
On Energy Complexity of Fully-Connected Layers

Jǐŕı Š́ımaa,∗, Jérémie Cabessab, Petra Vidnerováa

aInstitute of Computer Science of the Czech Academy of Sciences, Pod Vodárenskou
věž́ı 271/2, Prague 8, 182 00, Czechia

bDAVID Laboratory, University of Versailles Saint-Quentin (UVSQ), University
Paris-Saclay, 45 avenue des États-Unis, Versailles, 78035, France

Abstract

The massive increase in the size of deep neural networks (DNNs) is accom-
panied by a significant increase in the energy consumption of their hardware
implementations, which is an important issue that deserves a thorough anal-
ysis. For this purpose, an abstract hardware-independent model of energy
complexity for convolutional neural networks (CNNs) has been proposed and
experimentally validated in our previous work. Based on these considera-
tions, we provide a theoretical analysis of energy complexity related to the
computation of fully-connected layers when inputs, outputs, and weights are
transferred between two kinds of memories (DRAM and Buffer). First, we
establish a general lower bound on this energy complexity. Then, we present
two dataflows and calculate their energy costs to achieve corresponding up-
per bounds. In the case of partitioned Buffer, we prove by the weak duality
theorem from linear programming that the lower and upper bounds coincide
up to an additive constant, and therefore constitute the optimal energy com-
plexity. Finally, the asymptotically optimal quadratic energy complexity of
fully-connected layers is experimentally validated by simulating their power
consumption on the Simba and Eyeriss hardware.

Keywords: Deep neural networks, Convolutional neural networks,
Fully-connected layer, Energy complexity, Power consumption, Dataflow.

∗Corresponding author
Email addresses: sima@cs.cas.cz (Jǐŕı Š́ıma), jeremie.cabessa@uvsq.fr (Jérémie

Cabessa), petra@cs.cas.cz (Petra Vidnerová)

Preprint submitted to Neural Networks November 21, 2023

1. Energy Complexity Model for CNNs

Deep neural networks (DNNs) represent a cutting-edge machine learn-
ing technology, with countless applications in computer vision, natural lan-
guage processing (NLP), speech recognition, robotics, etc. In particular,
the introduction of the transformer model has revolutionized the world of
NLP (Vaswani et al., 2017), and further lead to the development of large
language models like GPT (Brown et al., 2020), PaLM (Chowdhery et al.,
2023), and LLaMA (Touvron et al., 2023). Transformer models have been
extended to the field of computer vision (ViT) (Dosovitskiy et al., 2021) as
well as to any task based on tabular data (TabTransformer) (Huang et al.,
2020). But these performances come at a price: a huge number of param-
eters. For instance, GPT-3 contains 175B (billion) parameters, PaLM has
540B, and LLaMA’s size ranges from 7B to 65B parameters. It is there-
fore a fact that deep learning models have become more computationally
demanding and energy-consuming than ever.

On the other hand, with the ever-growing use of mobile devices, like
smartphones or smartwatches, comes the issue of the implementation, de-
ployment, and portability of already trained DNNs on low-power hardware
operated on batteries. Therefore, extensive research has recently been con-
ducted on techniques that enable energy-efficient DNN processing (Sze et al.,
2017, 2020).

There are basically two main approaches to reduce the energy cost of
DNNs. The first approach is suitable for error-tolerant applications such as
image classification where enormous amount of energy can be saved at the
cost of only a small loss in accuracy by using approximate computing meth-
ods (Armeniakos et al., 2023; Mittal, 2016), e.g. low float precision (Gupta
et al., 2015), approximate multipliers (Ansari et al., 2020), etc. In the sec-
ond approach the computational cost is reduced through hardware design
including massive parallelism where DNNs are implemented on a variety of
hardware platforms such as GPUs, FPGAs (Mittal, 2020), in-memory com-
puting architectures, etc.

For a specific DNN hardware implementation, the real power consumption
of the inference process can be either practically measured or analytically es-
timated using physical laws. This power consumption depends on parameters
and constants related to the hardware architecture, and hence, its evaluation
varies for different DNN hardware implementations. Some computer pro-
grams such as Accelergy (Wu et al., 2019) and Timeloop (Parashar et al.,

2

2019) can calculate and optimize, respectively, the power consumption of a
particular DNN on various hardware platforms including the Simba (Shao
et al., 2019) and Eyeriss (Chen et al., 2016) architectures.

It has been empirically observed that the energy cost of DNN processing
mainly consists of two components: the computation energy, and the data
energy which represents around 70% of the total cost (Yang et al., 2017). The
computation energy is needed for performing arithmetic operations, especially
the so-called multiply-and-accumulate (MAC) operations (S ← S + wx on
floats S,w, x), used to compute the weighted sums of inputs in neurons. The
data energy is required for moving the data inside the memory hierarchy of
the hardware (dataflow), and is related to the number of memory accesses.

In the general context of high-performance computing, heterogeneous ar-
chitectures merging two kinds of memories, CPUs and GPUs, are considered.
The task scheduling problem aims at minimizing the processing time—and
thus the energy consumption—of a set of tasks involving various types of
data (see Gonthier et al., 2023, and the references therein). This optimization
is achieved through three objectives: minimizing data transfers throughout
the memories, ensuring overlap between data transfers and task computa-
tions, and optimizing the eviction of previously-loaded data. In this context,
the particular problem, close to ours, of scheduling a set of tasks on one GPU
with limited memory, where the tasks share some of their input data but are
otherwise independent, is shown to be NP-complete and is in turn addressed
by means of different heuristics (Gonthier et al., 2023).

Along these lines, we propose a theoretical study of the energy com-
plexity of deep neural networks where the computational process involves
CPU/GPU-like data transfers. In a recent paper (Š́ıma et al., 2023), we
have introduced a simplified machine-independent model of energy complex-
ity for convolutional neural networks (CNNs). This model abstracts from the
implementation details related to different hardware platforms, and preserves
the asymptotic energy complexity of the CNN inference. It is composed of
only two memory levels called DRAM and Buffer, as illustrated in Figure 1.
The network parameters and states are stored in DRAM, and the arithmetic
operations are performed over numerical data stored in Buffer, which is of
a constant capacity of B bits. The transfer of data between the two memo-
ries determines the dataflow. We assume that any floating-point number is
transferred as a separate, indivisible, and uncompressed block of b bits.

The main idea behind this model is that, for a given CNN stored in
DRAM, the three arguments of any operation (i.e., input x, weight w and

3

Figure 1: The energy complexity model.

accumulated output S of operation S ← S+wx) employed for the evaluation
of the network must occur together at the same time in Buffer. This re-
quirement is common to all conceivable hardware implementations of CNNs,
making the model universal. The CNN inference thus requires a certain
number of data transfers between DRAM and Buffer (i.e., the number of
DRAM accesses multiplied by the number of b bits in a float number), which
corresponds to our measure of the data energy.

For simplicity, we assume that the energy cost is not optimized across
multiple CNN layers (as, e.g., Alwani et al., 2016, for instance). Hence, the
energy complexity is defined as a simple sum over only separate convolutional
layers including the fully-connected ones as a special case, while the less
energy-intensive max pooling layers are omitted. Formally,

E =
∑

convolutional layer λ

(
Eλ

comp + Eλ
data

)
(1)

where the computation energy Eλ
comp and the data energy Eλ

data for evaluating
a convolutional layer λ is proportional to the corresponding numbers of MACs
and DRAM accesses, respectively.

The energy complexity model of CNNs has been exploited for calcu-
lating the theoretical energy of processing convolutional layers in the con-
text of two common dataflows with write-once outputs and read-once in-

4

puts, respectively, and read-once weights, under realistic buffer capacity con-
straints (Š́ıma et al., 2023). These dataflows provide upper bounds on the en-
ergy complexity of CNN layers, which have been compared to the real power
consumptions estimated for Simba (Shao et al., 2019) and Eyeriss (Chen
et al., 2016) architectures by using the Timeloop/Accelergy software tool
(Parashar et al., 2019; Wu et al., 2019).

As it turns out, the theoretical upper bounds fit asymptotically very well
the empirical optimal power consumptions, when individual parameters of a
convolutional layer such as the height, width, depth, kernel size, and stride
are varied, which was validated by the statistical linearity and quadraticity
tests (Š́ıma et al., 2023). Hence, the introduced energy complexity model
appears to be capable of asymptotically capturing all important sources of
energy consumption that are common to the diverse CNN hardware imple-
mentations. The model can also be exploited for proving lower bounds on
the energy complexity of CNNs, in order to establish asymptotic limits on
the energy efficiency of any CNN hardware accelerators.

In this paper, we investigate the energy complexity of fully-connected
layers, since the latter can be expressed as specific convolutional layers where
the successive feature maps are reduced to single neurons. First, we derive
a general lower bound on the data energy complexity. Then we present two
types of dataflows in which each weight and each output (or alternatively each
input) are read into Buffer only once. In the first dataflow, the Buffer memory
is assumed to be partitioned into two separate parts of given fixed capacities
for inputs and outputs, respectively. The second dataflow is parameterized
by the maximum number of inputs residing in Buffer at the same time. We
determine the data energy of both dataflows, which provides upper bounds on
energy complexity. Moreover, for the first dataflow, we prove that the lower
and upper bounds coincide up to an additive constant, by means of the weak
duality theorem from linear programming. The optimal energy complexity
for fully-connected layers in situations where Buffer is partitioned into two
separate parts for inputs and outputs, respectively, ensues.

