o traverses e counter-clockwise)
or y., = 1 (o traverses e clockwise)

e Hp converges to the states that encode disjoint
correct tristrips which alternate the left and right turns

2. the second part Ny prevents Hp from converging to
the states that encode cycled tristrips along the
sequential cycles from C

e such infeasible states may have less energy than those
encoding the optimal stripifications

e NV, contains two neurons a. and d,. for each sequential

cycle ¢ € C:
N2 = {CLC,dC’C < C}

— the size of Hyp is |[N| = 2|I| 4+ 2|C| = O(n)



The Architecture of H, (first part)
1. for each internal edge e = {vy, v} € [

o L. ={e,e1,eo, €3, 64} is the set of edges of the two
triangles {v1, v9, v3}, {v1, V9, v4} that share edge e

— Jo ={¥s,rs; f € L.NI} are associated neurons
e symmetric negative weights
w(le,i) = =7 fori € J.\{re,, le,Te,}
w(re, i) = =7 fori € Jo\ {le;, e, les}
(he, = h,, = —5) force a tristrip to traverse edge e

either counter-clockwise if y,, =1
— y;=0forallie J\ {re, le,7e,}

or clockwise if y, =1
— Y = 0 for all 1 € Je \ {66177"67263}



The Architecture of Hp (second part)

2. for each sequential cycle ¢ € C

.| L., if ctraverses e. counter-clockwise
® Je= { re, If C traverses e. clockwise
neuron j. can be activated, i.e. a possible tristrip o
can go along sequential cycle c via e, only if y;, =1

e unit d. computes the disjunction of the outputs from
neurons /., 1, associated with the boundary edges
e € B. = B.\ L., of sequential cycle ¢
— yg. =1 iff (Jee B) y,=1ory, =1
iff there is another tristrip ¢’ traversing a boundary

edge e € B/ of sequential cycle ¢ and crossing c,
which prevents a possible o to be cycled along ¢

e auxiliary unit a. balances the contribution of active d..
to the energy E' when ;. is passive



The Complexity of the Reduction

1. number of units in Hy:
IN| = |Ny| + | No| = 2|1] + 2|C]

each internal edge can be traversed by at most two

sequential cycles (clockwise or counter-clockwise), i.e.
Cl < 2|1

. IN| < 4[] = O(n)

2. number of connections in Hr:

HESPIPA {rez,ée,m}wYu \{éeme, les}|

ecl ecl
+ Y |{{d0n76} {aa]c} {d., ac}}‘ + Y 2| B))
ceC ceC

each internal edge can be a boundary for at most two
sequential cycles, i.e. Y _.|B.| < 2|I]

CEC‘
gl <27+ 3l +2-2/1) = O(n)

—— the Hopfield network Hp has a linear number of
units and connections in terms of n = |T'| and can be
constructed in linear time



The Correctness of the Reduction

a stripification X is equivalent with X' if their correspond-
ing tristrips encode the same sets of triangles

e.g., » ~ ' may differ in a tristrip encoding the
triangles of a sequential cycle which is split at two
different positions

Theorem 1 Let Hy be a Hopfield network correspond-
ing to a triangulation 1" with n triangles and denote
by Y* C {0,1}° the set of all stable states that can
be reached during the sequential computation by Hr
starting at the zero initial state. Then each statey € Y*
encodes a correct stripification Xy, of 1" and has energy

E(y) = —5(n—[3y]).
In addition, there is a one-to-one correspondence
between the classes of equivalent optimal stripifications

X]~ having the minimum number of tristrips for T' and
the states in Y* with the minimum energy minycy+ E(y).

Comments:

e another NP-completeness proof for the minimum
energy problem in Hopfield networks

e arbitrary initial states if the weight w(d,., j.) = 7 is
asymmetric (i.e. w(J., d.) = 0) which does not break
the convergence of Hp to the statesy € Y*



Idea of Proof

Energy Calculation:
€

recall E(y) = —% jzl > i w(i, )Yy + Zj:1 hjy;

1. a contribution to E from y; = 1 for j € {l., 7.}

such that e # e.: hj=—5

2. a contribution to E from y; = 1 for j. € {l.,,7c.}

(—> Yd,. = 1, Ya, = O)

1 1
_awwmﬂ)_§wumdﬁ+h%+hk:“;%+L+1:_5

fory;,, =0and yg. =1 — y,. = 1L
—w(de,ap) + hg, + hy,=—24+1+1=0

energy E(y) fory € Y*:
Ely) = —5-|{j € Ny; yj = 1}]
— 5. Z (n(o) = 1) = =5(n — [Xy])

UGEy



Problem with Unreachable States:

define a directed graph G = (C,.A) whose nodes are
sequential cycles:

(c1,c0) € A iff e, € BéQ

consider a directed cycle in GG, e.g. (¢1, ¢2), (co, 1) € A:

a stable state y satisfying
1' yjcl — ijQ — 1
2.y;=0forall j € {fe,re; e € Bél U BéQ}\{jcl,jCQ}

is unreachable by Hr from the zero initial state (j., or
Jey is activated only if a unit from {4, 7.; e € B, UB, }
is active)

