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Abstract. The energy efficiency of hardware implementations of con-
volutional neural networks (CNNs) is critical to their widespread de-
ployment in low-power mobile devices. Recently, a plethora of methods
have been proposed providing energy-optimal mappings of CNNs onto
diverse hardware accelerators. Their estimated power consumption is re-
lated to specific implementation details and hardware parameters, which
does not allow for machine-independent exploration of CNN energy mea-
sures. In this paper, we introduce a simplified theoretical energy com-
plexity model for CNNs, based on only two-level memory hierarchy that
captures asymptotically all important sources of power consumption of
different CNN hardware implementations. We calculate energy complex-
ity in this model for two common dataflows which, according to statistical
tests, fits asymptotically very well the power consumption estimated by
the Time/Accelergy program for convolutional layers on the Simba and
Eyeriss hardware platforms. The model opens the possibility of proving
principal limits on the energy efficiency of CNN hardware accelerators.

Keywords: Convolutional neural networks · Energy complexity ·Dataflow.

1 Introduction

Deep neural networks (DNNs) represent a cutting-edge machine learning tech-
nology with countless applications in artificial intelligence (AI). In many cases
such as smart glasses and mobile phone apps, DNNs have to be implemented
in low-power hardware operated on batteries. In contrast, the inference process
of already trained DNNs which typically consist of tens of layers, hundreds of
thousands of neurons, and tens of millions of weight parameters, is computation-
ally very demanding and highly-energy consuming. Thus, it is often accelerated
efficiently in hardware employing massive parallelism in order to meet real-time
requirements and energy constraints, which is critical to the widespread deploy-
ment of DNNs in mobile AI applications. For instance, in error-tolerant applica-
tions such as image classification, the use of approximate computing methods [4]
(e.g. low float precision, approximate multipliers) can save enormous amount of
energy at the cost of only a small loss in accuracy.
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Recently, there have been great advances in techniques [8] that enable energy-
efficient DNN processing on a variety of hardware platforms (e.g. GPUs, FP-
GAs, in-memory computing architectures) which reduce the computational cost
of DNNs through hardware design and/or approximation of DNN models. For
a given hardware implementation of DNN, the actual power consumption of the
inference process can be measured or analytically estimated using physical laws.
However, it depends on parameters and constants related to the specific hardware
architecture and its evaluation varies for different hardware implementations,
which prevents for machine-independent exploration of DNN energy measures.

Some computer programs [5, 9] can optimize the power consumption for a par-
ticular DNN on various hardware platforms using different dataflow mapping
methods. It has been empirically observed that the energy cost of evaluating
DNNs mainly consists of two components, the computation energy and the data
energy where the later can be 70% of the total cost [10]. The computation energy
is needed for performing arithmetic operations, especially the so-called multiply-
and-accumulate (MAC) operations (S ← S + wy on floats S,w, y), which are
used for computing weighted sums of inputs in neurons. The data energy is re-
quired for moving data inside a memory hierarchy (i.e. the dataflow) in hardware
implementations of DNNs, which is related to the number of memory accesses.

The aim of this study is to introduce a theoretical hardware-independent
model of energy complexity for DNNs that abstracts from their hardware im-
plementation details and ignores specific aspects and constants of real machines,
while preserving the asymptotic energy complexity of DNN inference. The use of
abstract computational models (such as Turing machines) is fundamental to the
field of computational complexity theory to define robust complexity measures
(e.g. commonly associated with the usage of the big O notation), to identify effi-
cient algorithms and to establish their principal limits by proving lower bounds.

In this paper, we define an energy complexity measure for convolutional neu-
ral networks (CNNs) which are widely used DNN models. The computation
energy is naturally determined by the number of MACs during the CNN infer-
ence, multiplied by a non-uniform circuit constant related to the number of bits
in floating-point operations. To define the data energy of CNN, we introduce
an abstract computational model which is composed of only two memory levels
called DRAM and Buffer. The CNN parameters and states are stored in DRAM
while arithmetic operations are performed only over numerical data stored in
Buffer which is of a limited capacity. The main idea behind this model is that
the three arguments of each MAC operation (i.e. float values of an input, weight,
and accumulated output) carried out in evaluating a given CNN, must occur to-
gether at one time in Buffer. This process requires a certain number of data
transfers between DRAM and Buffer which defines the data energy measure.

