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Abstract In this chapter, we deal with the energy complexity of perceptron net-
works which has been inspired by the fact that the activity of neurons in the brain
is quite sparse (with only about 1% of neurons firing). This complexity measure
has recently been introduced for feedforward architectures (i.e., threshold circuits).
We shortly survey the tradeoff results which relate the energy to other complexity
measures such as the size and depth of threshold circuits. We generalize the energy
complexity for recurrent architectures which counts the number of simultaneously
active neurons at any time instant of a computation. We present our energy-time
tradeoff result for the recurrent neural nets which are known to be computationally
as powerful as the finite automata. In particular, we show the main ideas of simulat-
ing any deterministic finite automaton by a low-energy optimal-size neural network.
In addition, we present a lower bound on the energy of such a simulation (within a
certain range of time overhead) which implies that the energy demands in a fixed-
size network increase exponentially with the frequency of presenting the input bits.

1 Energy Complexity—Motivations and Survey

According to biological studies on energy consumption by cortical computation
which are based on electrophysiological recordings [6], the energy cost of a sin-
gle spike is substantially higher than that of the no-spike rest state of a neuron. On
the other hand, the energy supply to the brain is known to be limited, which suffices
possibly to fewer than 1%, the number of neurons that can be substantially active
concurrently, and hence the activity of neurons in the cortex is quite sparse. This is
not in contradiction with the fMRI observations [2] that the oxygen consumption by
a functional part of the brain (e.g. visual cortex) when engaged in appropriate tasks
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is not substantially higher as compared to the state when this region is not employed
for its purpose. The reason is that the brain exhibit permanent, although sparse, ac-
tivity, and thus the difference in energy consumption by a used vs. not used area
of the brain is relatively small. In fact, this confirms the brain is quite effective in
performing its tasks from the energy point of view.

In contrast to their biological counterparts, artificial neural circuits are frequently
designed such that they do not take energy constraints into account. In fact, only the
size (i.e., the number of gates) or the depth (i.e., the number of layers) of such net-
works are usually somehow optimized while computations have the property that,
on average, approximately a half of units in the circuit fire (i.e. output a “1”) during
any computation. This fact has recently motivated the definition of a new complex-
ity measure for feedforward perceptron networks (threshold circuits), the so-called
energy complexity [17] which is the maximum number of units in the network which
output 1, taken over all the possible inputs to the circuit.

Although the perceptron networks represent only a very rough abstract model
of biological neural networks as compared to e.g. networks of spiking neurons, in
a preliminary study of energy phenomenon, the stereotypical spikes can be simu-
lated by outputs 1 from threshold gates, which makes the analysis technically more
tractable. In addition, the first results have shown that the feedforward perceptron
networks which are widely used in engineering applications have a surprisingly
large computational power even if their energy complexity is restricted which means
these circuits can exhibit only sparse activity. Minimizing the energy complexity re-
quires a different approach to the circuit design which is potentially closer to the
brain structures. In particular, different pathways in these circuits are activated for
different clusters of inputs.

Furthermore, energy complexity of feedforward neural networks has been shown
to be closely related by tradeoff results to other complexity measures such as the
network size, the circuit depth, and the fan-in. In particular, a formula binding the
energy e and the size s of any threshold circuit that computes a symmetric Boolean
function f with n variables (i.e., the function value of f depends only on the number
of 1’s in the input) was derived [21], which gives e.g. the tradeoff e logs ≥ logn
for the parity function f . Or even an exponential lower bound exp(Ω(n1−o(n))) on
the number of perceptrons in any feedforward network with constant number of
layers (i.e., constant depth) computing the Boolean inner product of 2n variables
(see Eq. 6) was proven when the energy supply is restricted by e = no(1) [19].

There is also a close relationship between the energy complexity e and the
depth d (i.e., parallel computational time) of feedforward perceptron network: Any
threshold circuit of energy complexity e and size s, computing a Boolean function f
can be transformed to another threshold circuit of depth 2e+ 1 and size 2es+ 1,
computing f [18]. This means that, within polynomial size, the energy complexity
provides an upper bound on the depth of feedforward networks. Moreover, the trade-
off e = O(n/`) between the energy e and the fan-in ` (i.e., the maximum number
of inputs to a single unit) of any threshold circuit computing the modulus function
MODm of n variables (i.e., MODm gives 0 iff the number of 1’s in the input is divisi-
ble by m) was proven including an almost tight lower bound e=Ω((n−m)/`)) [16].
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Last but not least, energy complexity has found its important use in circuit complex-
ity as a tool for proving the lower bounds [20].