The presented upper bounds differ only by a linear additive term from the
derived lower bound, which provides the asymptotically optimal quadratic
data energy complexity of evaluating a fully-connected layer in terms of the
number of its inputs and outputs. This theoretical energy complexity is
also compared to the real power consumptions estimated for the Simba and
Eyeriss hardware architectures by the Timeloop/Accelergy program. It turns
out that it matches very well when the numbers of inputs, outputs, and

5

weights of fully-connected layers are varied separately, which is validated by
the statistical linearity tests.

The paper is organized as follows. Section 2 formally defines the energy
complexity for fully-connected layers. A general lower bound on this energy
is derived in Section 3. Section 4 presents two dataflows with their associated
upper bounds on the energy. In Section 5, the matching and thus optimal
lower bound is derived for the case of partitioned Buffer. Section 6 experi-
mentally validates the asymptotically optimal quadratic energy complexity of
fully-connected layers. Section 7 summarizes the results and discusses open
problems. A preliminary conference version (Š́ıma and Cabessa, 2023) of this
paper is substantially expanded here to include a new general lower bound
on energy, a detailed description of dataflows, and experimental validation
of energy complexity.

2. Energy Complexity of Fully-Connected Layer

Consider a deep (e.g. convolutional) neural network of depth D and a
layer index λ of some of its fully-connected layers, where 0 < λ ≤ D (note
that the index λ = 0 is reserved for the input layer). We assume that the λ-th
layer, referred to as layer λ, is composed of m neurons (units) y1, . . . , ym, each
of which receiving real-weighted connections from the n neurons x1, . . . , xn
in the previous layer λ− 1.

This situation can be viewed as a complete weighted bipartite graph G =
(X, Y,E,w) where X = {x1, . . . , xn} and Y = {y1, . . . , ym} are disjoint sets
of inputs and outputs, respectively, E = X × Y is the set of directed edges
between inputs and outputs, and w : X×Y → R is a function that associates
each edge (xi, yj) with a real weight wji, for every j ∈ {1, . . . ,m} and every
i ∈ {1, . . . , n}. Moreover, each output yj will be associated with a real bias
wj0, for every j ∈ {1, . . . ,m}. In the sequel, the symbols xi and yj will
be indifferently used to denote input and output units as well as numerical
values held by them, respectively. The distinction will be clear from the
context.

The computation of layer λ refers to the computation of the output values
y1, . . . , ym based on the input values x1, . . . , xn, the weights and biases wji,
for j ∈ {1, . . . ,m} and i ∈ {0, . . . , n}, which is achieved by the following

6

equations:

yj = σ

(
wj0 +

n∑
i=1

wjixi

)
for every j = 1, . . . ,m , (2)

where σ is the activation function. Typically σ can be taken as the rectified
linear unit activation function given by ReLU(x) = max(0, x).

The computation energy Eλ
comp in (1) required for computing layer λ

can be evaluated directly. According to (2), each output yj requires one
initialization step followed by n MAC updates:

S ← wj0 and S ← S + wjixi for i = 1, . . . , n ,

where the current value of S is referred to as the accumulated output yj.
Hence, the total number of MAC operations needed for computing the out-
puts y1, . . . , ym in (2) is mn. The computation energy is thus given by

Eλ
comp = Cbmn (3)

where Cb is a non-uniform parameter depending on the number of bits b
in floating-point MAC operations, since the design of a MAC circuit in-
side a microprocessor differs for each b. For example, C8 = 0.56 pJ and
C16 = 2.20 pJ was estimated by the Timeloop/Accelergy program for the
8-bit Simba and the 16-bit Eyeriss architectures, respectively.

We now focus on the data energy Eλ
data in (1) necessary for the compu-

tation of layer λ. This energy cost can be split into three components that
count the DRAM accesses for the outputs, inputs, and weights separately:

Eλ
data = Eλ

outputs + Eλ
inputs + Eλ

weights . (4)

In order to evaluate the sums in (2), each pair of input and accumulated
output (xi, yj) must occur in Buffer at least once. For this purpose, each input
xi and output yj needs to be read from DRAM at least once. Furthermore,
each output yj must also be written back to DRAM sometime after its reading
in order to store its current value. By contrast, each weight wji only needs
to occur in Buffer once when the associated pair (xi, yj) meets in Buffer for
the first time. It follows that each weight wji requires only one reading from
DRAM, which in turn amounts to mn DRAM accesses for reading all the
weights.

7

Let ν and µ be the numbers of DRAM accesses to read inputs and outputs
(or biases when initialized), respectively, and b be the number of bits in
the floating point representation of outputs, inputs, and weights. The data
energy (4) can thus be written as

Eλ
data = b (2µ+ ν +mn) , (5)

since each output is read from and later written back into DRAM, which
corresponds to two DRAM accesses, as opposed to the inputs and weights
which are only read from DRAM. Consequently, in order to optimize the
data energy (4), it is sufficient to minimize the quantity 2µ+ ν.

3. A Lower Bound on Energy Complexity

We will now derive a general lower bound on the data energy (4) for fully-
connected layers. Assume that Buffer has a constant size of B = b(β + 1)
bits, where β > 1 floats are reserved for storing inputs and outputs, and the
remaining capacity of one float is dedicated to the weights. For notational
simplicity, assume that β− 1 divides m and suppose that m ≤ n. Note that,
by reading a single input or output into Buffer, one can get at most β − 1
new input-output pairs in Buffer.

For any dataflow, let r1 be the maximum number of times a single output
is read into Buffer that yields exactly β − 1 new input-output pairs. Denote
by y∗ ∈ Y one of such outputs and let Xi ⊂ X be the sets of inputs forming
the respective β − 1 = |Xi| new pairs Xi × {y∗} for every i ∈ {1, . . . , r1}.
Analogously, let r2 be the maximum number of times a single input is read
into Buffer that yields exactly β − 1 new pairs. Denote by x∗ ∈ X one of
such inputs and let Yj ⊂ Y be the sets of outputs creating the respective
β − 1 = |Yj| new pairs {x∗} × Yj for every j ∈ {1, . . . , r2}. Hereafter, we
will focus on the sets Yj while the analysis for Xi is analogous. Note that
the sets Yj are pairwise disjoint for all j ∈ {1, . . . , r2}, due to they produce
input-output pairs with x∗ that are new along the dataflow.

For each j ∈ {1, . . . , r2}, we denote by αj a DRAM access through which
an input x∗j ∈ X is read into Buffer that already includes outputs from Yj,
which generates exactly β − 1 new pairs {x∗j} × Yj, while the immediately
preceding reading into Buffer generates less than β − 1 new pairs. From
the definition of x∗, there is at least one such DRAM access for each j ∈
{1, . . . , r2}, and we choose any of them as αj if there are more.

8

For each j ∈ {1, . . . , r2}, we define β − 1 DRAM accesses υji, indexed by
i ∈ {1, . . . , β − 1} according to the time order along the dataflow, through
which the β − 1 outputs in Yj are read into Buffer, each output last time
before the DRAM access αj. Observe that υji are pairwise distinct for all
j ∈ {1, . . . , r2} and i ∈ {1, . . . , β − 1} because the sets Yj are pairwise
disjoint. For every i ∈ {1, . . . , β − 1}, denote by yji ∈ Yj the output that
is read through the DRAM access υji, and let mji be the number of new
input-output pairs in Buffer generated through υji.

For every i ∈ {1, . . . , β−1}, there are i outputs yj1, . . . , yji ∈ Yj in Buffer
after the DRAM access υji which remain there at least until the access αj.
In order to fit the Buffer capacity β, there are thus at most β − i inputs in
Buffer after υji, which implies mji ≤ β − i for every i ∈ {1, . . . , β − 1}. Let
kj ∈ {1, . . . , β − 1} be the maximum number of new input-output pairs in
Buffer that is produced by a DRAM access υji over i ∈ {1, . . . , β − 1}. It
follows that

mji ≤
{
kj for 1 ≤ i ≤ β − kj
β − i for β − kj + 1 ≤ i ≤ β − 1 .

(6)

Altogether, the number of new input-output pairs in Buffer generated
through the DRAM accesses υji for all i ∈ {1, . . . , β − 1}, can be upper
bounded as

β−1∑
i=1

mji ≤M(kj) (7)

where

M(k) = k(β − 1)− k(k − 1)

2
= − k

2

2
+

(
β − 1

2

)
k (8)

according to (6). The maximum of function M is at the point k∗ = β − 1
2

where M has the zero derivative M ′(k∗) = −k∗+β− 1
2

= 0 due to M ′′(k∗) =
−1 < 0, which is rounded to integer β−1 because M is increasing for k < k∗

where M ′(k) > 0. Hence,

β−1∑
i=1

mji ≤M(β − 1) =
β(β − 1)

2
. (9)

For each j ∈ {1, . . . , r2}, we have thus β − 1 unique DRAM accesses
υj1, . . . , υj,β−1 through which the outputs yj1, . . . , yj,β−1 ∈ Yj, respectively,
are read, yielding at most β(β − 1)/2 new input-output pairs in Buffer,

9

according to (9). Analogously, for each i ∈ {1, . . . , r1}, we have β− 1 unique
DRAM accesses ξj1, . . . , ξj,β−1 through which the inputs from Xi are read
that yield at most β(β − 1)/2 new input-output pairs in Buffer. For any
dataflow,

µ+ ν ≥ (β − 1)(r1 + r2) + s+ q + 1 (10)

where s and q+1 is the number of remaining DRAM read accesses (excluding
υj1, . . . , υj,β−1 and ξj1, . . . , ξj,β−1) that produce exactly β − 1 and less than
β − 1 new pairs (including the very first DRAM access yielding no pair),
respectively.