The energy complexity model of CNNs is exploited for calculating the the-
oretical energy in the context of two common energy-efficient dataflows under
realistic Buffer capacity constraints. For the first dataflow, an output value of
each neuron is accumulated in Buffer and written to DRAM only once, and for
the second one, any input to each neuron is read into Buffer only once. In both
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cases, each weight of the CNN is read into Buffer only once. The two dataflows
provide upper bounds on energy complexity of the inference process for each
convolutional layer separately in terms of its parameters.

The upper bounds on energy complexity are compared to the actual power
consumption of evaluating CNNs on the Simba [6] and Eyeriss [2] hardware
platforms which is estimated by using the Timeloop/Accelergy software tool [5,
9]. The used platforms have been chosen as prominent examples of accelerators
based on the systolic array of processing elements which are often implemented
in practice as they are general and not tied to a specific CNN. The program
optimizes the energy over dataflow mappings onto a given hardware platform.
It turns out that the theoretical upper bounds fit asymptotically very well the
empirical power consumptions, when the depth, feature map size, filter size, and
stride of convolutional layers are varied each separately, which is validated by the
statistical linearity and quadraticity tests. Hence, the simplified energy complex-
ity model captures asymptotically all important sources of energy consumption
that are common to diverse hardware implementations of CNNs. The model can
also be exploited for proving lower bounds on energy complexity of CNNs in order
to establish asymptotic limits on energy efficiency of any CNN hardware acceler-
ators. The optimal energy bounds have already been proven for fully-connected
layers [7] as a special case and starting point for convolutional layers.

The paper is organized as follows. After a formal definition of CNNs in Sec-
tion 2, the energy complexity model for CNNs is introduced in Section 3 where
the computation energy is calculated and a trivial lower bound on the data en-
ergy is shown. Section 4 presents two common energy-efficient dataflows which
provide upper bounds on the data energy. Section 5 validates the energy complex-
ity model by comparing the theoretical energy bounds for AlexNet-like architec-
tures to its power consumption estimated by the Timeloop/Accelergy program
for the Simba and Eyeriss hardware platforms. Section 6 summarizes the results.

2 Convolutional Neural Networks

In order to define an energy complexity measure, we first formalize and introduce
notations for a convolutional neural network (CNN) N . Its multi-layered archi-
tecture can be described by a directed acyclic graph (V,E) whose vertices in V ,
calledmacro-units, are matrices of neurons, while its directed edges in E ⊂ V ×V
are incident on macro-units whose neurons are connected. The macro-units are
grouped intoD+1 disjoint layers, indexed by level λ = 0, . . . , D, starting with the
zeroth input layer, followed by hidden layers, and ending with the output layer
Y ⊂ V at the levelD. We assume that the edges are only between adjacent layers,
which means macro-units in any layer λ ∈ {0, . . . , D− 1} can only be connected
to macro-units in the subsequent layer λ+ 1. Denote f← = {g ∈ V | (g, f) ∈ E}
and f→ = {h ∈ V | (f, h) ∈ E} for any macro-unit f ∈ V .

Each layer λ ∈ {0, . . . , D} is composed of dλ > 0 macro-units which are
mλ × nλ matrices of neurons arranged in mλ > 0 rows and nλ > 0 columns,
representing so-called feature maps. The parameters mλ, nλ, and dλ are usually
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called the height, width, and depth of layer λ, respectively. In addition, each non-
input layer λ ∈ {1, . . . , D} is characterized by the size rλ × sλ of its so-called
receptive fields which are rectangular (usually square) local regions in feature
maps represented by g ∈ f← in layer λ − 1 from which the connections lead to
individual neurons in a macro-unit f belonging to layer λ. Thus, each neuron in
f is associated with a specific receptive field of the same size, representing its
scanning window to feature maps g ∈ f← in the preceding layer λ − 1, which
assumes 0 < rλ ≤ mλ−1 and 0 < sλ ≤ nλ−1. The length of vertical or horizontal
shifts of the scanning window on feature map g for adjacent neurons in matrix f ,
is given by a so-called stride σλ > 0 in terms of the number of rows or columns
in g, respectively, which is a parameter unique to the layer λ.