X it can be proved that y is not optimal



Computer Experiments

Program HTGEN

e ANSI C program available online at
http://www.cs.cas.cz/~sima/htgen-en.html

e /nput: a Wavefront .obj file describing triangulated
surface model T (i.e. a list of triangular faces together
with geometric vertex coordinates)

e generates a corresponding Hopfield network Hp

e performs computations of Hp including the simulated
annealing with the optional parameters:

— initial temperature 7'

— stopping criterion £ = the maximum percentage of
unstable units at the end of stochastic computation

e Output: an .objf file with a stripification >y of T°
(i.e. a list of tristrips) which is extracted from the final
stable state y € Y* of Hy at microscopic time 7*

Used Computer

e notebook HP Compaq nx6110 1.6GHz with 512MB
RAM, running Linux operating system

e the running time is stated in seconds including the
system overhead but not including the time needed for
the construction of Hyp (mostly less than one second)



Used Models
e 3D geometric models represented via polygonal meshes
from several repositories

e sometimes triangulated using the software package
LODestar or converted into the .obj format

Triangulated Mesh T | Hopfield Net Hy

Number | Number Number Number

Model of of of Seq. of o o
Vertices | Triangles Cycles Neurons

asteroid250 110 216 20 6388 3544
asteroid500 223 442 12 1350 5445
asteroidlk 477 950 18 2886 11757
asteroid2.5k 1211 2418 30 7314 30039
asteroidbk 2422 4840 43 14606 060237
asteroid10k 4916 0828 62 29608 122476
asteroid20k 0002 | 19800 89 59578 246971

asteroid40k | 19814 | 39624 126 | 119124 494550
asteroid60k | 29798 | 59592 155 | 179086 743981
asteroid80k | 39782 | 79560 179 | 239038 993437
asteroid100k | 49649 | 99294 200 | 298282 | 1239987
asteroid200k | 99467 | 198930 284 | 597358 | 2484945
asteroid300k || 149802 | 299600 349 | 899498 | 3742939

shuttle 476 616 0 1528 4490
f-16 2344 4592 ) 13794 48643
cessna 6763 7446 10 16882 46083
lung 3121 6076 4 18064 63116
triceratops 2832 5660 2 16984 590532
Roman 10473 | 20904 0 62548 218426
bunny 34834 | 69451 1] 208132 727951
dragon 437645 | 871414 334 | 2610640 | 9144021




Examples of Used Models

)

(950 triangles

Asteroidlk Model

(5660 triangles)

Triceratops Model
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The Number of Trials of Simulated Annealing

the dependence of the achieved stripification quality (i.e.
the best number of tristrips) on the number of performed
trials of simulated annealing:

Best Number of Tristrips
Number of Trials | asteroid2.5k | asteroid10k | Roman
10 244 929 2442
20 227 929 2425
30 228 897 2410
40 221 941 2405
50 228 038 2403
60 224 905 2408
70 219 908 2392
80 223 018 2412
90 220 045 2401
100 223 039 2380
200 214 035 2364
400 219 893 2395
600 208 905 2372
800 217 895 2364
1000 211 915 2380

—— the stripification quality does not substantially
increase with the increasing number of trials and the
results averaged over 10 to 30 trials are reasonably reliable



The Choice of Parameters 7°) and ¢

e the dependence of the resulting number of tristrips
and the running time on both the initial temperature
T and the stopping criterion &

e illustrated on the asteroid40k model
e results averaged over 10 trials

e each cell in the following table contains

— Average Number of Tristrips
— Best Number of Tristrips
— Average Computation Time in Seconds

— Average Macroscopic Time

—— at the cost of additional running time the
quality of stripifications improves with increasing T'\")
and decreasing ¢
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“Contour Lines”

e connect the cells in the table that represent approxi-
mately the same quality of stripification

® a given number of tristrips need not be achieved at
all for € greater than some upper threshold

e a given number of tristrips can be obtained already
for some small 79 if ¢ is below some lower threshold
where the contour line stagnates at some level of 7(¥)

® a continuous transition between these two extremes

e the shortest running time for a given number of tristrips
is usually achieved within this transition region closer
to the lower threshold of € (cells in blue)

—— € can be chosen empirically above its lower threshold
where the quality of stripifications scales with T'°) and
with the almost optimal running time (see e.g. ¢ = 1)



The Empirical Average Time Complexity

e the dependence of the computational macroscopic time
by HTGEN on the model size (the number of triangles)

e the asteroid model meshes whose sizes scale from 216
up to 198930 triangles

e for fixed values of 7" and ¢ HTGEN converges within
almost a constant number of macroscopic time steps
(except for minor fluctuations for small meshes)

