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Motivation from Graphics and Visualization

• 3D geometric models are represented by triangulated
surfaces −→ triangulation = a set of triangles

• 3D graphics rendering hardware: memory bus band-
width bottleneck in the processor-to-graphics pipeline

• the coordinates of edges that are shared by two
triangles can be transmitted only once

• efficient encoding of triangulated surfaces by using
so-called sequential triangle strips

• supported by graphics libraries (e.g. IGL, PHIGS,
Inventor, OpenGL)



Sequential Triangle Strip (Tristrip)

an ordered sequence of m ≥ 3 vertices σ = (v1, . . . , vm)
encoding n(σ) = m−2 different triangles {vp, vp+1, vp+2}
for 1 ≤ p ≤ m − 2 such that their shared edges follow
alternating left and right turns

Example:

tristrip (1, 2, 3, 4, 5, 6, 3, 7, 1) encodes 7 triangles {1, 2, 3},
{2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {5, 6, 3}, {6, 3, 7}, {3, 7, 1}

a tristrip with n triangles allows transmitting of only n+2
(rather than 3n) vertices

a triangulated surface model T with n triangles that is
decomposed into k tristrips Σ = {σ1, . . . , σk} requires
only n + 2k vertices to be transmitted

Stripification Problem: decompose a given triangu-
lation T into the fewest tristrips Σ

the stripification problem is NP-complete
(Estkowski,Mitchell,Xiang,2002)



Hopfield Networks

• fundamental neural network model introduced by John
Hopfield in 1982

• inspired by Ising spin glass model in statistical physics

• convergence guarantees (energy function)

• natural hardware implementations by analog electrical
networks and optical computers

• influential associative memory model (low storage
capacity)

• fast approximate solution of combinatorial optimiza-
tion problems (e.g. traveling salesman problem)

Architecture:

• s computational units (neurons), indexed as N =
{1, . . . , s}, that are connected into an undirected
graph G = (N, E)

• each edge between i and j is labeled with an integer
symmetric weight

w(i, j) = w(j, i)

• w(i, j) = 0 means no connection between i and j ;
assume w(j, j) = 0 for j = 1, . . . , s



Discrete-Time Sequential Computation

the evolution of the network state

y(t) = (y
(t)
1 , . . . , y(t)

s ) ∈ {0, 1}s

at discrete time instants t = 0, 1, 2, . . .

1. initial state y(0), e.g. y(0) = (0, . . . , 0)

2. at discrete time t ≥ 0 the excitation

ξ
(t)
j =

s∑
i=1

w(i, j)y
(t)
i − hj for j = 1, . . . , s

where hj is an integer threshold of unit j

3. at the next time instant t + 1 one (e.g. randomly)
selected neuron j computes its new state (output)

y
(t+1)
j = H

(
ξ

(t)
j

)

where H : < −→ {0, 1} is the Heaviside activation
function:

H(ξ) =

{
1 for ξ ≥ 0
0 for ξ < 0 ,

while y
(t+1)
i = y

(t)
i for i 6= j



Convergence

macroscopic time τ = 0, 1, 2, . . . : all the units in the
network are updated within one macroscopic step

a Hopfield net converges or reaches a stable state y(τ∗)

at macroscopic time τ ∗ ≥ 0 if

y(τ∗) = y(τ∗+1)

Energy Function:

E(y) = −1

2

s∑
j=1

s∑
i=1

w(i, j)yiyj +

s∑
j=1

hjyj

• bounded function

• decreasing along any nonconstant computation path

(ξ
(t)
j 6= 0 is assumed without loss of generality)

−→ Starting from any initial state, the Hopfield network
converges towards some stable state corresponding to
a local minimum of E. (Hopfield,1982)



Combinatorial Optimization

the cost function of a hard combinatorial optimization
problem is encoded into the energy of a Hopfield net
which is minimized in the course of computation

Minimum Energy Problem: given a Hopfield net, find its
state with minimum energy

the minimum energy problem is NP-complete
(Barahona,1982)

Boltzmann machine = stochastic Hopfield network:

randomly selected neuron j computes its new state:

y
(t+1)
j = 1 with probability P

(
ξ

(t)
j

)

(i.e. y
(t+1)
j = 0 with probability 1 − P (ξ

(t)
j )) where

P : < −→ (0, 1) is the probabilistic activation function:

P (ξ) =
1

1 + e−2ξ/T (τ)
,

T (τ) > 0 is a temperature at microscopic time τ ≥ 0

Simulated Annealing: starting with sufficiently high
initial T (0), the temperature gradually decreases, e.g.