In order to compensate for underrepresenting the neurons that are located
at the edge of feature maps, the macro-units g ∈ f← in layer λ− 1 are formally
extended by πλ rows and πλ columns (of zero-state neurons) both from above
and below, and to the left and right, respectively, where the parameter πλ called
padding satisfies 0 ≤ πλ ≤ max(rλ, sλ), which results in their extended formal
size (mλ−1 +2πλ)× (nλ−1 +2πλ). Altogether, the size mλ×nλ of feature maps
in the λth layer can be calculated as

mλ =

⌈
mλ−1 − rλ + 2πλ

σλ

⌉
+ 1 , nλ =

⌈
nλ−1 − sλ + 2πλ

σλ

⌉
+ 1 (1)

in terms of the size mλ−1 × nλ−1 of feature maps in layer λ− 1.
Apart from input and output layers, we distinguish three types of layers in

CNNs, which are called convolutional, pooling, and fully connected layers. In
particular, the first C < D hidden layers in N include general convolutional
layers, at times interlaced with (max) pooling layers from Π ⊂ {1, . . . , C}. We
assume that any non-input layer λ ∈ {1, . . . , D} \Π that is not pooling, is fully
connected with the preceding layer λ − 1 at the macro-unit level, which means
that for every macro-unit f in this layer λ, the set f← contains all macro-units
from layer λ− 1, and hence |f←| = dλ−1. On the other hand, any macro-unit f
in a pooling layer λ ∈ Π has only one incoming edge that leads from unique
macro-unit g in the preceding layer λ − 1, that is, f← = {g} and dλ = dλ−1,
and the feature map represented by g is partitioned into square non-overlapping
receptive fields associated with f , which means σλ = rλ = sλ and πλ = 0. The
remaining layers on the top of N from level C + 1 through D are usual fully
connected layers of single neurons which constitute trivial feature maps f of size
1× 1, that is, mλ = nλ = σλ = 1 and πλ = 0 for every λ = C + 1, . . . , D. Each
neuron f in the (so-called flattening) layer C + 1 is a trivial macro-unit that
collects its inputs from all neurons in the Cth layer, which means the receptive
fields of f coincide with feature maps represented by g ∈ f←, that is, rC+1 = mC

and sC+1 = nC , whereas rλ = sλ = 1 for every λ = C + 2, . . . , D.
Every macro-unit f ∈ V in a non-pooling layer λ ∈ {1, . . . , D} \Π is associ-

ated with a real bias bf ∈ R, whereas any edge (g, f) ∈ E leading from g ∈ f← to
f is labeled with a so-called filter (or kernel) Wfg ∈ Rrλ×sλ which is an rλ× sλ
matrix with real entries wfg(i, j) for every i = 1, . . . , rλ and j = 1, . . . , rλ. The
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state (output) Yf ∈ Rmλ×nλ of any macro-unit f ∈ V is an mλ×nλ matrix with
real entries yf (k, `) for every k = 1, . . . ,mλ and ` = 1, . . . , nλ. We formally define
yf (k, `) = 0 if k < 1 or k > mλ or ` < 1 or ` > nλ for padding neurons in f .

At the beginning of a computation, an external input is presented to N by
setting the states Yf of macro-units f in the input layer. In general step, assume
that for a macro-unit f ∈ V in a layer λ, the states Yg have been computed for
every g ∈ f←. First assume that λ ∈ {1, . . . , D} \Π is not a pooling layer. Then
the excitation Ξf ∈ Rmλ×nλ of f , which is an mλ × nλ matrix with real entries
ξf (k, `) for every k = 1, . . . ,mλ and ` = 1, . . . , nλ, is evaluated as

ξf (k, `) = bf+
∑
g∈f←

rλ∑
i=1

sλ∑
j=1

wfg(i, j) yg
(
(k−1)σλ−πλ+i , (`−1)σλ−πλ+j

)
(2)

for every k = 1, . . . ,mλ and ` = 1, . . . , nλ. The state Yf of f in the hidden layer
λ < D is computed by applying the rectified linear activation function (ReLU)
to its excitation Ξf element-wise, that is,

yf (k, `) = max
(
0 , ξf (k, `)

)
for every k = 1, . . . ,mλ and ` = 1, . . . , nλ . (3)

For the output layer λ = D, the state Yf = (yf (1, 1)) = yf of trivial macro-unit
f with mλ = nλ = 1 is computed as the softmax function of excitations Ξh =
(ξh(1, 1)) = ξh for every output neuron h ∈ Y , that is, yf = eξf /(

∑
h∈Y e

ξh) ∈
(0, 1). For the pooling layer λ ∈ Π which satisfies σλ = rλ = sλ and πλ = 0,
the state Yf of f with f← = {g}, is computed as yf (k, `) = maxi,j∈{1,...,rλ}
yg
(
(k − 1)rλ + i , (`− 1)rλ + j

)
for every k = 1, . . . ,mλ and ` = 1, . . . , nλ.