—— average linear time complexity of HTGEN for
fixed T\, &

100 Trials, e =0.1, T =5
Best Average
Number Average | Average
Model of Tri- Nug;ber Nuznfber Tristrigp Macrg,
angles Tristrips | Tristrips Length Time
asteroid250 216 31 39 6.97 79.98
asteroid500 442 67 82 6.60 45.14
asteroid1k 950 151 171 6.29 59.69
asteroid2.5k 2418 397 429 6.09 62.67
asteroidbk 4840 808 853 5.99 67.43
asteroid10k 0828 1633 1711 6.02 68.17
asteroid20k 19800 3342 3435 5.92 70.26
asteroid40k 30624 6720 6868 5.90 70.41
asteroid60k 50592 10090 10327 501 69.51
asteroid80k 79560 13525 13757 5.88 70.35
asteroid100k 00204 16995 17176 5.84 70.07
asteroid200k 198930 34109 34400 5.83 70.25




80 Trials, ¢ =0.3, T =9

Best Average
Number Average | Average
Model | of Tri- Number | Nuriber Tristrip | ‘Macro.
angles Tristrips | Tristrips eng Time
asteroid250 216 18 27 12.00 159.35
asteroid500 442 43 58 10.28 88.54
asteroid1k 950 86 114 11.05 106.62
asteroid2.5k 2418 255 280 0.48 113.84
asteroidbk 4840 518 556 0.34 116.59
asteroid10k 0828 1052 1114 0.34 114.76
asteroid20k 19800 2148 2237 9.22 114.45
asteroid40k 39624 4347 4451 0.12 113.53
asteroid60k 590592 6550 6690 9.10 112.86
asteroid80k 79560 8650 8898 9.20 113.06
asteroid100k 00204 10884 11110 0.12 112.94
asteroid200k 198930 21994 22257 0.04 111.65
50 Trials, ¢ =0.5, T =13
Best Average
Number Average | Average
Model | of Tri- Number | Number Tristrip Ma}cri
angles Tristrips | Tristrips eng Time
asteroid250 216 12 21 18.00 302.76
asteroid500 442 20 43 17.00 180.60
asteroidlk 950 72 38 13.19 191.00
asteroid2.5k 2418 188 208 12.86 199.72
asteroidbk 4840 355 405 13.63 199.76
asteroid10k 0828 762 808 12.90 200.94
asteroid20k 19800 1535 1605 12.90 204.48
asteroid40k 30624 3047 3204 13.00 197.92
asteroid60k 590592 4653 4784 12.81 198.16
asteroid80k 79560 6217 6365 12.80 197.16
asteroid100k 00204 7802 7965 12.73 197.08
asteroid200k 198930 15595 15923 12.76 194.98




Comparing with FTSG

e FTSG is a leading (non-neural) practical program
providing the stripifications online within a few tens
of milliseconds (Xiang,Held,Mitchell,1999)

e FTSG v.1.31 was run with its most successful options

e HTGEN performed 30 trials from which the best
stripifications were chosen (anyway the best and
average results do not differ much)

HTGEN (30 Trials) FTSG

Number Best Acverage Number

Model of € T(O) Nuf)r%ber rﬁﬂg' Options of
Triangles Tristrips (s) Tristrips
shuttle 616 | 0.12 | 17 95 2.70 | -dfs -alt 145
f-16 4592 | 0.6 | 26 312 | 197.57 | -dfs -alt 478
triceratops 5660 | 0.2 | 20 557 | 286.33 | -bfs 960
lung 6076 | 0.14 | 19 613 | 428.03 857
cessna 7446 | 0.5 | 19 1249 | 241.17 | -dfs -alt 1459
bunny 69451 || 0.7 | 23 4404 | 4129.93 | -dfs -alt| 6191

—— HTGEN provides much better results than FTSG
although the running time of HTGEN grows rapidly when
the global optimum is being approached




Graphical Comparison

HTGEN: F-16 Model, 312 tristrips

FTSG: F-16 Model, 478 tristrips




HTGEN: Triceratops Model, 557 tristrips

FTSG: Triceratops Model, 960 tristrips




Huge Models

e HTGEN was tested on huge models with hundreds of
thousands of triangles

e simulation parameters: 3 trials, ¢ =0.3, 7T = 10

e e.g. FTSG generates 133072 tristrips for the dragon
model within 7 seconds

Number NE)I?ISI;: er Average Average M
Model . of of Comp. Macro. U(? Srgoéy
Triangles Tristrips Time Time &
asteroid300k 299600 29702 32min 56s 147.33 | 139 MB
dragon 871414 130106 | 4h 25min 50s 235.00 | 390 MB

—— HTGEN generates the stripifications even for huge
models in doable time frame




Conclusion

e a new heuristic method for generating tristrips, which
represents an important problem in computer graphics

e the reduction to the minimum energy problem in
Hopfield networks (a one-to-one correspondence)

e a theoretically interesting relation between two
combinatorial problems of different types

e the method is practically applicable since the Hopfield
net has only a linear number of units and connections

e program HTGEN can generate much smaller numbers
of tristrips than those obtained by the leading conven-
tional real-time program FTSG

e HTGEN exhibits empirical linear time complexity for
fixed parameters of simulated annealing although the
running time grows rapidly near the global optimum

—— HTGEN can be used offline for generating almost
optimal stripifications

Open Problems

e a rigorous approximation stripification algorithm with
a high performance guarantee

e a generalization of HTGEN for sequential strips with
zero-area triangles, e.g. (1,2,3,2,4,5)