T (τ) =
T (0)

log(1 + τ )
for τ > 0



Notation & Definitions

• T is a set of n triangles = a triangulated surface
model (2-manifold of genus 0 with possible boundaries)

• each edge is incident to at most two triangles

• B and I are the sets of boundary and internal edges
that are shared by exactly one and two triangles,
respectively

• Sequential Cycle = a “cycled tristrip” c = (v1, . . . , vm)
(m is even) such that vm−1 = v1, vm = v2

Example:

sequential cycle (1, 2, 3, 4, 5, 6, 1, 2)

• Ic = {{vp, vp+1} ; 1 ≤ p ≤ m − 2} is the set of
internal edges of sequential cycle c (red dashed line)

• Bc = {{vp, vp+2} ; 1 ≤ p ≤ m − 2} is the set of
boundary edges of sequential cycle c (dotted line)

• C is the set of all sequential cycles in T



Generating the Set of All Sequential Cycles C

• start with any internal edge e of T and traverse e
either clockwise or counter-clockwise

• go on along a corresponding tristrip by alternating the
left and right turns

−→ this tristrip

1. ends up in a boundary edge of the surface

2. terminates before some of its edge is traversed for the
second time but in the opposite direction

3. comes back to the initial edge e which is traversed
solely clockwise or solely counter-clockwise

i.e. the tristrip is properly cycled and included in C

• the procedure is repeated until all internal edges are
traversed both clockwise and counter-clockwise

• the computational time for generating C is propor-
tional to the number of edges in T (each internal edge
is traversed exactly twice) which is linear in terms of
n = |T |



Representative Internal Edges

to each sequential cycle c ∈ C, assign a unique
representative internal edge ec ∈ Ic using the following
procedure:

1. start with any c ∈ C and choose any edge from Ic to
be its representative edge ec

2. stop if all the sequential cycles do have their
representative edges

3. denote by c′ the sequential cycle having no
representative edge so far which shares its internal
edge ec ∈ Ic ∩ Ic′ with c if such c′ exists;

otherwise let c′ be any sequential cycle with no
representative internal edge

4. choose any edge from Ic′ \ {ec} to be the representa-
tive edge ec′ of c′

5. c := c′ and go to 2

Correctness:

Ic′ \ {ec} 6= ∅ contains no representative edge when
performing step 4

−→ each c ∈ C has a unique representative edge ec



The Construction of Hopfield Network HT

for generating the stripifications for a given T

Hopfield network HT is composed of two parts:

N = N1 ∪N2

1. the first part N1 encodes tristrips of a stripification Σ:

• N1 contains two neurons `e and re for each internal
edge e ∈ I :

N1 = {`e, re | e ∈ I}
• two triangles in T that share internal edge e are

connected in a tristrip σ ∈ Σ iff
either y`e = 1 (σ traverses e counter-clockwise)
or yre = 1 (σ traverses e clockwise)

• HT converges to the states that encode disjoint
correct tristrips which alternate the left and right turns

2. the second part N2 prevents HT from converging to
the states that encode cycled tristrips along the
sequential cycles from C
• such infeasible states may have less energy than those

encoding the optimal stripifications

• N2 contains two neurons ac and dc for each sequential
cycle c ∈ C:

N2 = {ac, dc | c ∈ C}
−→ the size of HT is |N | = 2|I| + 2|C| = O(n)



The Architecture of HT (first part)

1. for each internal edge e = {v1, v2} ∈ I
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• Le = {e, e1, e2, e3, e4} is the set of edges of the two
triangles {v1, v2, v3}, {v1, v2, v4} that share edge e