3 Energy Complexity Model

In this section, we introduce a simplified hardware-independent energy complex-
ity model for evaluating a CNN defined in Section 2, which captures the main
sources of power consumption in practical hardware implementations of CNNs.
This model has a memory hierarchy with only two levels, called DRAM and
Buffer, as schematically depicted in Figure 1. The DRAM memory has an un-
limited capacity (corresponding to a large, slow, and cheap memory) which is
used for storing the entire CNN N including its filters Wfg and current states
Yf for all f ∈ V and g ∈ f←. In contrast, the Buffer memory has a limited capac-
ity of B bits (corresponding to a small, fast, and expensive memory) over which
arithmetic operations are implemented, especially the multiply-and-accumulate
(MAC) operations S ← S + wy for evaluating excitations (2) of N where w, y,
and S is a filter weight, a neuron state from a previous-layer feature map, and
a partial sum accumulating an output of a current-layer neuron, respectively.
Thus, in order to perform a MAC operation, the respective float values of its
three arguments must simultaneously occur in Buffer which means they must
be read from DRAM into Buffer at some point. On the other hand, the results
of MACs are later written to DRAM due to the limited Buffer capacity. This
requires (read/write) accesses to DRAM memory, which are energy consuming.
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Fig. 1. The energy complexity model

As has been discussed in Section 1, the energy complexity of evaluating N
consists of the computation energy and the data energy [10]:

E = Ecomp + Edata (4)

which are related to the number of MACs and the number of DRAM accesses,
respectively. For simplicity, we do not consider the energy optimization across
multiple layers as e.g. in [1], which means energy complexity (4) is defined as
a simple sum of energy costs over separate convolutional and fully-connected
layers in N only, while the less energy-intensive max pooling layers are omitted:

E =
∑

λ∈{1,...,D}\Π

(
Eλcomp + Eλdata

)
(5)

where Eλcomp is the computation energy and Eλdata is the data energy for eval-
uating a convolutional (or fully-connected) layer λ. For a particular layer λ ∈
{1, . . . , D} \ Π, single-neuron states in layer λ − 1, λ, and corresponding filter
weights are called inputs, outputs, and weights of layer λ, respectively.

The computation energy Eλcomp is defined as the number of MACs in layer
λ ∈ {1, . . . , D} \Π, multiplied by a parameter Cb that depends on the number
of bits b in floating-point MAC operations. This dependence is apparently not
uniform (e.g. not linear) since the design of a MAC circuit inside a microprocessor
differs for each b, which means there is no program generating a MAC circuit for
each b (i.e. a nonuniformity assumption known from circuit complexity theory).
The number of MACs in layer λ equals to the number dλmλnλ of single-neuron
excitations (2) in layer λ (i.e. the number of outputs of λ), multiplied by the
number dλ−1rλsλ of inputs to λ that contribute to each of these excitations,
which gives

Eλcomp = Cb dλmλnλ dλ−1rλsλ . (6)

The data energy Eλdata is defined as the number of read and write accesses to
DRAM when evaluating layer λ ∈ {1, . . . , D} \ Π, multiplied by the number b
of bits in a floating-point representation of numbers to be transferred between
DRAM and Buffer. This energy complexity can be split into three components
that count the DRAM accesses separately for the inputs, outputs, and weights:

Eλdata = Eλinputs + Eλoutputs + Eλweights . (7)

Obviously, the numbers of inputs, outputs, and weights of λ which can be cal-
culated as dλ−1mλ−1nλ−1, dλmλnλ, and dλ(dλ−1rλsλ + 1) (including biases),
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respectively, altogether provide a trivial lower bound on the data energy com-
plexity of layer λ:

Eλdata ≥ b (dλ−1mλ−1nλ−1 + dλmλnλ + dλ(dλ−1rλsλ + 1)) (8)

since all the inputs and weights must be read into Buffer at least once and all
the evaluated outputs are eventually written to DRAM.