By the definition of r1 and r2, we know

r1 + r2 ≥
s

n− 1
(11)

since there are at most n−1 inputs that can generate new β−1 input-output
pairs with the outputs from Yj (excluding at least one input due to kj ≥ 1
for all j ∈ {1, . . . , r2}), and analogously for Xi where n ≥ m is assumed.
Furthermore, the maximum number of new input-output pairs generated
through the s DRAM accesses yielding exactly β − 1 new pairs and through
the necessarily associated υj1, . . . , υj,β−1 and ξj1, . . . , ξj,β−1 is upper bounded
by

(β − 1)s+
β(β − 1)

2

s

n− (β − 1)
(12)

for kj = β−1 according to (9). Hence, the remaining new input-output pairs
must be produced through the q DRAM accesses, each yielding at most β−2
new pairs, that is,

mn− (β − 1)s− β(β − 1)

2

s

n− (β − 1)
≤ (β − 2)q (13)

because all the mn pairs have to occur in Buffer.
By plugging (11) and (13) into (10), we get the following lower bound

µ+ ν ≥ (β − 1)s

n− 1
+ s+

mn− (β − 1)s− β(β−1)
2

s
n−(β−1)

β − 2
+ 1 (14)

=

(
β − 1

n− 1
− 1

β − 2
− β(β − 1)

2(β − 2)(n− (β − 1))

)
s+

mn

β − 2
+ 1 (15)

10

which is a linear function in terms of s. We prove that its slope is negative
for sufficiently large n, that is,

β − 1

n− 1
− 1

β − 2
− β(β − 1)

2(β − 2)(n− (β − 1))
< 0 . (16)

For n > β − 1, inequality (16) reduces to

0 < 2(n− (β − 1))(n− 1− (β − 1)(β − 2)) + β(β − 1)(n− 1) (17)

which holds for n > (β − 1)(β − 2). Hence, the expression (15) can be
lower bounded by substituting the maximum feasible value for s which is
s = m

β−1(n− (β − 1)) (recall υj1, . . . , υj,β−1, ξj1, . . . , ξj,β−1 are not counted in

the number of s and m < n is assumed) that is used to rewrite (14) as

µ+ ν ≥ mn

β − 1
− β − 2

n− 1
m+

m

2
+ 1 ≥ m(n− 1)

β − 1
+
m

2
+ 1 (18)

for n > (β − 1)(β − 2).
Since the biases of all m outputs must first be read into Buffer, we have

µ ≥ m, and thus

2µ+ ν ≥ m(n− 1)

β − 1
+

3

2
m+ 1 . (19)

This provides the general lower bound on the data energy of fully-connected
layer λ:

Eλ
data ≥ b

(
mn+

m(n− 1)

β − 1
+

3

2
m+ 1

)
(20)

according to (5).

4. Upper Bounds on Energy Complexity

Any correct dataflow for processing a fully-connected layer can be de-
scribed by a sequence of p sets B0, B1, . . . , Bp ⊆ X ∪ Y , each of which being
composed of vertices in G, that represent the successive contents of Buffer
(excluding weights) after each DRAM access to read an input or output, in
the course of evaluating the sums in (2). The sequence satisfies the following
conditions:

1. B0 = ∅

11

2. |Bt| ≤ β for every t = 1, . . . , p

3. |Bt \Bt−1| = 1 and |Bt−1 \Bt| ≤ 1 for every t = 1, . . . , p

4. Y ⊆ ⋃ {Bt | x ∈ Bt and 1 ≤ t ≤ p} for every x ∈ X
and its length p is the total number of DRAM read accesses,

p = µ+ ν . (21)

Condition 1 assumes empty Buffer at the beginning, and condition 2 guar-
antees that its size is not exceeded. Condition 3 ensures that, by reading a
single input or output into Buffer, at most one input or output is overwritten.
Condition 4 ensures that all of the outputs meet every input in Buffer.

In the two following subsections, we present two dataflows for a fixed and
bounded number of inputs in Buffer, respectively, such that each output is
read into Buffer only once (i.e., when initialized by a corresponding bias),
which means that

µ = m. (22)

Clearly, the role of inputs and outputs can be reversed in these dataflows.

4.1. Fixed Number of Inputs in Buffer

For the first dataflow, we assume that Buffer is partitioned into two sep-
arate parts for inputs and outputs, respectively, and contains one more float
for reading the weights. One part is reserved for storing d inputs and the
second one to store β − d outputs, where d is a fixed parameter such that
1 ≤ d ≤ β − 1. For notational simplicity, we assume that β − d divides m.

The main idea of the dataflow is that the m outputs are split into m
β−d

groups. These groups, each of size β − d outputs, are read into Buffer one
after the other with the next group overwriting the current one at specific
times when Buffer already contains d inputs. For each such group loaded into
Buffer, all the remaining n−d inputs are read into Buffer one by one in such
a way that the currently read input replaces a previously read one. This
procedure ensures that all the mn input-output pairs will occur in Buffer
within its capacity of d inputs and β−d outputs. This dataflow is illustrated
in Figure 2.

The dataflow is formally described in Algorithm 1 where the comments
(beginning with double slashes) specify the current Buffer contents Bt ⊆
X∪Y after t DRAM read accesses. Thus, the sequence of sets B0, B1, . . . , Bp

meets conditions 1–4, |Bt∩X| ≤ d, and |Bt∩Y | ≤ β−d for every t = 0, . . . , p.

12

<latexit sha1_base64="GfeuwLy/dF+bPS2lnyibjhzrjTI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IU/DgWvHisaGuhDWWz2bRLN5uwOxFK6U/w4kERr/4ib/4bt20O2vpg4PHeDDPzglQKg6777RTW1jc2t4rbpZ3dvf2D8uFR2ySZZrzFEpnoTkANl0LxFgqUvJNqTuNA8sdgdDPzH5+4NiJRDzhOuR/TgRKRYBStdF8Nq/1yxa25c5BV4uWkAjma/fJXL0xYFnOFTFJjup6boj+hGgWTfFrqZYanlI3ogHctVTTmxp/MT52SM6uEJEq0LYVkrv6emNDYmHEc2M6Y4tAsezPxP6+bYXTtT4RKM+SKLRZFmSSYkNnfJBSaM5RjSyjTwt5K2JBqytCmU7IheMsvr5J2veZd1i7u6pWGm8dRhBM4hXPw4AoacAtNaAGDATzDK7w50nlx3p2PRWvByWeO4Q+czx98xI06</latexit>

d
<latexit sha1_base64="AHpgXzZUFWzQn/lBLHuHcIjiNOs=">AAAB7HicbVBNS8NAEJ34WetX1aOXxVbwYkkKfhwLXjxWMG2hDWWz2bRLN7thdyOU0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmhSln2rjut7O2vrG5tV3aKe/u7R8cVo6O21pmilCfSC5VN8Saciaob5jhtJsqipOQ0044vpv5nSeqNJPi0UxSGiR4KFjMCDZW8mviMqoNKlW37s6BVolXkCoUaA0qX/1IkiyhwhCOte55bmqCHCvDCKfTcj/TNMVkjIe0Z6nACdVBPj92is6tEqFYKlvCoLn6eyLHidaTJLSdCTYjvezNxP+8Xmbi2yBnIs0MFWSxKM44MhLNPkcRU5QYPrEEE8XsrYiMsMLE2HzKNgRv+eVV0m7Uvev61UOj2nSLOEpwCmdwAR7cQBPuoQU+EGDwDK/w5gjnxXl3Phata04xcwJ/4Hz+ALN9jek=</latexit>

n� d

<latexit sha1_base64="AynybawIOu+9bYrW8bEG8Zc6dpE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IU/DgWvHisaGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMb2b+4xMqzWP5YCYJ+hEdSh5yRo2V7quy2i9X3Jo7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdr3mXtYu7eqXh5nEU4QRO4Rw8uIIG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8weL9o1E</latexit>n

<latexit sha1_base64="sYQLYZ6gG1500dvVEhh139XZG+o=">AAAB8nicbVDLSsNAFJ34rPVVdelmsBXcWJKCj2XBjcsK9gFpKJPJpB06mQkzN0IJ/Qw3LhRx69e482+ctllo64ELh3Pu5d57wlRwA6777aytb2xubZd2yrt7+weHlaPjjlGZpqxNlVC6FxLDBJesDRwE66WakSQUrBuO72Z+94lpw5V8hEnKgoQMJY85JWAlv9YPGRB8iaPaoFJ16+4ceJV4BamiAq1B5asfKZolTAIVxBjfc1MIcqKBU8Gm5X5mWEromAyZb6kkCTNBPj95is+tEuFYaVsS8Fz9PZGTxJhJEtrOhMDILHsz8T/PzyC+DXIu0wyYpItFcSYwKDz7H0dcMwpiYgmhmttbMR0RTSjYlMo2BG/55VXSadS96/rVQ6PadIs4SugUnaEL5KEb1ET3qIXaiCKFntErenPAeXHenY9F65pTzJygP3A+fwBVro/v</latexit>