2 Energy Complexity of Recurrent Networks—Chapter Outline

In this chapter, we study, for the first time, the energy complexity of recurrent neu-
ral (perceptron) networks which we define to be the maximum number of neurons
outputting 1 at any time instant, taken over all possible computations. Clearly, this
generalizes the energy complexity of threshold circuits (Sect. 1) to recurrent archi-
tectures as the energy of feedforward networks remains the same according to this
definition.

It has been known for a long time that the computational power of binary-state
recurrent networks corresponds to that of finite automata since the network of size
s units can reach only a finite number (at most 2s) different states [14]. A simple
way of simulating a given deterministic finite automaton A with m states by a neural
network N of size O(m) is to implement each of the 2m transitions of A (having
0 and 1 transitions for each state) by a single unit in N which checks whether the
input bit agrees with the respective type of transition [8]. Clearly, this simple linear-
size implementation of finite automata requires only a constant energy since the
determinism of automaton ensures that only a single acceptance path is traversed
through the state transition graph, that is, only one neuron fires on this path at any
time instant.

Much effort had been given to reducing the size of neural automata [1, 3, 4, 15]
and, indeed, neural networks of size Θ(

√
m) implementing a given deterministic

finite automaton with m states were proposed and proven to be size-optimal [3, 4].
A natural question arises: What is the energy consumption when simulating finite
automata by optimal-size neural networks? We answer this question in this chapter
by showing the tradeoff between the energy and the time overhead of the simulation.
In particular, we prove that an optimal-size neural network of s =Θ(

√
m) units can

be constructed to simulate a deterministic finite automaton with m states using the
energy O(e) for any function e such that e = Ω(logs) and e = O(s), while the time
overhead for processing one input bit is τ = O(s/e). This means that the frequency
of presenting the input bits can increase when more energy is supplied to the sim-
ulating network. For this purpose, we adapt the asymptotically optimal method of
threshold circuit synthesis [7].

In addition, we also derive lower bounds on the energy consumption e of a neural
network of size s simulating a finite automaton within the time overhead τ per one
input bit, by using the technique due to Uchizawa and Takimoto [19] which is based
on a communication complexity argument [5]. In particular, for less than sublog-
arithmic time overhead τ satisfying τ logτ = o(logs), we obtain the lower bound
loge=Ω∞

( 1
τ

logs
)

which implies e≥ sc/τ for some constant c> 0 and for infinitely
many s. Thus, the energy complexity in a fixed-size neural network increases expo-
nentially with the frequency of presenting the input bits. For example, this means
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that for constant time overhead τ = O(1), the energy of any simulation meets e≥ sδ

for some constant δ such that 0 < δ < 1, and for infinitely many s, which can be
compared to the energy e = O(s) consumed by our simulation. For τ = O(logα s)

where 0 < α < 1, any such simulation requires energy e = Ω∞

(
slog logs/ logδ s

)
for

any δ > α , while e = O(s/ logα s) is sufficient for our implementation.
This chapter is organized as follows. After a brief review of the basic definitions

regarding neural networks as finite automata in Sect. 3, the main result concerning
a low-energy simulation of finite automata by neural nets is presented in Sect. 4
including the basic ideas of the proof. The lower bounds on the energy consumption
of such neural automata are formulated and compared to the respective upper bounds
in Sect. 5. A concluding summary is given in Sect. 6. A preliminary version of this
chapter has appeared as an extended abstract [12] which was further expanded to
journal paper [13] including complete proofs. This chapter is focused on motivations
and a survey, providing a brief exposition of the main ideas of our results on the
energy complexity of recurrent neural networks while complicated technical details
are only sketched or even omitted.

3 Neural Finite Automata

In order to precisely present our results we first recall the formal definition of an
(artificial) neural network N and then we will introduce its I/O protocol for im-
plementing a finite automaton. The network consists of s units (neurons, threshold
gates), indexed as V = {1, . . . ,s}, where s is called the network size. The units are
connected into a directed graph representing the architecture of N, in which each
edge (i, j) leading from unit i to j is labeled with an integer weight w(i, j). The ab-
sence of a connection within the architecture corresponds to a zero weight between
the respective neurons, and vice versa.