−→ Je = {`f , rf ; f ∈ Le∩I} are associated neurons

• symmetric negative weights

w(`e, i) = −7 for i ∈ Je \ {re2, `e, re4}
w(re, i) = −7 for i ∈ Je \ {`e1, re, `e3}

(h`e = hre = −5) force a tristrip to traverse edge e

either counter-clockwise if y`e = 1
−→ yi = 0 for all i ∈ Je \ {re2, `e, re4}
or clockwise if yre = 1
−→ yi = 0 for all i ∈ Je \ {`e1, re, `e3}



The Architecture of HT (second part)

2. for each sequential cycle c ∈ C

• jc =

{
`ec if c traverses ec counter-clockwise
rec if c traverses ec clockwise

neuron jc can be activated, i.e. a possible tristrip σ
can go along sequential cycle c via ec only if ydc = 1

• unit dc computes the disjunction of the outputs from
neurons `e, re associated with the boundary edges
e ∈ B′

c = Bc \ Lec of sequential cycle c

−→ ydc = 1 iff (∃e ∈ B′
c) y`e = 1 or yre = 1

iff there is another tristrip σ′ traversing a boundary
edge e ∈ B′

c of sequential cycle c and crossing c,
which prevents a possible σ to be cycled along c

• auxiliary unit ac balances the contribution of active dc

to the energy E when jc is passive



The Complexity of the Reduction

1. number of units in HT :

|N | = |N1| + |N2| = 2|I| + 2|C|
each internal edge can be traversed by at most two
sequential cycles (clockwise or counter-clockwise), i.e.
|C| ≤ 2|I|

−→ |N | ≤ 4|I| = O(n)

2. number of connections in HT :

|E| ≤
∑

e∈I

|Je \ {re2, `e, re4}|︸ ︷︷ ︸
7

+
∑

e∈I

|Je \ {`e1, re, `e3}|︸ ︷︷ ︸
7

+
∑

c∈C
|{{dc, jc}, {ac, jc}, {dc, ac}}|︸ ︷︷ ︸

3

+
∑

c∈C
2|B′

c|

each internal edge can be a boundary for at most two
sequential cycles, i.e.

∑
c∈C |B′

c| ≤ 2|I|

−→ |E| ≤ 2 · 7|I| + 3|C| + 2 · 2|I| = O(n)

−→ the Hopfield network HT has a linear number of
units and connections in terms of n = |T | and can be
constructed in linear time



The Correctness of the Reduction

a stripification Σ is equivalent with Σ′ if their correspond-
ing tristrips encode the same sets of triangles

e.g., Σ ∼ Σ′ may differ in a tristrip encoding the
triangles of a sequential cycle which is split at two
different positions

Theorem 1 Let HT be a Hopfield network correspond-
ing to a triangulation T with n triangles and denote
by Y ∗ ⊆ {0, 1}s the set of all stable states that can
be reached during the sequential computation by HT

starting at the zero initial state. Then each state y ∈ Y ∗

encodes a correct stripification Σy of T and has energy

E(y) = −5(n− |Σy|) .

In addition, there is a one-to-one correspondence
between the classes of equivalent optimal stripifications
[Σ]∼ having the minimum number of tristrips for T and
the states in Y ∗ with the minimum energy miny∈Y ∗ E(y).

Comments:

• another NP-completeness proof for the minimum
energy problem in Hopfield networks

• arbitrary initial states if the weight w(dc, jc) = 7 is
asymmetric (i.e. w(jc, dc) = 0) which does not break
the convergence of HT to the states y ∈ Y ∗



Idea of Proof

Energy Calculation:
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recall E(y) = −1
2

∑s
j=1

∑s
i=1 w(i, j)yiyj +

∑s
j=1 hjyj

1. a contribution to E from yj = 1 for j ∈ {`e, re}
such that e 6= ec: hj = −5

2. a contribution to E from yjc = 1 for jc ∈ {`ec, rec}
(−→ ydc = 1, yac = 0):

−1

2
w(dc, jc)− 1

2
w(jc, dc)+hdc +hjc = −7+1+1 = −5

for yjc = 0 and ydc = 1 −→ yac = 1:

−w(dc, ac) + hdc + hac = −2 + 1 + 1 = 0

energy E(y) for y ∈ Y ∗:
E(y) = −5 · |{j ∈ N1 ; yj = 1}|

= −5 ·
∑

σ∈Σy

(n(σ)− 1) = −5 (n− |Σy|)



Problem with Unreachable States:

define a directed graph G = (C,A) whose nodes are
sequential cycles:

(c1, c2) ∈ A iff ec1 ∈ B′
c2

consider a directed cycle in G, e.g. (c1, c2), (c2, c1) ∈ A:

a stable state y satisfying

1. yjc1
= yjc2

= 1

2. yj = 0 for all j ∈ {
`e, re ; e ∈ B′

c1
∪B′

c2

} \ {jc1, jc2}
is unreachable by HT from the zero initial state (jc1 or
jc2 is activated only if a unit from {`e, re ; e ∈ B′

c1
∪B′

c2
}

is active)

× it can be proved that y is not optimal



Computer Experiments

Program HTGEN

• ANSI C program available online at
http://www.cs.cas.cz/∼sima/htgen-en.html

• Input: a Wavefront .obj file describing triangulated
surface model T (i.e. a list of triangular faces together
with geometric vertex coordinates)

• generates a corresponding Hopfield network HT

• performs computations ofHT including the simulated
annealing with the optional parameters:

– initial temperature T (0)

– stopping criterion ε = the maximum percentage of
unstable units at the end of stochastic computation

• Output: an .objf file with a stripification Σy of T
(i.e. a list of tristrips) which is extracted from the final
stable state y ∈ Y ∗ of HT at microscopic time τ ∗

Used Computer

• notebook HP Compaq nx6110 1.6GHz with 512MB
RAM, running Linux operating system

• the running time is stated in seconds including the
system overhead but not including the time needed for
the construction of HT (mostly less than one second)



Used Models

• 3D geometric models represented via polygonal meshes
from several repositories

• sometimes triangulated using the software package
LODestar or converted into the .obj format

Triangulated Mesh T Hopfield Net HT

Model
Number

of
Vertices

Number
of

Triangles

Number
of Seq.
Cycles

Number
of

Neurons
Number of
Connections

asteroid250 110 216 20 688 3544
asteroid500 223 442 12 1350 5445
asteroid1k 477 950 18 2886 11757

asteroid2.5k 1211 2418 30 7314 30039
asteroid5k 2422 4840 43 14606 60237
asteroid10k 4916 9828 62 29608 122476
asteroid20k 9902 19800 89 59578 246971
asteroid40k 19814 39624 126 119124 494550
asteroid60k 29798 59592 155 179086 743981
asteroid80k 39782 79560 179 239038 993437
asteroid100k 49649 99294 200 298282 1239987
asteroid200k 99467 198930 284 597358 2484945
asteroid300k 149802 299600 349 899498 3742939

shuttle 476 616 0 1528 4490
f-16 2344 4592 9 13794 48643

cessna 6763 7446 10 16882 46083
lung 3121 6076 4 18064 63116

triceratops 2832 5660 2 16984 59532
Roman 10473 20904 0 62548 218426
bunny 34834 69451 1 208132 727951
dragon 437645 871414 334 2610640 9144021



Examples of Used Models

Asteroid1k Model (950 triangles)

Triceratops Model (5660 triangles)



The Number of Trials of Simulated Annealing

the dependence of the achieved stripification quality (i.e.
the best number of tristrips) on the number of performed
trials of simulated annealing:

Best Number of Tristrips

Number of Trials asteroid2.5k asteroid10k Roman

10 244 929 2442
20 227 929 2425
30 228 897 2410
40 221 941 2405
50 228 938 2403
60 224 905 2408
70 219 908 2392
80 223 918 2412
90 220 945 2401
100 223 939 2380
200 214 935 2364
400 219 893 2395
600 208 905 2372
800 217 895 2364
1000 211 915 2380