� � d

<latexit sha1_base64="sYQLYZ6gG1500dvVEhh139XZG+o=">AAAB8nicbVDLSsNAFJ34rPVVdelmsBXcWJKCj2XBjcsK9gFpKJPJpB06mQkzN0IJ/Qw3LhRx69e482+ctllo64ELh3Pu5d57wlRwA6777aytb2xubZd2yrt7+weHlaPjjlGZpqxNlVC6FxLDBJesDRwE66WakSQUrBuO72Z+94lpw5V8hEnKgoQMJY85JWAlv9YPGRB8iaPaoFJ16+4ceJV4BamiAq1B5asfKZolTAIVxBjfc1MIcqKBU8Gm5X5mWEromAyZb6kkCTNBPj95is+tEuFYaVsS8Fz9PZGTxJhJEtrOhMDILHsz8T/PzyC+DXIu0wyYpItFcSYwKDz7H0dcMwpiYgmhmttbMR0RTSjYlMo2BG/55VXSadS96/rVQ6PadIs4SugUnaEL5KEb1ET3qIXaiCKFntErenPAeXHenY9F65pTzJygP3A+fwBVro/v</latexit>

� � d

<latexit sha1_base64="sYQLYZ6gG1500dvVEhh139XZG+o=">AAAB8nicbVDLSsNAFJ34rPVVdelmsBXcWJKCj2XBjcsK9gFpKJPJpB06mQkzN0IJ/Qw3LhRx69e482+ctllo64ELh3Pu5d57wlRwA6777aytb2xubZd2yrt7+weHlaPjjlGZpqxNlVC6FxLDBJesDRwE66WakSQUrBuO72Z+94lpw5V8hEnKgoQMJY85JWAlv9YPGRB8iaPaoFJ16+4ceJV4BamiAq1B5asfKZolTAIVxBjfc1MIcqKBU8Gm5X5mWEromAyZb6kkCTNBPj95is+tEuFYaVsS8Fz9PZGTxJhJEtrOhMDILHsz8T/PzyC+DXIu0wyYpItFcSYwKDz7H0dcMwpiYgmhmttbMR0RTSjYlMo2BG/55VXSadS96/rVQ6PadIs4SugUnaEL5KEb1ET3qIXaiCKFntErenPAeXHenY9F65pTzJygP3A+fwBVro/v</latexit>

� � d

<latexit sha1_base64="gWTizKk5DRKlljkU3E3mUbzrbh0=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BFvBU9kt+HEsePFY0dZCu5Rsmm1Dk+ySZIWy9Cd48aCIV3+RN/+NabsHbX0w8Hhvhpl5YSK4sZ73jQpr6xubW8Xt0s7u3v5B+fCobeJUU9aisYh1JySGCa5Yy3IrWCfRjMhQsMdwfDPzH5+YNjxWD3aSsECSoeIRp8Q66b4qq/1yxat5c+BV4uekAjma/fJXbxDTVDJlqSDGdH0vsUFGtOVUsGmplxqWEDomQ9Z1VBHJTJDNT53iM6cMcBRrV8riufp7IiPSmIkMXackdmSWvZn4n9dNbXQdZFwlqWWKLhZFqcA2xrO/8YBrRq2YOEKo5u5WTEdEE2pdOiUXgr/88ipp12v+Ze3irl5peHkcRTiBUzgHH66gAbfQhBZQGMIzvMIbEugFvaOPRWsB5TPH8Afo8weKcY1D</latexit>m

Figure 2: Illustration of the dataflow for partitioned Buffer with d inputs and β − d
outputs. The column and row indices represent inputs x1, . . . , xn and outputs y1, . . . , ym,
respectively. The horizontal (white) and vertical (black) arrows represent input and output
readings into Buffer, respectively. Every time a new input-output pair (xi, yj) meets into
Buffer, the weight wji is read and the accumulated output yj is updated by the MAC
operation yj ← yj + wjixi. At the beginning, the first d inputs are read (6 first top
horizontal arrows). Then, the first block of β − d outputs is read (top vertical arrows),
which leads to the meeting of new input-output pairs (top left cells, dark region). Then,
the remaining n − d inputs are read (remaining top horizontal arrows), leading to new
input-output pairs (top right cells, light region). At this point, Buffer contains the d
inputs that were lastly read and the second block of β− d outputs is read (middle vertical
arrows), which yields new input-output pairs (middle right cells, dark region). Afterwards,
the remaining n− d inputs are read in the backward direction (middle horizontal arrows),
generating new input-output pairs (middle left cells, light region). The dataflow continues
in this way by reading outputs and inputs alternatively.

At the beginning when Buffer is empty (line 1), the first d inputs are
read into Buffer (loop 2-4) so that Bd = {x1, . . . , xd} (line 4). Then the
algorithm continues with the outer for loop 5–27 which goes through all the
m
β−d groups of β − d outputs, indexed as k = 0, . . . , m

β−d − 1. These β − d
outputs are read into Buffer during the first inner loop 6–13. In particular,
for the first group of outputs with the index k = 0 (line 7) when Buffer
contains only the d inputs x1, . . . , xd, these β − d outputs y1, . . . , yβ−d are
just read into Buffer (line 8) in which there is enough space for them. This
means Bβ = {x1, . . . , xd, y1, . . . , yβ−d} (cf. line 13 for k = 0).

For the next group of outputs with index k > 0 (line 9), these β − d

13

Algorithm 1 The dataflow with a fixed number d of inputs in Buffer.
1: // B0 = ∅

2: for i = 1 to d do
3: read xi into Buffer // Bi = {x1, . . . , xi}

4: end for // Bd = {x1, . . . , xd}

5: for k = 0 to m
β−d − 1 do

6: for j = 1 to β − d do
7: if k = 0 then
8: read yj into Buffer // Bd+j = {x1, . . . , xd, y1, . . . , yj}

9: else
10: read yk(β−d)+j into Buffer by overwriting y(k−1)(β−d)+j
11: //

{
yk(β−d)+1, . . . , yk(β−d)+j , y(k−1)(β−d)+j+1, . . . , yk(β−d)

}
⊂ Bk(n+β−2d)+d+j

12: end if
13: end for //

{
yk(β−d)+1, . . . , y(k+1)(β−d)

}
⊂ Bk(n+β−2d)+β

14: if k is even then
15: // Bk(n+β−2d)+β =

{
x1, . . . , xd, yk(β−d)+1, . . . , y(k+1)(β−d)

}
16: for i = 1 to n− d do
17: read xi+d into Buffer by overwriting xi
18: // Bk(n+β−2d)+β+i =

{
xi+1, . . . , xi+d, yk(β−d)+1, . . . , y(k+1)(β−d)

}
19: end for // B(k+1)(n+β−2d)+d =

{
xn−d+1, . . . , xn, yk(β−d)+1, . . . , y(k+1)(β−d)

}
20: else
21: // Bk(n+β−2d)+β =

{
xn−d+1, . . . , xn, yk(β−d)+1, . . . , y(k+1)(β−d)

}
22: for i = n− d downto 1 do
23: read xi into Buffer by overwriting xi+d
24: // Bk(n+β−2d)+n+β−d−i+1 =

{
xi, . . . , xi+d−1, yk(β−d)+1, . . . , y(k+1)(β−d)

}
25: end for // B(k+1)(n+β−2d)+d =

{
x1, . . . , xd, yk(β−d)+1, . . . , y(k+1)(β−d)

}
26: end if
27: end for

outputs yk(β−d)+1, . . . , y(k+1)(β−d) are read into Buffer one by one replacing
the β − d outputs y(k−1)(β−d)+1, . . . , yk(β−d) from the previous group with
index k − 1 (lines 10–11). Thus, the whole group of outputs with index k is
then contained in Buffer (line 13 where the index of Bk(n+β−2d)+β for k > 0
takes into account also the DRAM accesses through which inputs are read
into Buffer in between reading two groups, as described on lines 14–26 and
commented below).

The following second inner for loop is used to read the n− d inputs into

14

Buffer one by one in addition to the d inputs that are already in Buffer.
In order to keep the capacity of d inputs in Buffer, each newly read input
rewrites an input that has resided in Buffer the longest time before. Namely,
there are two alternating versions of this loop, depending on whether k is even
or not (line 14). For even k, the loop 16–19 starts with Buffer including the
d inputs x1, . . . , xd (line 15), reads the inputs forward (line 17), and finishes
with the d inputs xn−d+1, . . . , xn in Buffer (line 19). For odd k (line 20),
on the contrary, the loop 22–25 starts with Buffer including the d inputs
xn−d+1, . . . , xn (line 21), reads the inputs backward (line 23), and finishes with
the d inputs x1, . . . , xd in Buffer (line 25). In both cases, all the n inputs meet
each of the β − d outputs of the group with index k which resides currently
in Buffer. This is repeated for every group of outputs (outer loop 5–27),
which guarantees that all the mn input-output pairs will occur in Buffer.

We will calculate the number p of DRAM read accesses in the dataflow
described by Algorithm 1. After the first d inputs are read into Buffer in the
loop 2–4, the outer loop 5–27 which runs m

β−d times, includes β − d DRAM
accesses to read outputs in the loop 6-13 and n − d DRAM accesses for
reading inputs either in the loop 16–19 or in the loop 22–25. Altogether, we
have

p = d+
m

β − d ((β − d) + (n− d)) =
m(n− d)

β − d +m+ d . (23)

Hence, this dataflow provides an upper bound on the data energy of fully-
connected layer λ:

Eλ
data ≤ b

(
mn+

m(n− d)

β − d + 2m+ d

)
(24)

according to (5), (21), and (22). This upper bound takes the smallest value
for d = 1, provided that n ≥ β, since n ≥ β is equivalent to

m(n− 1)

β − 1
≤ m(n− d)

β − d .