In contrast to general recurrent networks, which have cyclic architectures, the
architecture of a feedforward network (or a so-called threshold circuit) is an acyclic
graph. Hence, units in a feedforward network can be grouped in a unique minimal
way into a sequence of d+1 pairwise disjoint layers α0, . . . ,αd ⊆V so that neurons
in any layer αt are connected only to neurons in subsequent layers αu, u> t. Usually
the zeroth, or input layer α0 consists of external inputs and is not counted in the
number of layers and in the network size. The last, or output layer αd is composed
of output neurons. The number of layers d excluding the input one is called the
depth of threshold circuit.

The computational dynamics of (not necessarily feedforward) network N deter-
mines for each unit j ∈ V its binary state (output) y(t)j ∈ {0,1} at discrete time in-

stants t = 0,1,2, . . .. We say that neuron j is active (fires) at time t if y(t)j = 1, while

j is passive for y(t)j = 0. This establishes the network state y(t) = (y(t)1 , . . . ,y(t)s ) ∈
{0,1}s at each discrete time instant t ≥ 0. At the beginning of a computation, the
neural network N is placed in an initial state y(0) which may also include an external
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input. At discrete time instant t ≥ 0, an excitation of any neuron j ∈V is defined as

ξ
(t)
j =

s

∑
i=1

w(i, j)y(t)i −h( j) (1)

including an integer threshold h( j) local to unit j. At the next instant t + 1, the
neurons j∈αt+1 from a selected subset αt+1⊆V update their states y(t+1)

j =H(ξ
(t)
j )

in parallel by applying the Heaviside function H : ℜ−→ {0,1} which is defined as

H(ξ ) =

{
1 for ξ ≥ 0
0 for ξ < 0 . (2)

The remaining units j ∈V \αt+1 do not change their outputs, that is y(t+1)
j = y(t)j for

j 6∈ αt+1. In this way, the new network state y(t+1) at time t +1 is determined.
Without loss of efficiency [9], we implicitly assume synchronous computations.

Thus, the sets αt which define the computational dynamics of N are predestined
deterministically for each time instant t (e.g. αt =V for any t ≥ 1 means fully paral-
lel synchronous updates). Note that computations in feedforward networks proceed
layer by layer from the input layer up to the output one (i.e. sets αt naturally coincide
with layers), which implement Boolean functions. We define the energy complexity
of N to be the maximum number of active units

s

∑
j=1

y(t)j

at any time instant t ≥ 0, taken over all the computations of N.
The computational power of recurrent neural networks has been studied analo-

gously to the traditional models of computations so that the networks are exploited
as acceptors of formal languages L ⊆ {0,1}∗ over the binary alphabet. For the fi-
nite networks that are to recognize regular languages, the following I/O protocol has
been used [1, 3, 4, 11, 15, 14]. A binary input word (string) x = x1 . . .xn ∈ {0,1}n of
arbitrary length n≥ 0 is sequentially presented to the network bit by bit via an input
neuron in ∈V . The state of this unit is externally set (and clamped) to the respective
input bits at prescribed time instants, regardless of any influence from the remaining
neurons in the network, that is,

y(τ(i−1))
in = xi (3)

for i = 1, . . . ,n where an integer parameter τ ≥ 1 is the period or time overhead
for processing a single input bit. Then, an output neuron out ∈V signals at time τn
whether the input word belongs to underlying language L, that is,

y(τn)
out =

{
1 for x ∈ L
0 for x 6∈ L . (4)
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As usual, we will describe the limiting behavior (rate of growth) of functions
when the argument tends towards infinity in terms of simpler functions by using
Landau or big O notation. Recall that for functions f ≥ 1 and g ≥ 1 defined for
all natural numbers, notations g = O( f ) and g = Ω( f ) mean that for some real
constant c > 0 and for all but finitely many natural numbers n, g(n) ≤ c · f (n) and
g(n)≥ c · f (n), respectively. In addition, g=Θ( f ) if g=O( f ) and g=Ω( f ) simul-
taneously. Similarly, g = o( f ) denotes that for every real constant c > 0 and for all
but finitely many natural numbers n, g(n)≤ c · f (n), while g=Ω∞( f ) means that for
some real constant c > 0 and for infinitely many natural numbers n, g(n)≥ c · f (n).
Clearly, g = o( f ) iff limn→∞ g(n)/ f (n) = 0 iff g 6= Ω∞( f ).