−→ the stripification quality does not substantially
increase with the increasing number of trials and the
results averaged over 10 to 30 trials are reasonably reliable



The Choice of Parameters T (0) and ε

• the dependence of the resulting number of tristrips
and the running time on both the initial temperature
T (0) and the stopping criterion ε

• illustrated on the asteroid40k model

• results averaged over 10 trials

• each cell in the following table contains

– Average Number of Tristrips

– Best Number of Tristrips

– Average Computation Time in Seconds

– Average Macroscopic Time

−→ at the cost of additional running time the
quality of stripifications improves with increasing T (0)

and decreasing ε



↓T
(0)

~ε 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1

1.5 12076 12070 12095 12110 12126 12082 12108 12094 12058 12055 12033
11980 12014 12029 12033 12077 12011 11991 11988 11958 11933 11955
3.8 3.8 3.6 3.7 3.4 3.8 3.9 3.8 4.4 4.5 4.4
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.9 6.0 6.0

3 10774 10780 10809 10789 10750 10740 10518 10519 10534 10330 10254
10610 10674 10691 10674 10590 10480 10399 10406 10422 10190 10185
4.4 4.6 4.3 4.5 4.7 5.0 5.3 5.0 5.1 5.7 6.2

10000 6.0 6.0 6.0 6.0 6.2 6.2 7.0 7.0 7.0 8.0 9.0 10000

4.5 9964 9991 9972 9981 9639 9635 9390 9377 9154 || 8997 8598 9000
9849 9925 9895 9924 9591 9584 9289 9230 9058 || 8941 8513
5.0 5.3 5.0 5.2 5.5 5.9 6.6 6.5 7.3 || 7.7 9.4
7.0 7.1 7.0 7.0 8.0 8.2 9.0 9.2 10.0 || 11.1 13.9

6 9483 9515 9117 9126 || 8944 8831 8556 8328 8161 || 7814 7404 8000
9396 9388 9042 9063 || 8722 8760 8454 8171 8045 || 7703 7313
5.5 5.9 6.4 6.7 || 6.8 6.8 7.8 8.3 8.9 || 10.4 13.2
8.0 8.1 9.0 9.0 || 9.5 10.0 11.0 12.0 13.1 || 15.3 19.8

9000 7.5 8833 8824 8682 8517 8231 8006 || 7786 7605 7274 || 6855 6428 7000
8761 8693 8413 8398 8170 7922 || 7694 7381 7221 || 6812 6278
7.0 6.8 7.0 8.0 8.1 9.0 || 9.7 10.3 11.5 || 14.2 18.4
10.1 10.1 10.5 11.1 12.0 13.0 || 14.0 15.0 17.1 || 20.9 27.1

9 8373 8332 8060 || 7874 7682 7440 7173 || 6893 6510 6096 || 5593 6000
8251 8178 7990 || 7721 7547 7276 7072 || 6826 6412 5996 || 5510
8.4 8.5 8.8 || 9.6 9.9 10.8 11.6 || 13.0 15.0 18.6 || 25.0
11.9 12.0 13.0 || 13.9 14.8 16.0 17.5 || 19.4 22.7 27.9 || 38.0

10.5 8041 || 7772 7546 7364 7124 || 6867 6592 6229 || 5838 5377 || 4849 5000
7931 || 7627 7409 7310 7035 || 6758 6523 6111 || 5712 5308 || 4788
9.3 || 10.4 10.8 11.7 12.1 || 13.8 15.0 16.5 || 19.4 24.9 || 35.0
14.0 || 15.2 16.1 17.0 18.4 || 19.8 22.1 25.2 || 30.0 38.0 || 53.4

8000 12 7631 7408 7084 || 6859 6582 6272 || 5932 5605 5236 || 4784 4255
7513 7290 6892 || 6698 6433 6202 || 5822 5512 5098 || 4657 4171
11.4 12.3 13.2 || 14.7 15.5 17.9 || 19.1 22.4 26.3 || 33.8 48.2
17.1 18.3 19.9 || 21.3 23.1 26.1 || 29.1 33.6 40.3 || 51.3 74.7