Furthermore, an alternative upper bound to (24) is obtained when the
roles of the inputs and outputs are reversed in Algorithm 1:

Eλ
data ≤ b

(
mn+

2n(m− (β − d))

d
+ n+ 2(β − d)

)
. (25)

15

This upper bound has the smallest value for d = β−1, provided that m ≥ β,
since m ≥ β is equivalent to

2n(m− 1)

β − 1
≤ 2n(m− (β − d))

d
.

Finally, assuming n ≥ β and m ≥ β, we can compare (24) and (25) for
their smallest values, namely d = 1 and d = β − 1, respectively:

b

(
mn+

m(n− 1)

β − 1
+ 2m+ 1

)
?

≤ b

(
mn+

2n(m− 1)

β − 1
+ n+ 2

)
(26)

which can be rewritten as

0
?

≤ m(n− 2β + 3) + n(β − 3) + β − 1 . (27)

This inequality holds for n > 2β−3 implying n ≥ β, due to β ≥ 2. Therefore,
we can conclude that for sufficiently large n > 2β − 3 and m ≥ β, the
minimal energy for fully-connected layers achieved by the dataflow described
in Algorithm 1 is obtained when d = 1, i.e., when Buffer is partitioned to
β−1 outputs, one input, and one weight. This situation leads to the following
upper bound:

Eλ
data ≤ b

(
mn+

m(n− 1)

β − 1
+ 2m+ 1

)
. (28)

4.2. Bounded Number of Inputs in Buffer

The second dataflow is parameterized by the maximum number c of inputs
that can simultaneously occur in Buffer, where 1 ≤ c ≤ β−1. For notational
simplicity, we assume that β − 1 divides m.

The main idea of the dataflow is that the m outputs are split into m
β−1

groups. These groups, each of size β − 1 outputs, are read into Buffer one
after the other in such a way that the next group overwrites β − c outputs
of the current group and c − 1 out of c inputs currently stored in Buffer.
For each such group loaded into Buffer, all the n− 1 inputs are read one by
one into Buffer so that each of the first n − c of these inputs replaces the
previously read input whereas the last c − 1 inputs overwrite outputs from
the current group. This procedure ensures that all the mn input-output pairs
will occur in Buffer containing at most c inputs. This dataflow is illustrated
in Figure 3.

16

<latexit sha1_base64="AynybawIOu+9bYrW8bEG8Zc6dpE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IU/DgWvHisaGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMb2b+4xMqzWP5YCYJ+hEdSh5yRo2V7quy2i9X3Jo7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdr3mXtYu7eqXh5nEU4QRO4Rw8uIIG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8weL9o1E</latexit>n

<latexit sha1_base64="gWTizKk5DRKlljkU3E3mUbzrbh0=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BFvBU9kt+HEsePFY0dZCu5Rsmm1Dk+ySZIWy9Cd48aCIV3+RN/+NabsHbX0w8Hhvhpl5YSK4sZ73jQpr6xubW8Xt0s7u3v5B+fCobeJUU9aisYh1JySGCa5Yy3IrWCfRjMhQsMdwfDPzH5+YNjxWD3aSsECSoeIRp8Q66b4qq/1yxat5c+BV4uekAjma/fJXbxDTVDJlqSDGdH0vsUFGtOVUsGmplxqWEDomQ9Z1VBHJTJDNT53iM6cMcBRrV8riufp7IiPSmIkMXackdmSWvZn4n9dNbXQdZFwlqWWKLhZFqcA2xrO/8YBrRq2YOEKo5u5WTEdEE2pdOiUXgr/88ipp12v+Ze3irl5peHkcRTiBUzgHH66gAbfQhBZQGMIzvMIbEugFvaOPRWsB5TPH8Afo8weKcY1D</latexit>m

<latexit sha1_base64="0gzW2JmNCd0JNptmfGJEvI74+WY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IU/DgWvHisaGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMb2b+4xMqzWP5YCYJ+hEdSh5yRo2V7qus2i9X3Jo7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdr3mXtYu7eqXh5nEU4QRO4Rw8uIIG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wd7P405</latexit>c

<latexit sha1_base64="0cJ9BfFsl+0WdvRV7fOVz9ikrYs=">AAAB8HicbVDLSgNBEJyNrxhfUY9eBhPBi2E34OMY8OIxgnlIsoTZSW8yZHZ2mekVQshXePGgiFc/x5t/4yTZgyYWNBRV3XR3BYkUBl3328mtrW9sbuW3Czu7e/sHxcOjpolTzaHBYxnrdsAMSKGggQIltBMNLAoktILR7cxvPYE2IlYPOE7Aj9hAiVBwhlZ6LHcDQHbBy71iya24c9BV4mWkRDLUe8Wvbj/maQQKuWTGdDw3QX/CNAouYVropgYSxkdsAB1LFYvA+JP5wVN6ZpU+DWNtSyGdq78nJiwyZhwFtjNiODTL3kz8z+ukGN74E6GSFEHxxaIwlRRjOvue9oUGjnJsCeNa2FspHzLNONqMCjYEb/nlVdKsVryryuV9tVRzszjy5IScknPikWtSI3ekThqEk4g8k1fy5mjnxXl3PhatOSebOSZ/4Hz+AKQLj5o=</latexit>

� � c

<latexit sha1_base64="lNqz+fAQkFpbGzme8XoYhmZNgVQ=">AAAB7HicbVBNS8NAEJ34WetX1aOXxVbwYkkKfhwLXjxWMG2hDWWz3bRLN5uwOxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777aytb2xubRd2irt7+weHpaPjpkkyzbjPEpnodkgNl0JxHwVK3k41p3EoeSsc3c381hPXRiTqEccpD2I6UCISjKKV/Aq79Cq9UtmtunOQVeLlpAw5Gr3SV7efsCzmCpmkxnQ8N8VgQjUKJvm02M0MTykb0QHvWKpozE0wmR87JedW6ZMo0bYUkrn6e2JCY2PGcWg7Y4pDs+zNxP+8TobRbTARKs2QK7ZYFGWSYEJmn5O+0JyhHFtCmRb2VsKGVFOGNp+iDcFbfnmVNGtV77p69VAr1908jgKcwhlcgAc3UId7aIAPDAQ8wyu8Ocp5cd6dj0XrmpPPnMAfOJ8/VTGNqw==</latexit>

c� 1

<latexit sha1_base64="GsGzQ6h2HRyuvQ8Hu7b1dB0Ov5Y=">AAAB7HicbVBNS8NAEJ34WetX1aOXxVbwYkkKfhwLXjxWMG2hDWWz3bRLN5uwOxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777aytb2xubRd2irt7+weHpaPjpkkyzbjPEpnodkgNl0JxHwVK3k41p3EoeSsc3c381hPXRiTqEccpD2I6UCISjKKV/Iq6ZJVeqexW3TnIKvFyUoYcjV7pq9tPWBZzhUxSYzqem2IwoRoFk3xa7GaGp5SN6IB3LFU05iaYzI+dknOr9EmUaFsKyVz9PTGhsTHjOLSdMcWhWfZm4n9eJ8PoNpgIlWbIFVssijJJMCGzz0lfaM5Qji2hTAt7K2FDqilDm0/RhuAtv7xKmrWqd129eqiV624eRwFO4QwuwIMbqMM9NMAHBgKe4RXeHOW8OO/Ox6J1zclnTuAPnM8fsfiN6A==</latexit>n� c

<latexit sha1_base64="0cJ9BfFsl+0WdvRV7fOVz9ikrYs=">AAAB8HicbVDLSgNBEJyNrxhfUY9eBhPBi2E34OMY8OIxgnlIsoTZSW8yZHZ2mekVQshXePGgiFc/x5t/4yTZgyYWNBRV3XR3BYkUBl3328mtrW9sbuW3Czu7e/sHxcOjpolTzaHBYxnrdsAMSKGggQIltBMNLAoktILR7cxvPYE2IlYPOE7Aj9hAiVBwhlZ6LHcDQHbBy71iya24c9BV4mWkRDLUe8Wvbj/maQQKuWTGdDw3QX/CNAouYVropgYSxkdsAB1LFYvA+JP5wVN6ZpU+DWNtSyGdq78nJiwyZhwFtjNiODTL3kz8z+ukGN74E6GSFEHxxaIwlRRjOvue9oUGjnJsCeNa2FspHzLNONqMCjYEb/nlVdKsVryryuV9tVRzszjy5IScknPikWtSI3ekThqEk4g8k1fy5mjnxXl3PhatOSebOSZ/4Hz+AKQLj5o=</latexit>