4 Upper Bounds on Energy Complexity

In the following two subsections, we present two common dataflows for evaluating
a convolutional layer λ ∈ {1, . . . , D} \ Π and calculate their theoretical data
energy complexity Eλdata. In the first dataflow, each output is written to DRAM
only once and in the second one, each input is read into Buffer only once, while
each weight (including bias) is read into Buffer just one time in both dataflows,
that is,

Eλweights = b dλ(dλ−1rλsλ + 1) . (9)

We will assume a sufficiently large capacity of Buffer:

B ≥ b (2mλnλ + 1) . (10)

Moreover, let K = {1, . . . , rλ} × {1, . . . , sλ} be a set of all kernel indices in
layer λ and for any (i0, j0) ∈ K, define a subset of K,

[(i0, j0)] = {(i0 + kσλ, j0 + `σλ) ∈ K | k, ` ∈ Z} (11)

where σλ is a corresponding stride and Z denotes the set of integers. Observe
that the set P = {[(i0, j0)] | (i0, j0) ∈ K} creates a partition of K which consists
of |P | = σ2

λ disjoint parts [i, j] for every i = 1, . . . , σλ and j = 1, . . . , σλ.

4.1 The Dataflow with Write-Once Outputs

We describe the dataflow in which each output is written to DRAM only once.
For each macro-unit f in layer λ, one after the other, its excitation Ξf of size
mλnλ floats is accumulated in Buffer (cf. its capacity (10)) according to (2) as
follows. At the beginning, the bias bf is read into Buffer (corresponding to 1
DRAM access inside the parentheses in (9)), which initializes the evaluation
of Ξf . Then for each macro-unit g ∈ f← and for each part [(i0, j0)] of the
partition P , one by one, the collection of mλnλ inputs to f ,

yg
(
(k − 1)σλ − πλ + i0 , (`− 1)σλ − πλ + j0

)
(12)

for every k = 1, . . . ,mλ and ` = 1, . . . , nλ, is read into Buffer with space left
still for at least one float according to (10), which is reserved for one weight.
The indices of inputs in (12), (k1 − 1)σλ − πλ + i0 = (k2 − 1)σλ − πλ + i and
(`1−1)σλ−πλ+ j0 = (`2−1)σλ−πλ+ j coincide for some k1, k2 ∈ {1, . . . ,mλ},
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`1, `2 ∈ {1, . . . , nλ}, and (i, j) ∈ K iff i = i0 + kσλ and j = j0 + `σλ for
k = k1− k2 and ` = `1− `2 iff (i, j) ∈ [i0, j0] due to (11). This means that in (2)
each input (12) from this collection is multiplied only by weights wfg(i, j) such
that (i, j) ∈ [i0, j0], which are read one by one into Buffer and the respective
MACs are performed. The partition P ensures that each weight and each input
is read into Buffer only once for one macro-unit f over all parts of P and g ∈ f←,
which implies (9). After the excitation Ξf is eventually evaluated, the state Yf ∈
Rmλ×nλ of macro-unit f is computed according to (3) and written to DRAM.

Altogether, each output is thus written to DRAM only once, which gives

Eλoutputs = b dλmλnλ , (13)

while each input is read once for every macro-unit f in layer λ, which implies

Eλinputs = b dλdλ−1mλ−1nλ−1 . (14)

The dataflow provides the following upper bound on the data energy of layer λ:

Eλdata ≤ b dλ (dλ−1mλ−1nλ−1 +mλnλ + dλ−1rλsλ + 1) (15)

according to (7), (14), (13), and (9), which differs only in the number of DRAM
accesses for reading inputs by factor dλ from the trivial lower bound (8).

In addition, we will introduce an alternative dataflow of the same data en-
ergy (15), provided that Buffer capacity is bounded as

B ≥ b (mλnλ + rλsλ + 1) , (16)

cf. (10). For each macro-unit f in layer λ, one after the other, its excitation
Ξf of size mλnλ floats is accumulated in Buffer according to (2), starting with
the bias bf which is read into Buffer to initialize the evaluation of Ξf . Next,
for each g ∈ f←, one by one, the filter Wfg ∈ Rrλ×sλ of size rλsλ is first read
into Buffer, followed by single inputs yg

(
k0, `0

)
, one after the other, for every

k0 = 1, . . . ,mλ−1 and `0 = 1, . . . , nλ−1. For each such an input yg
(
k0, `0

)
, all

partially evaluated excitations ξf (k, `) such that k0 = (k−1)σλ−πλ+i and `0 =
(`−1)σλ−πλ+j for some (i, j) ∈ K, are updated in Buffer by performing MACs
with corresponding weights wfg(i, j) etc. After Ξf is eventually evaluated, the
corresponding output Yf ∈ Rmλ×nλ is computed by (3) and written to DRAM.
Clearly, each weight and each input is read into Buffer once for one macro-unit f ,
which proves the upper bound (15) also for this alternative dataflow.