4 A Low-Energy Implementation of Finite Automata by
Optimal-Size Neural Nets

Our main result concerning a low-energy implementation of finite automata by
optimal-size neural nets is formulated in the following theorem. We will below pro-
vide a short informal proof sketch which explains the main ideas of the low-energy
construction while the complicated details are deferred to technical paper [12].

Theorem 1. A given deterministic finite automaton A with m states can be simulated
by a neural network N of optimal size s =Θ(

√
m) neurons with time overhead τ =

O(s/e) per one input bit, using the energy O(e), where e is any function satisfying
e = Ω(logs) and e = O(s).

Proof. (Sketch) For the construction of an optimal-size neural network N imple-
menting a given deterministic finite automaton A we employ the approach due to
Horne and Hush [3] which is based on Lupanov’s result [7]. Unlike Horne and Hush
who used the statement of Lupanov’s theorem as a “black box”, we need to modify
Lupanov’s construction in order to optimize the energy consumption.

Thus, a set Q of m states of a given deterministic finite automaton A is enu-
merated by integers 0,1, . . . ,m− 1 so that each q ∈ Q is encoded in binary using
p = dlog2 me+1 bits including one additional (e.g. the pth) bit which indicates the
final states (i.e. its value is 1 just for the final states of A). Then, the respective
transition function δ : Q×{0,1} −→ Q of automaton A, producing its new state
qnew = δ (qold,x) ∈ Q from the old state qold ∈ Q and current input bit x ∈ {0,1},
can be viewed as a vector Boolean function fδ : {0,1}p+1 −→ {0,1}p in terms of
binary encoding of automaton’s states.

Furthermore, “transition” function fδ is implemented by a four-layer neural net-
work C of asymptotically optimal size Θ(2p/2) = Θ(

√
m) using the method of

threshold circuit synthesis due to Lupanov [7]. Feedforward network C comput-
ing the transition function δ of A can then simply be transformed to a recurrent
neural network N of the same size s =Θ(

√
m) simulating A by adding the recurrent

connections from the fourth layer to the first one, as it is schematically depicted in
Fig. 1. In fact, the fourth output layer of C having p threshold gates is identified
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Fig. 1 A schema of the transformation of threshold circuit C (on top) implementing the “transition”
function fδ of finite automaton A into a low-energy neural network N (at the bottom) simulating A.

with the p units of the zeroth layer in N which store the current state of A while the
remaining (p+1)th neuron in ∈V serves as an input to A (cf. Eq. 3). The recurrent
connections ensure that the binary code of automaton’s old state is replaced by the
new one. In addition, the pth neuron in the zeroth layer of N representing the output
neuron out ∈ V signals whether the automaton is in an accepting state (cf. Eq. 4)
because the pth bit in the binary code of states indicates the final states. Using this
approach, a finite automaton can be implemented by an optimal-size neural net [3].

Unfortunately, the second layer of threshold circuit C in Lupanov’s construc-
tion [7] contains Θ(s) gates, half of which fire for any input to C, which results in
an unacceptably high energy consumption Ω(s) although the energy demands of the
remaining three layers are bounded by O(p) = O(logs). In particular, this second
layer is composed of O(2p/2) pairs of units such that exactly one neuron of each pair
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fires, except for just 2p pairs of which both their neurons are active simultaneously.
In fact, determining these 2p pairs is the core of evaluating the function fδ for a
given input.

In order to achieve a low-energy implementation of A, this layer of Θ(s) neurons
is properly partitioned into O(s/e) blocks of O(e) units each so that no pair of units
is split into two blocks (see Fig. 1). Then, so-called control units, one for each block,
are introduced which ensure that these blocks are updated successively one by one
so that the energy consumption (i.e. the maximum number of simultaneously active
neurons) is bounded by O(e), while the time overhead for processing a single input
bit possibly increases to O(s/e). In particular, the control units create typically a
path along which the control signal is propagated so that only one control unit on
the path is active at each time instant. Each such a control unit releases an update
of one associated block while the remaining blocks are blocked typically at the zero
state (consuming no energy) apart from those 2p pairs of which both neurons fire
simultaneously. In this way, the energy consumption of C is reduced from Ω(s) to
O(e+ p) = O(e+ logs) = O(e) as e = Ω(logs). ut

Theorem 1 provides an energy-time tradeoff for the size-optimal recurrent net-
works implementing finite automata, which generalizes the tradeoff results for
threshold circuits (see Sect. 1). In particular, the time overhead τ which is neces-
sary for processing a single input bit decreases when more energy e is supplied to
the network. For the full energy e = Ω(s) we obtain the constant-time overhead.