� � c

<latexit sha1_base64="lNqz+fAQkFpbGzme8XoYhmZNgVQ=">AAAB7HicbVBNS8NAEJ34WetX1aOXxVbwYkkKfhwLXjxWMG2hDWWz3bRLN5uwOxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777aytb2xubRd2irt7+weHpaPjpkkyzbjPEpnodkgNl0JxHwVK3k41p3EoeSsc3c381hPXRiTqEccpD2I6UCISjKKV/Aq79Cq9UtmtunOQVeLlpAw5Gr3SV7efsCzmCpmkxnQ8N8VgQjUKJvm02M0MTykb0QHvWKpozE0wmR87JedW6ZMo0bYUkrn6e2JCY2PGcWg7Y4pDs+zNxP+8TobRbTARKs2QK7ZYFGWSYEJmn5O+0JyhHFtCmRb2VsKGVFOGNp+iDcFbfnmVNGtV77p69VAr1908jgKcwhlcgAc3UId7aIAPDAQ8wyu8Ocp5cd6dj0XrmpPPnMAfOJ8/VTGNqw==</latexit>

c� 1

<latexit sha1_base64="txA3203742KUZs5X0eN+VBtjSnY=">AAAB8HicbVDLSgNBEJyNrxhfUY9eBhPBi2E34OMY8OIxgnlIsoTZSW8yZHZ2mekVQshXePGgiFc/x5t/4yTZgyYWNBRV3XR3BYkUBl3328mtrW9sbuW3Czu7e/sHxcOjpolTzaHBYxnrdsAMSKGggQIltBMNLAoktILR7cxvPYE2IlYPOE7Aj9hAiVBwhlZ6LHcDQHbhlXvFkltx56CrxMtIiWSo94pf3X7M0wgUcsmM6Xhugv6EaRRcwrTQTQ0kjI/YADqWKhaB8Sfzg6f0zCp9GsbalkI6V39PTFhkzDgKbGfEcGiWvZn4n9dJMbzxJ0IlKYLii0VhKinGdPY97QsNHOXYEsa1sLdSPmSacbQZFWwI3vLLq6RZrXhXlcv7aqnmZnHkyQk5JefEI9ekRu5InTQIJxF5Jq/kzdHOi/PufCxac042c0z+wPn8AVgRj2g=</latexit>

� � 1

<latexit sha1_base64="txA3203742KUZs5X0eN+VBtjSnY=">AAAB8HicbVDLSgNBEJyNrxhfUY9eBhPBi2E34OMY8OIxgnlIsoTZSW8yZHZ2mekVQshXePGgiFc/x5t/4yTZgyYWNBRV3XR3BYkUBl3328mtrW9sbuW3Czu7e/sHxcOjpolTzaHBYxnrdsAMSKGggQIltBMNLAoktILR7cxvPYE2IlYPOE7Aj9hAiVBwhlZ6LHcDQHbhlXvFkltx56CrxMtIiWSo94pf3X7M0wgUcsmM6Xhugv6EaRRcwrTQTQ0kjI/YADqWKhaB8Sfzg6f0zCp9GsbalkI6V39PTFhkzDgKbGfEcGiWvZn4n9dJMbzxJ0IlKYLii0VhKinGdPY97QsNHOXYEsa1sLdSPmSacbQZFWwI3vLLq6RZrXhXlcv7aqnmZnHkyQk5JefEI9ekRu5InTQIJxF5Jq/kzdHOi/PufCxac042c0z+wPn8AVgRj2g=</latexit>

� � 1

Figure 3: Illustration of the dataflow with a bounded number c of inputs in Buffer. At
the beginning, the first c inputs are read (top horizontal arrows). Afterwards, β − c and
then c − 1 outputs are read (top vertical arrows), which generates the first input-output
pairs (top left cell cells, squared and stair-shaped dark regions, respectively). Note that
the readings of the c − 1 outputs overwrite c − 1 inputs currently stored in Buffer, and

hence only generate c(c−1)
2 new input-output pairs (stair-shaped dark region). Next, the

remaining n − c and the already considered c − 1 inputs are read in the reverse order
(middle horizontal arrows), all of them yielding novel input-output pairs (top right cells,
squared and stair-shaped block, respectively). Note that the last c− 1 inputs read, which
overwrite c − 1 outputs currently stored in Buffer, had already been processed earlier in

Buffer and thus generate only c(c−1)
2 new input-output pairs (stair-shaped light region).

The dataflow continues in this way by reading outputs and inputs alternatively. At each
iteration of the outer loop, input readings are shifted by one position in a circular fashion.

The dataflow is formally described in Algorithm 2 where the comments
(beginning with double slashes) specify the current Buffer contents Bt ⊆
X∪Y after t DRAM read accesses. Thus, the sequence of sets B0, B1, . . . , Bp

satisfies conditions 1–4 and |Bt ∩X| ≤ c for every t = 0, . . . , p.
At the beginning when Buffer is empty (line 1), the first c inputs are read

into Buffer (loop 2–4) so that Bc = {x1, . . . , xc} (line 4). Then the algorithm
continues with the outer for loop 6–28 which goes through all the m

β−1 groups
of β − 1 outputs, indexed as k = 0, . . . , m

β−1 − 1.
The first β− c of these β− 1 outputs are read into Buffer during the first

inner for loop 6–13. Namely, for the first group of outputs with the index

17

Algorithm 2 The dataflow with a bounded number c of inputs in Buffer.
1: // B0 = ∅

2: for i = 1 to c do
3: read xi into Buffer // Bi = {x1, . . . , xi}

4: end for // Bc = {x1, . . . , xc}

5: for k = 0 to m
β−1 − 1 do

6: for j = 1 to β − c do
7: if k = 0 then
8: read yj into Buffer // Bc+j = {x1, . . . , xc, y1, . . . , yj}

9: else
10: read yk(β−1)+j into Buffer by overwriting y(k−1)(β−1)+c+j−1
11: //

{
yk(β−1)+1, . . . , yk(β−1)+j , y(k−1)(β−1)+c+j , . . . , yk(β−1)

}
⊂ Bk(n+β−2)+c+j

12: end if
13: end for

// Bk(n+β−2)+β =
{
x(k mod n)+1, . . . , x((k+c−1) mod n)+1, yk(β−1)+1, . . . , yk(β−1)+β−c

}
14: for j = β − c+ 1 to β − 1 do
15: `← ((k + β − j) mod n) + 1
16: read yk(β−1)+j into Buffer by overwriting x`
17: end for // Bk(n+β−2)+β+c−1 =

{
x(k mod n)+1, yk(β−1)+1, . . . , y(k+1)(β−1)

}
18: for i = n+ k downto k + c+ 1 do
19: `← ((i− 1) mod n) + 1 ; `1 ← (i mod n) + 1
20: read x` into Buffer by overwriting x`1
21: // Bk(n+β−2)+n+β+k+c−i =

{
x`, yk(β−1)+1, . . . , y(k+1)(β−1)

}
22: end for // Bk(n+β−2)+n+β−1 =

{
x((k+c) mod n)+1, yk(β−1)+1, . . . , y(k+1)(β−1)

}
23: for i = k + c downto k + 2 do
24: `← ((i− 1) mod n) + 1
25: read x` into Buffer by overwriting yk(β−1)+k+c−i+1

26: // Bk(n+β−2)+n+β+k+c−i =
{
x`, . . . , x((k+c) mod n)+1, yk(β−1)+c+k−i+2, . . . , y(k+1)(β−1)

}
27: end for

// B(k+1)(n+β−2)+c =
{
x((k+1) mod n)+1, . . . , x((k+c) mod n)+1, yk(β−1)+c, . . . , y(k+1)(β−1)

}
28: end for

k = 0 (line 7), when Buffer contains only the c inputs x1, . . . , xc, these β − c
outputs y1, . . . , yβ−c are just read into Buffer (line 8) in which there is enough
space for them, which means Bβ = {x1, . . . , xc, y1, . . . , yβ−c} (cf. line 13 for
k = 0). For the next groups of outputs with index k > 0 (line 9), these β− c
outputs yk(β−1)+1, . . . , yk(β−1)+β−c are read into Buffer one by one, replacing

18

the β − c outputs y(k−1)(β−1)+c, . . . , y(k−1)(β−1)+β−1 which remained in Buffer
from the previous group with index k − 1 (lines 10–11).

In the following second inner for loop 14–17, the remaining c− 1 outputs
yk(β−1)+β−c+1, . . . , yk(β−1)+β−1 of the current group with index k ≥ 0, are read
into Buffer one by one, overwriting the c − 1 inputs x((k+c−1) mod n)+1, . . . ,
x(k mod n)+2 with decreasing index, respectively (line 16), that are currently
stored in Buffer (line 13). This means that only one input x(k mod n)+1 remains
there (line 17). Note that the indices of inputs are shifted by k and looped
using the modulo function (line 15) so that the nth input is followed by the
first one which, on the other hand, is preceded by the nth input. Thus, the
whole group of outputs with index k is then contained in Buffer (line 17
where the index of Bk(n+β−2)+β+c−1 for k > 0 takes into account also the
DRAM accesses in between reading two groups as described on lines 18–27
and commented below).

The third inner for loop 18–22 is used to read n−c inputs into Buffer one
by one, starting with x((n+k−1) mod n)+1 and following the decreasing index, in
such a way that each such input replaces the previously read one (lines 19–
20). This continues in the last inner for loop 23–27 where the remaining c−1
inputs x((k+c−1) mod n)+1, . . . , x((k+1) mod n)+1 with decreasing index, are read
into Buffer one by one, overwriting the c−1 outputs yk(β−1)+1, . . . , yk(β−1)+c−1,
respectively, from the current group with index k (lines 24–26).

According to line 13, the first β−c outputs yk(β−1)+1, . . . , yk(β−1)+β−c from
the kth group meet the c − 1 inputs x((k+1) mod n)+1, . . . , x((k+c−1) mod n)+1 in
Buffer. The remaining c − 1 outputs yk(β−1)+β−c+1, . . . , y(k+1)(β−1) from this
group occur in Buffer simultaneously with these c − 1 inputs, as stated in
line 27. The whole kth group of outputs yk(β−1)+1, . . . , y(k+1)(β−1) meets the
input x(k mod n)+1 in Buffer after the loop 14–17 is performed (line 17), while
each of the remaining n− c inputs occurs at the same time with this group
in Buffer during the loop 18–22 (line 21). This is repeated for every group
of outputs (outer loop 5–28), which guarantees that all the mn input-output
pairs will occur in Buffer.