4.2 The Dataflow with Read-Once Inputs

We describe the dataflow in which each input is read into Buffer only once.
For each macro-unit g in layer λ − 1 and each part [(i0, j0)] of the partition P ,
one after the other, the collection (12) of mλnλ inputs are read into Buffer to
accumulate excitations Ξf for every f ∈ g→ according to (2) as follows. For each
macro-unit f ∈ g→, one by one, either its bias bf is read into Buffer to initialize
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the evaluation of Ξf at the beginning (when the very first collection (12) is in
Buffer) or its partially evaluated excitation Ξf of size mλnλ floats is read into
Buffer, over which the respective MACs are performed. For this purpose, the
corresponding weights wfg(i, j) such that (i, j) ∈ [i0, j0] are one by one read into
Buffer. Then, either the partially evaluated excitation Ξf is written to DRAM,
or at the end when Ξf is completely evaluated (after the very last collection
(12) over all pairs of macro-units g and parts of P , is in Buffer), Ξf is used for
computing the state Yf ∈ Rmλ×nλ of macro-unit f according to (3), which is
written to DRAM. The dataflow is thus implemented within Buffer capacity (10).

Moreover, the partition P ensures that each weight (including bias) as well
as each input is read into Buffer only once, which implies (9) and

Eλinputs = b dλ−1mλ−1nλ−1 , (17)

respectively. Any accumulated excitation is read (except for its initialization by
a bias at the beginning) and written once for each of the dλ−1 macro-units in
layer λ− 1 and each part of the σ2

λ parts of partition P , which gives

Eλoutputs = b
(
2dλ−1σ

2
λ − 1

)
dλmλnλ . (18)

Hence, this dataflow provides another upper bound on the data energy of layer λ:

Eλdata ≤ b
(
dλ−1mλ−1nλ−1 +

(
2dλ−1σ

2
λ − 1

)
dλmλnλ + dλ (dλ−1rλsλ + 1)

)
(19)

according to (7), (17), (18), and (9). This bound is comparable to (15) if the
number of single neurons in layers λ and λ − 1 is roughly the same, that is,
dλ−1mλ−1nλ−1 ≈ dλmλnλ, since σ2

λmλnλ ≈ mλ−1nλ−1 according to (1). Never-
theless, the multiplicative constant 2 of leading term dλdλ−1mλ−1nλ−1 in (19),
which is caused by storing partially evaluated excitations into DRAM, makes
the upper bound (15) more tight than (19).

5 Experimental Validation

In this section, we compare the theoretical energy complexity introduced in
Section 3 to the real power consumption estimated by the Timeloop/Accelergy
software tool [5, 9] for evaluating DNN accelerator designs. The Timeloop finds
an optimal mapping of a convolutional layer specified by its parameters onto
a given hardware platform in terms of power consumption estimated by Accel-
ergy which reports the energy statistics. Namely, we have employed Simba [6]
and Eyeriss [2] as the target platforms onto which convolutional layers with in-
creasing architectural parameters (i.e. not filter weights) have been mapped. All
configuration files used in experiments are publicly available at Github3.

The computation energy reported by Timeloop/Accelergy corresponds di-
rectly to the number of MACs calculated in (6) for Eλcomp where Cb is the energy
per one MAC operation which was estimated as C8 = 0.56 pJ and C16 = 2.20 pJ
for 8-bit Simba and 16-bit Eyeriss architectures, respectively.
3 https://github.com/PetraVidnerova/timeloop-accelergy-test
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Table 1. Required Buffer Capacities for AlexNet Convolutional Layers in Kilobytes.