5 The Energy Lower Bound

In this section, we will show lower bounds on the energy complexity of neural net-
works implementing finite automata. For this purpose, we will employ the technique
due to Uchizawa and Takimoto [19] which is based on communication complex-
ity [5]. Assume that f : {0,1}n×{0,1}n −→ {0,1} is a Boolean function whose
value f (x,y) has to be computed by two players with unlimited computational
power, each receiving only his/her part of the input x ∈ {0,1}n and y ∈ {0,1}n,
respectively, while they wish to exchange with each other the least possible number
of bits. In particular, they communicate according to a randomized protocol addi-
tionally making use of the same public random bit string. For any error probability
ε satisfying 0 ≤ ε < 1/2, the communication complexity Rε( f ) of function f is
defined to be the maximum number of bits needed to be exchanged for the best ran-
domized protocol to make the two players compute the correct value of f (x,y) with
probability at least 1− ε , for every input assignment x and y.

It is well known [5] that almost all Boolean functions f of 2n variables have large
communication complexity

Rε( f ) = Ω

(
n+ log

(
1
2
− ε

))
(5)
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for any error probability ε such that 0≤ ε < 1/2. An example of a particular func-
tion that meets condition (5) is the Boolean inner product IPn : {0,1}2n −→ {0,1},
defined as

IPn(x1, . . . ,xn,y1, . . . ,yn,) =
n⊕

i=1

(xi∧ yi) (6)

where ⊕ denotes the parity which gives 1 iff the number of satisfied conjunctions
xi∧ yi (i.e. xi = yi = 1), for i = 1, . . . ,n, is odd.

On the other hand, Uchizawa and Takimoto [19] proved the upper bound on the
communication complexity of Boolean function f in terms of the size, depth, and
energy complexity of a feedforward network computing f :

Theorem 2 ([19]). If a Boolean function f : {0,1}2n −→{0,1} can be computed by
a threshold circuit of size S, depth d, and energy complexity E, then

Rε( f ) = O
(
(E +d)(logn+(E +1)d logS

)
(7)

for error probability

ε =
1
2
− 1

4S3(E+1)d . (8)

The lower and upper bounds on the communication complexity (5) and (7), respec-
tively, are put together in the following lemma:

Lemma 1 ([13]). Let f : {0,1}2n −→ {0,1} be a Boolean function of 2n variables
whose communication complexity satisfies condition (5), which can be computed by
a threshold circuit of size S, depth d, and energy complexity E such that n = O(S)
and d = O(E). Then n = O(Ed+1 logS).

Now we will formulate the result providing the lower bound e ≥ sc/τ (for some
constant c > 0 and for infinitely many s) on the energy complexity e of a recurrent
neural network of size s neurons implementing a given finite automaton with time
overhead τ such that ττ = o(s). This means the lower bound is valid for less than
sublogarithmic time overheads.

Theorem 3. Let τ logτ = o(logs). There exists a neural network of size s neurons
simulating a finite automaton with time overhead τ per one input bit which needs
energy e such that loge = Ω∞

( 1
τ

logs
)
.

Proof. Let N be a neural network of size s neurons simulating a finite automaton
A with time overhead τ per one input bit. The states of A are represented by the
2s−1 states of N (excluding the input neuron in) and the transition function of A is
computed by N within τ time steps. Clearly, network N can be “unwound” into a
threshold circuit C of depth d = τ and size S = τs which implements the transition
function of A so that each layer is a copy of N [10]. Thus, the states of neurons in
the ith layer of C coincide with the network state y(kτ+i) for 0≤ i≤ τ , when the new
state y((k+1)τ) of A is produced from the old one y(kτ) including the current input
bit. Hence, the energy complexity of C is a τ multiple of the energy consumed by
N, that is, E = τe.
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As component fk : {0,1}s −→ {0,1} (for 1 ≤ k ≤ s) of the transition function
defining A can be arbitrary, there is a neural network N simulating A such that fk
implemented by C has large communication complexity satisfying condition (5).
Moreover, n = ds/2e = O(S) and d = τ = O(E), which meets the remaining as-
sumptions of Lemma 1. It follows that

ds/2e= n = O
(

Ed+1 logS
)
= O

(
(τe)t+1 logτs

)
(9)

according to Lemma 1. On the contrary, suppose that

loge = o
(

logs
τ

)
. (10)