We will calculate the number p of DRAM read accesses in the dataflow
described by Algorithm 2. After the first c inputs are read into Buffer in
the loop 2–4, the outer loop 5–28 which runs m

β−1 times, includes β − c and
c − 1 DRAM accesses to read outputs in the inner loops 6-13 and 14-17,
respectively, and n − c and c − 1 DRAM accesses for reading inputs in the

19

inner loops 18–22 and 23–27, respectively. Altogether, we have

p = c+
m

β − 1
((β − c) + (c− 1) + (n− c) + (c− 1))

=
m(n− 1)

β − 1
+m+ c . (29)

Hence, this dataflow provides an upper bound on the data energy of fully-
connected layer λ:

Eλ
data ≤ b

(
mn+

m(n− 1)

β − 1
+ 2m+ c

)
(30)

according to (5), (21), and (22). Note that Algorithm 1 for d = 1 coincides
with Algorithm 2 for c = 1, producing the same upper bound (28).

This upper bound (28) can be compared to the general lower bound (20)
on the data energy which is still smaller by the linear additive term 1

2
m.

The lower bound will be improved in some special cases in Section 5. Never-
theless, we have achieved the asymptotically optimal quadratic data energy
complexity of evaluating a fully-connected layer in terms of the number of
its inputs and outputs.

5. Optimal Energy Complexity for Partitioned Buffer

We now study the case where Buffer is divided into two separated parts
dedicated to the reading of d inputs and β−d outputs, respectively, plus one
float for weights, where d is a fixed parameter such that 1 ≤ d ≤ β − 1. In
this context, we improve the general lower bound (20) on the data energy
Eλ

data of fully-connected layer λ so that it matches the upper bounds (24)
and (25), up to an additive constant. We distinguish two cases according to
whether d is at most or at least 2

3
β.

Case 1 ≤ d ≤ 2
3
β. Assume first that

1 ≤ d ≤ 2
3
β . (31)

We formulate a linear program of finding µ and ν that

minimize 2µ+ ν (32)

subject to dµ+ (β − d)ν ≥ mn (33)

µ ≥ m (34)

ν ≥ 0 , µ ≥ 0 . (35)

20

Constraint (33) expresses the fact that all mn input-output couples have to
occur in Buffer, since by reading one output or input, at most d or β − d
new pairs meet in Buffer, respectively. Constraint (34) ensures that at least
m outputs are read into Buffer. We convert the linear program (32)–(35) to
the corresponding dual linear program of finding φ and ψ that

maximize mnφ+mψ (36)

subject to dφ+ ψ ≤ 2 (37)

(β − d)φ ≤ 1 (38)

φ ≥ 0, ψ ≥ 0 . (39)

Observe that φ0 = 1
β−d and ψ0 = 2 − d

β−d is a feasible solution for the dual

program, satisfying (37)–(39) due to (31). By the weak duality theorem, the
objective function value of the primal (32) at any feasible solution is lower
bounded by the objective function value of the dual (36) at any feasible
solution, that is,

2µ+ ν ≥ mnφ0 +mψ0 =
m(n− d)

β − d + 2m. (40)

According to (5), inequality (40) provides the following lower bound on the
data complexity of fully-connected layer λ:

Eλ
data ≥ b

(
mn+

m(n− d)

β − d + 2m

)
(41)

when Buffer is divided into two parts for d inputs and β−d outputs, and the
fixed parameter d meets (31). This lower bound matches the corresponding
upper bound (24) achieved by the dataflow described in Algorithm 1, up to
the additive constant d.

Case 2
3
β ≤ d ≤ β − 1. Similarly, for

2
3
β ≤ d ≤ β − 1 , (42)

we have a linear program of finding µ and ν that minimize 2µ + ν subject
to dµ + (β − d)ν ≥ mn, ν ≥ n, ν ≥ 0, and µ ≥ 0. This is converted to
the corresponding dual linear program of finding φ and ψ that maximize
mnφ + nψ subject to dφ ≤ 2, (β − d)φ + ψ ≤ 1, ψ ≥ 0, and ψ ≥ 0, which

21

has a feasible solution φ1 = 2
d

and ψ1 = 1− 2(β−d)
d

due to (42). By the weak
duality theorem we have

2µ+ ν ≥ mnφ1 + nψ1 =
2n(m− (β − d))

d
+ n (43)

which provides the following lower bound on the data complexity of fully-
connected layer λ:

Eλ
data ≥ b

(
mn+

2n(m− (β − d))

d
+ n

)
(44)

when Buffer is divided into two parts for d inputs and β−d outputs, and the
fixed parameter d meets (42). This lower bound matches the corresponding
upper bound (25) achieved by the dataflow described in Algorithm 1 with
the reversed role of inputs and outputs, up to the additive constant 2(β−d).

We can conclude that the data energy for fully-connected layers achieved
by the dataflow described in Algorithm 1 when Buffer is partitioned to d
inputs, β − d outputs, and one weight, is optimal for any fixed d, and the
minimum of data energy (28) is achieved for d = 1.

6. Experimental Validation

In this section, we compare the theoretical energy complexity introduced
in Section 2 to the real power consumption estimated by the Timeloop/Ac-
celergy software tool for evaluating DNN accelerator designs. The Timeloop
(Parashar et al., 2019) finds a mapping of a convolutional layer specified by its
parameters (e.g. height, width, depth, kernel size, stride) onto a given hard-
ware platform, which is optimal in terms of power consumption estimated
by Accelergy (Wu et al., 2019) reporting the energy statistics. Here, we em-
ploy the program for fully-connected layers as a special case of convolutional
layers where the feature maps are reduced to single neurons.

Namely, we have employed Simba (Shao et al., 2019) and Eyeriss (Chen
et al., 2016) as the target hardware platforms onto which fully-connected
layers with increasing number of inputs, outputs, and weights have been
mapped. These platforms have been chosen as prominent examples of ac-
celerators based on the systolic array of processing elements which are often

22

implemented in practice as they are general and not tied to a specific CNN.
All configuration files used in experiments are publicly available at Github1.

For a fully-connected layer λ, we measure empirical dependencies of the
optimal data energy separately on its number of inputs n, outputs m, and
weights mn, which is minimized by using the Timeloop/Accelergy frame-
work for the Simba and Eyeriss architectures. These dependencies are then
compared to the corresponding upper bound (28) on Eλ

data achieved by the
dataflows in the energy complexity model as presented in Section 4, which
matches asymptotically the quadratic lower bound (20) in terms of n and
m, proved in Section 3. In particular, for the comparison of empirical en-
ergy consumptions to the theoretical data energy Eλ

data, we use the following
asymptotic optimal bounds:

Eλ
data = Θ (n) , Eλ

data = Θ (m) , Eλ
data = Θ (mn) , (45)

which are derived from (20) and (28) for individual variables (when the other
independent parameter is considered to be constant).

Figure 4 presents the results of experimental comparison of energy-effi-
cient CNN hardware implementations to our theoretical energy complexity
model separately for individual parameters of fully-connected layers. By us-
ing the Timeloop/Accelergy tool applied to the Simba and Eyeriss hardware
architectures, the optimal values of their data energy consumption have been
estimated for a fully-connected layer λ with increasing parameters n, m, and
mn, each separately. Namely, the values for both parameters n and m were
taken from the interval 128 to 4096 with the step 128 (the other parameter
was fixed at the value of 1024), while for mn we took all possible combina-
tions of values from these intervals.

These parameters serve as independent variables in regression analysis
where the relationships between the data energy and the independent vari-
ables are modeled as functions with asymptotics (45), including multiplica-
tive and additive coefficients c2 and c1, respectively. As depicted in Fig-
ure 4, these coefficients are approximated by the method of least squares so
that the theoretical data energy Eλ

data (dashed lines) fits energy estimates
by Timeloop/Accelergy (displayed by bars), which confirms the asymptotic
trends (45) in the energy complexity model.

In addition, the energy complexity model has been validated by statis-

1https://github.com/PetraVidnerova/timeloop-accelergy-test

23

Energy vs. number of inputs n: Eλ
data = c2n+ c1

Energy vs. number of outputs m: Eλ
data = c2m+ c1

Energy vs. number of weights mn: Eλ
data = c2mn+ c1

Figure 4: The data energy estimates by Timeloop/Accelergy (displayed by bars) for fully-
connected layer λ with increasing parameters n, m, and mn, each separately (from top to
bottom), on the Simba (left) and Eyeriss (right) architectures, which fit the asymptotic
trends (45) in the energy complexity model (dashed lines).

tical tests using quadratic regression with the function model ax2 + bx + c
for independent variable x to be n, m, and mn, respectively. These statis-

24

tical tests have approved the linearity in n, m, and mn, with the p-values
0.2447, 0.6468, and 0.0575, respectively, for Simba, and 0.1494, 0.4801, and
0.0531, respectively, for Eyeriss, accepting the null hypothesis of a = 0 (at
the significance level 0.05) in all these cases.