13.5 7240 || 6939 6694 6372 6102 || 5794 5399 5030 || 4678 4234 || 3726 4000
7170 || 6766 6585 6274 6004 || 5679 5314 4917 || 4561 4176 || 3647
14.3 || 15.3 16.0 17.9 19.7 || 21.6 24.8 29.1 || 35.1 46.0 || 69.5
21.0 || 22.9 24.6 26.7 29.8 || 32.7 37.9 44.6 || 53.8 71.0 || 106.5

7000 15 6806 6551 6228 || 5954 5616 5247 || 4934 4551 4144 || 3714 3179
6571 6387 6125 || 5856 5464 5164 || 4813 4494 4064 || 3605 3093
17.9 18.7 21.0 || 22.9 24.7 28.8 || 33.0 39.3 48.4 || 64.8 99.5
26.6 28.5 31.5 || 34.2 38.0 42.9 || 49.9 58.9 74.1 || 100.1 155.1

16.5 6435 6134 || 5822 5517 5166 || 4801 4424 4084 || 3652 3226 || 2778 3000
6288 5987 || 5697 5452 5049 || 4599 4376 4007 || 3514 3105 || 2690
22.1 24.5 || 25.9 28.5 32.2 || 36.8 42.6 51.2 || 65.5 91.8 || 142.9
33.4 36.1 || 39.9 43.5 49.3 || 56.8 65.5 79.3 || 100.6 141.2 || 222.3

18 6096 || 5815 5455 5123 || 4803 4426 4029 || 3658 3274 || 2854 2363
6011 || 5723 5403 5000 || 4715 4337 3925 || 3549 3215 || 2774 2281
27.8 || 30.1 33.0 36.8 || 41.8 48.4 56.6 || 68.5 89.5 || 124.7 206.3
41.7 || 45.6 50.4 56.5 || 63.7 73.3 86.8 || 106.2 136.7 || 192.6 320.6

6000 19.5 5754 5404 5084 || 4775 4365 4028 || 3637 3268 || 2835 2449 2050
5656 5328 4958 || 4684 4255 3921 || 3518 3195 || 2759 2364 1956
35.0 38.1 42.5 || 47.8 53.9 62.4 || 75.0 91.7 || 123.2 177.8 301.1
53.3 58.6 64.9 || 73.6 82.9 95.6 || 115.3 141.5 || 188.6 275.3 467.9

21 5477 5095 || 4786 4431 4008 || 3642 3279 || 2893 2530 2129 || 1790 2000
5267 4985 || 4692 4331 3813 || 3483 3236 || 2796 2480 2072 || 1753
43.7 48.0 || 54.6 61.5 70.5 || 82.4 100.6 || 125.2 167.6 251.5 || 442.2
66.9 74.3 || 83.0 93.6 108.2 || 127.0 154.7 || 193.7 259.4 387.8 || 686.0

22.5 5194 || 4846 4483 4085 || 3697 3329 || 2951 2616 2215 || 1875 1502
5018 || 4728 4355 3932 || 3596 3178 || 2888 2512 2163 || 1772 1404
55.4 || 62.9 67.9 78.8 || 91.2 109.0 || 132.0 170.4 232.8 || 354.9 657.5
84.5 || 95.9 105.6 121.8 || 140.2 167.2 || 204.5 263.2 359.6 || 549.7 1018.5

24 5008 || 4565 4201 || 3781 3382 3049 || 2687 2308 || 1965 1668 1304
4920 || 4492 4111 || 3596 3295 2951 || 2627 2223 || 1882 1609 1237
70.0 || 79.2 88.0 || 100.4 117.8 140.9 || 175.3 229.9 || 319.7 506.7 963.1
108.0 || 121.8 136.5 || 155.6 183.5 219.4 || 272.0 355.7 || 497.2 783.4 1495.9

5000 25.5 4699 4270 || 3962 3533 3119 || 2758 2419 2078 || 1752 1427 1112
4526 4193 || 3904 3484 3022 || 2681 2359 1990 || 1682 1340 1073
89.9 99.4 || 112.8 130.7 153.4 || 184.4 233.0 313.4 || 442.0 710.1 1397.4
137.8 153.2 || 175.4 202.0 236.6 || 286.1 362.9 484.2 || 686.6 1102.3 2175.0