We will prove that (τe)τ+1 logτs = o(s) which contradicts equation (9). For this
purpose, it suffices to show that log((τe)τ+1 logτs) = o(logs). This can be rewritten
as (τ + 1) logτ +(τ + 1) loge+ log logτ + log logs = o(logs) which follows from
the assumption of the theorem and equation (10), completing the argument. ut

Theorem 3 provides an energy-time tradeoff in recurrent neural networks from
the lower-bound perspective as a counterpart to Theorem 1. In particular, the un-
derlying formula relates the energy demands to the time overhead for processing a
single input bit. It follows that the energy complexity in a fixed-size neural network
increases exponentially with the frequency of presenting the input bits. In the fol-
lowing corollary we will formulate the lower bounds on energy complexity in terms
of the network size for selected cases of sublogarithmic time overhead.

Corollary 1.
1. If τ = O(1), then e≥ sδ for some δ such that 0 < δ < 1 and for infinitely many s.

2. If τ = O(log logs), then e = Ω∞

(
s1/ logδ s

)
= Ω∞

(
2log1−δ s

)
for any δ such that

0 < δ < 1.
3. If τ = O(logα s) for some 0 < α < 1, then e = Ω∞

(
slog logs/ logδ s

)
=

Ω∞

(
(logs)log1−δ s

)
for any δ such that δ > α .

Proof. 1. For τ = O(1), the assumption τ logτ = o(logs) trivially holds and the
proposition follows straightforwardly from Theorem 3.
2. For τ = O(log logs), there is cu > 0 such that for all but finitely many s we
have τ logτ ≤ cu(log logs) log loglogs+ (cu logcu) log logs = o(logs). According
to Theorem 3, there is c` > 0 such that loge ≥ c` logs

cu log logs for infinitely many s. On

the contrary, suppose that e = o
(

s1/ logδ s
)

for some δ satisfying 0 < δ < 1, which

implies log1−δ s≥ c` logs
cu log logs leading to a contradiction log logs

logδ s
≥ c`

cu
> 0.

3. If τ = O(logα s) for some 0 < α < 1, then there is cu > 0 such that for all but
finitely many s we have τ logτ ≤ cu (logα s) log logα s+(cu logcu) logα s = o(logs).
According to Theorem 3, there is c` > 0 such that loge ≥ cu

c`
log1−α s for infinitely

many s. On the contrary, suppose that e = o
(

slog logs/ logδ s
)

for some δ satisfying
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δ > α , which implies (log logs) log1−δ s ≥ cu
c`

log1−α s leading to a contradiction
log logs
logδ−α s

≥ cu
c`
> 0. ut

We can compare the lower bounds on energy complexity of simulating the finite
automata by neural nets presented in Corollary 1 to the respective upper bounds
provided by Theorem 1. For the constant time overhead τ = O(1), the construction
from Theorem 1 achieves the energy consumption of e=O(s), while any simulation
requires energy e ≥ sδ for some constant δ such that 0 < δ < 1 and for infinitely
many s, according to Corollary 1. Similarly, for the time overhead of τ = O(logα s)
where 0 < α < 1, we have the upper bound of e = O(s/ logα s) which compares
to the lower bound of e = Ω∞

(
slog logs/ logδ s

)
. Clearly, there are still gaps between

these lower and upper bounds, respectively, which need to be eliminated.

6 Conclusions

We have, for the first time, applied the energy complexity measure to recurrent neu-
ral nets. This measure has recently been introduced and studied for feedforward
perceptron networks. The binary-state recurrent neural networks recognize exactly
the regular languages so we have investigated their energy consumption of simu-
lating the finite automata with the asymptotically optimal number of neurons. We
have presented a low-energy implementation of finite automata by optimal-size neu-
ral nets with the tradeoff between the time overhead for processing one input bit
and the energy varying from the logarithm to the full network size. It appears that
the frequency of presenting the input bits can only increase when more energy is
supplied to the network. We have also achieved lower bounds for the energy con-
sumption of neural finite automata which are valid for less than sublogarithmic time
overheads and are still not tight. It follows that the energy demands in a fixed-size
network increase exponentially with the frequency of presenting the input bits. An
open problem remains for further research whether these bounds can be improved.
In addition, we have so far assumed the worst case energy consumption while the
average case analysis would be another challenge.
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