The presented experiments have thus validated the energy complexity
model whose upper and lower bounds on theoretical energy for fully-connect-
ed layers fit asymptotically very well the power consumption estimated by the
Timeloop/Accelergy program for the Simba and Eyeriss hardware platforms.

7. Conclusion

In this paper, we have theoretically analyzed the energy complexity model
for CNNs introduced in our previous work (Š́ıma et al., 2023) which was
shown to be asymptotically consistent with the power consumption estimates
of their various hardware implementations. We have restricted ourselves to
fully-connected layers, which constitute the most common blocks of DNNs,
and plan to extend this analysis to the case of convolutional layers.

We have shown a general lower bound on energy complexity of fully-
connected layers. We have presented two dataflows for fixed and bounded
numbers of inputs residing in Buffer, respectively, and calculated their energy
costs to obtain upper bounds on energy complexity. We have proven the
matching lower bound on the energy for the first dataflow, which in turn,
provides the optimal energy complexity for fully-connected layers in the case
where Buffer is partitioned into two separate parts for inputs and outputs.

Since the presented general lower and upper bounds differ only in a linear
additive term, we have thus achieved the asymptotically optimal quadratic
energy complexity of evaluating a fully-connected layer in terms of the num-
ber of its inputs and outputs. This asymptotic quadratic energy complexity
has been experimentally confirmed by the real power consumption estimates
for the Simba and Eyeriss hardware architectures, using the Timeloop/Ac-
celergy software tool.

We conjecture that the general lower bound on energy complexity of fully-
connected layers can be improved to match the presented upper bound, which
constitutes a path for future work. The main challenge is to generalize this
analysis to the case of convolutional layers in order to achieve their optimal
energy complexity.

25

Acknowledgements

This work was supported by the Czech Science Foundation grant GA22-
02067S and the institutional support RVO: 67985807. We thank Petr Savický
for inspiring discussions in the early stages of this research and Jan Kalina
for expert consultation regarding statistical tests.

References

Alwani, M., Chen, H., Ferdman, M., Milder, P.A., 2016. Fused-layer CNN
accelerators, in: Proceedings of the 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2016), pp. 22:1–22:12. doi:10.
1109/MICRO.2016.7783725.

Ansari, M.S., Mrazek, V., Cockburn, B.F., Sekanina, L., Vasicek, Z., Han, J.,
2020. Improving the accuracy and hardware efficiency of neural networks
using approximate multipliers. IEEE Trans. Very Large Scale Integr. VLSI
Syst. 28, 317–328. doi:10.1109/TVLSI.2019.2940943.

Armeniakos, G., Zervakis, G., Soudris, D., Henkel, J., 2023. Hardware ap-
proximate techniques for deep neural network accelerators: A survey. ACM
Comput. Surv. 55, 83:1–83:36. doi:10.1145/3527156.

Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-
Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.M.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S.,
Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I.,
Amodei, D., 2020. Language models are few-shot learners, in: Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (Eds.), Advances in
Neural Information Processing Systems: Proceedings of the 34th Anual
Conference on Neural Information Processing Systems (NeurIPS 2020),
pp. 1877–1901. URL: https://proceedings.neurips.cc/paper_files/
paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Chen, Y., Emer, J.S., Sze, V., 2016. Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks, in: Proceedings
of the 43rd Annual ACM/IEEE International Symposium on Computer
Architecture (ISCA 2016), pp. 367–379. doi:10.1109/ISCA.2016.40.

26

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A.,
Barham, P., Chung, H.W., Sutton, C., Gehrmann, S., Schuh, P., Shi, K.,
Tsvyashchenko, S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer, N.,
Prabhakaran, V., Reif, E., Du, N., Hutchinson, B., Pope, R., Bradbury,
J., Austin, J., Isard, M., Gur-Ari, G., Yin, P., Duke, T., Levskaya, A.,
Ghemawat, S., Dev, S., Michalewski, H., Garcia, X., Misra, V., Robinson,
K., Fedus, L., Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph, B., Spiri-
donov, A., Sepassi, R., Dohan, D., Agrawal, S., Omernick, M., Dai, A.M.,
Pillai, T.S., Pellat, M., Lewkowycz, A., Moreira, E., Child, R., Polozov,
O., Lee, K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O., Catasta,
M., Wei, J., Meier-Hellstern, K., Eck, D., Dean, J., Petrov, S., Fiedel, N.,
2023. PaLM: Scaling language modeling with pathways. J. Mach. Learn.
Res. 24, 1–113. URL: http://jmlr.org/papers/v24/22-1144.html.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Un-
terthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszko-
reit, J., Houlsby, N., 2021. An image is worth 16x16 words: Trans-
formers for image recognition at scale, in: Proceedings of the 9th In-
ternational Conference on Learning Representations (ICLR 2021). URL:
https://openreview.net/forum?id=YicbFdNTTy.

Gonthier, M., Marchal, L., Thibault, S., 2023. Taming data locality for task
scheduling under memory constraint in runtime systems. Future Gener.
Comput. Syst. 143, 305–321. doi:10.1016/J.FUTURE.2023.01.024.

Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P., 2015. Deep
learning with limited numerical precision, in: Bach, F., Blei, D. (Eds.),
Proceedings of the 32nd International Conference on Machine Learning
(ICML 2015), JMLR Workshop and Conference Proceedings, pp. 1737–
1746. URL: http://proceedings.mlr.press/v37/gupta15.html.

Huang, X., Khetan, A., Cvitkovic, M., Karnin, Z.S., 2020. TabTrans-
former: Tabular data modeling using contextual embeddings. CoRR,
arXiv:2012.06678 [cs.LG] doi:10.48550/arXiv.2012.06678.

Mittal, S., 2016. A survey of techniques for approximate computing. ACM
Comput. Surv. 48, 62:1–62:33. doi:10.1145/2893356.

Mittal, S., 2020. A survey of FPGA-based accelerators for convolutional

27

neural networks. Neural Comput. Appl. 32, 1109–1139. doi:10.1007/
s00521-018-3761-1.

Parashar, A., Raina, P., Shao, Y.S., Chen, Y., Ying, V.A., Mukkara, A.,
Venkatesan, R., Khailany, B., Keckler, S.W., Emer, J.S., 2019. Timeloop:
A systematic approach to DNN accelerator evaluation, in: Proceedings of
the IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS 2019), pp. 304–315. doi:10.1109/ISPASS.2019.
00042.

Shao, Y.S., Clemons, J., Venkatesan, R., Zimmer, B., Fojtik, M., Jiang, N.,
Keller, B., Klinefelter, A., Pinckney, N.R., Raina, P., Tell, S.G., Zhang,
Y., Dally, W.J., Emer, J.S., Gray, C.T., Khailany, B., Keckler, S.W.,
2019. Simba: Scaling deep-learning inference with multi-chip-module-
based architecture, in: Proceedings of the 52nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO 2019), pp. 14–27.
doi:10.1145/3352460.3358302.

Š́ıma, J., Cabessa, J., 2023. Energy complexity of fully-connected layers, in:
Rojas, I., Joya, G., Catala, A. (Eds.), Proceedings of the 17th International
Work-Conference on Artificial Neural Networks (IWANN 2023), Part I,
LNCS, Springer. pp. 3–15. doi:10.1007/978-3-031-43085-5_1.

Š́ıma, J., Vidnerová, P., Mrázek, V., 2023. Energy complexity model for
convolutional neural networks, in: Iliadis, L., Papaleonidas, A., Angelov,
P., Jayne, C. (Eds.), Proceedings of the 32nd International Conference on
Artificial Neural Networks (ICANN 2023), Part X, LNCS, Springer. pp.
186–198. doi:10.1007/978-3-031-44204-9_16.

Sze, V., Chen, Y., Yang, T., Emer, J.S., 2017. Efficient processing of deep
neural networks: A tutorial and survey. Proc. IEEE 105, 2295–2329.
doi:10.1109/JPROC.2017.2761740.

Sze, V., Chen, Y., Yang, T., Emer, J.S., 2020. Efficient Processing of Deep
Neural Networks. Synthesis Lectures on Computer Architecture, Morgan
& Claypool Publishers. doi:10.2200/S01004ED1V01Y202004CAC050.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M., Lacroix,
T., Rozière, B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin,
A., Grave, E., Lample, G., 2023. LLaMA: Open and efficient foundation

28

language models. CoRR, arXiv:2302.13971 [cs.CL] doi:10.48550/arXiv.
2302.13971.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, L., Polosukhin, I., 2017. Attention is all you need, in:
Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R.,
Vishwanathan, S.V.N., Garnett, R. (Eds.), Advances in Neural Infor-
mation Processing Systems: Proceedings of the 31st Annual Conference
on Neural Information Processing Systems (NeurIPS 2017), pp. 5998–
6008. URL: https://proceedings.neurips.cc/paper_files/paper/

2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Wu, Y.N., Emer, J.S., Sze, V., 2019. Accelergy: An architecture-level energy
estimation methodology for accelerator designs, in: Pan, D.Z. (Ed.), Pro-
ceedings of the IEEE/ACM International Conference On Computer Aided
Design (ICCAD 2019). doi:10.1109/ICCAD45719.2019.8942149.

Yang, T., Chen, Y., Emer, J.S., Sze, V., 2017. A method to estimate the
energy consumption of deep neural networks, in: Matthews, M.B. (Ed.),
Proceedings of the IEEE 51st Asilomar Conference on Signals, Systems,
and Computers (ACSSC 2017), pp. 1916–1920. doi:10.1109/ACSSC.2017.
8335698.

29