27 4480 4087 || 3695 3321 || 2914 2477 2138 || 1854 1560 1248 || 978 1000
4382 4020 || 3538 3118 || 2845 2392 2049 || 1729 1425 1210 || 931
113.1 129.3 || 147.0 170.0 || 199.2 247.1 313.0 || 428.0 621.8 1017.7 ||2086.0
175.1 198.9 || 227.3 262.8 || 308.1 382.4 485.8 || 663.9 963.5 1580.4 ||3243.8

28.5 4252 || 3853 3462 3084 || 2658 2297 || 1994 1634 1376 1083 || 807
4071 || 3738 3345 3035 || 2523 2207 || 1882 1545 1296 976 || 710
145.5 || 163.9 186.8 218.8 || 265.3 323.5 || 414.0 574.6 859.8 1465.3 || 3120.6
224.4 || 252.5 288.3 341.3 || 410.8 502.2 || 645.9 893.8 1337.5 2273.7 || 4825.9

30 4118 || 3676 3272 || 2835 2488 2099 || 1756 1478 1227 || 966 702
3986 || 3555 3144 || 2683 2375 1971 || 1657 1376 1112 || 893 590
183.0 || 209.0 241.5 || 287.0 343.4 429.1 || 564.4 784.9 1212.6 || 2108.2 4593.4
282.9 || 323.2 372.1 || 444.0 535.1 666.4 || 876.2 1219.6 1882.5 || 3264.3 7143.1

4000 3000 2000 1000



“Contour Lines”

• connect the cells in the table that represent approxi-
mately the same quality of stripification

• a given number of tristrips need not be achieved at
all for ε greater than some upper threshold

• a given number of tristrips can be obtained already
for some small T (0) if ε is below some lower threshold
where the contour line stagnates at some level of T (0)

• a continuous transition between these two extremes

• the shortest running time for a given number of tristrips
is usually achieved within this transition region closer
to the lower threshold of ε (cells in blue)

−→ ε can be chosen empirically above its lower threshold
where the quality of stripifications scales with T (0) and
with the almost optimal running time (see e.g. ε = 1)



The Empirical Average Time Complexity

• the dependence of the computational macroscopic time
by HTGEN on the model size (the number of triangles)

• the asteroid model meshes whose sizes scale from 216
up to 198930 triangles

• for fixed values of T (0) and ε HTGEN converges within
almost a constant number of macroscopic time steps
(except for minor fluctuations for small meshes)

−→ average linear time complexity of HTGEN for
fixed T (0), ε

100 Trials, ε = 0.1 , T (0) = 5

Model
Number
of Tri-
angles

Best
Number

of
Tristrips

Average
Number

of
Tristrips

Average
Tristrip
Length

Average
Macro.
Time

asteroid250 216 31 39 6.97 79.98
asteroid500 442 67 82 6.60 45.14
asteroid1k 950 151 171 6.29 59.69

asteroid2.5k 2418 397 429 6.09 62.67
asteroid5k 4840 808 853 5.99 67.43
asteroid10k 9828 1633 1711 6.02 68.17
asteroid20k 19800 3342 3435 5.92 70.26
asteroid40k 39624 6720 6868 5.90 70.41
asteroid60k 59592 10090 10327 5.91 69.51
asteroid80k 79560 13525 13757 5.88 70.35
asteroid100k 99294 16995 17176 5.84 70.07
asteroid200k 198930 34109 34400 5.83 70.25



80 Trials, ε = 0.3 , T (0) = 9

Model
Number
of Tri-
angles

Best
Number

of
Tristrips

Average
Number

of
Tristrips

Average
Tristrip
Length

Average
Macro.
Time

asteroid250 216 18 27 12.00 159.35
asteroid500 442 43 58 10.28 88.54
asteroid1k 950 86 114 11.05 106.62

asteroid2.5k 2418 255 280 9.48 113.84
asteroid5k 4840 518 556 9.34 116.59
asteroid10k 9828 1052 1114 9.34 114.76
asteroid20k 19800 2148 2237 9.22 114.45
asteroid40k 39624 4347 4451 9.12 113.53
asteroid60k 59592 6550 6690 9.10 112.86
asteroid80k 79560 8650 8898 9.20 113.06
asteroid100k 99294 10884 11110 9.12 112.94
asteroid200k 198930 21994 22257 9.04 111.65