λ 1 2 3 4 5
mλ = nλ 55 27 13 13 13
dλ 64 192 384 256 256
rλ = sλ 11 5 3 3 3
σλ 4 1 1 1 1
(10): 2m2

λ + 1 6051 1459 339 339 339
b = 8 bits 5.91 kB 1.42 kB 0.33 kB 0.33 kB 0.33 kB
b = 16 bits 11.82 kB 2.85 kB 0.66 kB 0.66 kB 0.66 kB
b = 32 bits 23.64 kB 5.7 kB 1.32 kB 1.32 kB 1.32 kB

(16): m2
λ + r2λ + 1 3147 755 179 179 179

b = 8 bits 3.07 kB 0.74 kB 0.17 kB 0.17 kB 0.17 kB
b = 16 bits 6.15 kB 1.47 kB 0.35 kB 0.35 kB 0.35 kB
b = 32 bits 12.29 kB 2.95 kB 0.7 kB 0.7 kB 0.7 kB

For a convolutional layer λ, we measure empirical dependencies of the optimal
data energy separately on its depth dλ, input feature map size mλ−1 = nλ−1,
kernel size rλ = sλ, and stride σλ (starting with the parameter values of the first
AlexNet layer), by using the Timeloop/Accelergy framework for the Simba and
Eyeriss architectures. These dependencies are then compared to corresponding
asymptotic upper bounds on Eλdata in the energy complexity model:

Eλdata = O (dλ) , E
λ
data = O

(
m2
λ−1
)
, Eλdata = O

(
r2λ
)
, Eλdata = O

(
σ−2λ

)
, (20)

which are derived from (15) for individual variables (when the other independent
parameters are considered to be constant) by using the approximation m2

λ−1 ≈
σ2
λm

2
λ due to (1). Nevertheless, the asymptotic bounds (20) assume a sufficient

Buffer capacity satisfying (10) or (16). Table 1 shows required Buffer capacities
for AlexNet convolutional layers in kilobytes (kB) which appear in an order of
magnitude to be realistic to common hardware architectures such as Eyeriss [2].

Figure 2 presents the results of experimental comparison of energy-efficient
CNN hardware implementations to our theoretical energy complexity model. By
using the Timeloop/Accelergy tool applied to the Simba and Eyeriss hardware
architectures, the optimal values of their data energy consumption have been
estimated for AlexNet-like convolutional layers λ with increasing parameters
dλ, mλ−1 = nλ−1, rλ = sλ, and σλ, each separately. These parameters serve
as independent variables in regression analysis where the relationships between
the data energy and the independent variables are modeled as functions with
asymptotics (20), including multiplicative and additive coefficients c2 and c1,
respectively. As depicted in Figure 2, these coefficients are approximated by the
method of least squares so that the theoretical data energy Eλdata (dashed lines)
fits energy estimates by Timeloop/Accelergy (displayed by bars), which confirms
the asymptotic trends (20) in the energy complexity model. In addition, the
energy complexity model has been validated by statistical tests using quadratic
regression with the function model ax2+ bx+ c for independent variable x to be
dλ, mλ−1, rλ, and σ−1λ , respectively. These statistical tests have approved the
linearity in dλ (p-value 0.556 accepting the null hypothesis of a = 0) and the
quadraticity in mλ−1 rλ, and σ−1λ (p-value 0.000, 0.001, and 0.000, respectively,
rejecting the null hypothesis of a = 0).
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Energy vs. layer depth dλ: Eλ
data = c2dλ + c1

Energy vs. input feature map size mλ−1 = nλ−1: Eλ
data = c2m

2
λ−1 + c1

Energy vs. kernel size rλ = sλ: Eλ
data = c2r

2
λ + c1

Energy vs. stride σλ: Eλ
data = c2σ

−2
λ + c1

Fig. 2. The data energy estimates by Timeloop/Accelergy (displayed by bars) for Alex-
Net-like convolutional layer λ with increasing parameters dλ, mλ−1,rλ, and σλ, each
separately (from top to bottom), on the Simba (left) and Eyeriss (right) architectures,
which fit the asymptotic trends (20) in the energy complexity model (dashed lines).
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6 Conclusion

In this paper, we have introduced a hardware-independent energy complexity
model for CNNs that captures asymptotically all important sources of power
consumption of their diverse hardware implementations. Upper bounds on en-
ergy complexity have been derived in this model for two common energy-efficient
dataflows. The underlying theoretical asymptotic trends have been validated by
statistical tests to fit the energy consumption estimated by the Timeloop/Accel-
ergy program for CNNs of AlexNet-like architectures on the Simba and Eyeriss
hardware platforms. In future research we plan to prove matching lower bounds
on the data energy for convolutional layers. Partial results along this direction
have already been achieved for a special case of fully-connected layers [7]. The
proposed model thus allows to determine the principal limits to which heuristic
optimizers e.g. based on evolutionary algorithms [3] can reach.
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