50 Trials, ε = 0.5 , T (0) = 13

Model
Number
of Tri-
angles

Best
Number

of
Tristrips

Average
Number

of
Tristrips

Average
Tristrip
Length

Average
Macro.
Time

asteroid250 216 12 21 18.00 392.76
asteroid500 442 26 43 17.00 180.60
asteroid1k 950 72 88 13.19 191.00

asteroid2.5k 2418 188 208 12.86 199.72
asteroid5k 4840 355 405 13.63 199.76
asteroid10k 9828 762 808 12.90 200.94
asteroid20k 19800 1535 1605 12.90 204.48
asteroid40k 39624 3047 3204 13.00 197.92
asteroid60k 59592 4653 4784 12.81 198.16
asteroid80k 79560 6217 6365 12.80 197.16
asteroid100k 99294 7802 7965 12.73 197.08
asteroid200k 198930 15595 15923 12.76 194.98



Comparing with FTSG

• FTSG is a leading (non-neural) practical program
providing the stripifications online within a few tens
of milliseconds (Xiang,Held,Mitchell,1999)

• FTSG v.1.31 was run with its most successful options

• HTGEN performed 30 trials from which the best
stripifications were chosen (anyway the best and
average results do not differ much)

HTGEN (30 Trials) FTSG

Model
Number

of
Triangles

ε T (0)

Best
Number

of
Tristrips

Average
Comp.
Time
(s)

Options
Number

of
Tristrips

shuttle 616 0.12 17 95 2.70 -dfs -alt 145
f-16 4592 0.6 26 312 197.57 -dfs -alt 478

triceratops 5660 0.2 20 557 286.33 -bfs 960
lung 6076 0.14 19 613 428.03 857

cessna 7446 0.5 19 1249 241.17 -dfs -alt 1459
bunny 69451 0.7 23 4404 4129.93 -dfs -alt 6191

−→ HTGEN provides much better results than FTSG
although the running time of HTGEN grows rapidly when
the global optimum is being approached



Graphical Comparison

HTGEN: F-16 Model, 312 tristrips

FTSG: F-16 Model, 478 tristrips



HTGEN: Triceratops Model, 557 tristrips

FTSG: Triceratops Model, 960 tristrips



Huge Models

• HTGEN was tested on huge models with hundreds of
thousands of triangles

• simulation parameters: 3 trials, ε = 0.3 , T (0) = 10

• e.g. FTSG generates 133072 tristrips for the dragon
model within 7 seconds

Model
Number

of
Triangles

Best
Number

of
Tristrips

Average
Comp.
Time

Average
Macro.
Time

Memory
Usage

asteroid300k 299600 29702 32min 56s 147.33 139 MB
dragon 871414 130106 4h 25min 50s 235.00 390 MB

−→ HTGEN generates the stripifications even for huge
models in doable time frame



Conclusion

• a new heuristic method for generating tristrips, which
represents an important problem in computer graphics

• the reduction to the minimum energy problem in
Hopfield networks (a one-to-one correspondence)

• a theoretically interesting relation between two
combinatorial problems of different types

• the method is practically applicable since the Hopfield
net has only a linear number of units and connections

• program HTGEN can generate much smaller numbers
of tristrips than those obtained by the leading conven-
tional real-time program FTSG

• HTGEN exhibits empirical linear time complexity for
fixed parameters of simulated annealing although the
running time grows rapidly near the global optimum

−→ HTGEN can be used offline for generating almost
optimal stripifications

Open Problems

• a rigorous approximation stripification algorithm with
a high performance guarantee

• a generalization of HTGEN for sequential strips with
zero-area triangles, e.g. (1,2,3,2,4,5)


