

Weight-Rounding Error in Deep Neural Networks

Jiří Šíma

sima@cs.cas.cz

joint work with

Petra Vidnerová

petra@cs.cas.cz

Institute of Computer Science
Czech Academy of Sciences, Prague, Czechia

Efficient Processing of Deep Neural Networks (DNNs)

- DNNs are widely used in many artificial intelligence applications
 (e.g. large language models, image recognition, computer vision, robotics, etc.)
- achieve state-of-the-art accuracy, but with high computational complexity (often tens of millions of operations for a single inference)
- the energy efficiency of DNN implementations on low-power, battery-operated hardware (e.g. cellphones, smartwatches, smart glasses) becomes crucial
 - → reducing the energy cost of DNNs:

 (Sze, Chen, Yang, Emer: Efficient Processing of Deep Neural Networks, 2020)
- 1. Hardware Design: energy efficient implementation of DNNs on various hardware platforms, including GPUs, FPGAs, in-memory computing architectures $\approx 70\%$ of energy is consumed on data movement within the memory hierarchy, with the rest on numerical computations
- a hardware-independent model of energy complexity for DNNs unifies asymptotic lower and upper bounds on energy consumption across diverse DNN accelerators (Šíma, Vidnerová, Mrázek, 2024)

- 2. Approximate Computing methods in error-tolerant applications (e.g. image classification) save large amounts of energy with minimal accuracy loss by reducing
- model size: pruning, compression, weight sharing, approximate multipliers
- arithmetic precision: fixed-point operations, reduction of weight bit-width, nonuniform quantization

Example: an 8-bit fixed-point multiply consumes $18.5 \times$ less energy than a 32-bit floating-point multiply (Horowitz, 2014), corresponding to additional fourfold energy reduction for data memory transfers—the most energy-intensive operation

The aim of this study: theoretical analysis of the effect of (post-training) weight rounding on DNN output to guarantee maximum error bounds

- rounding is specified by individual weight deviations, which can be generated by any method, such as reduced bitwidth or quantization etc.
- ullet here, we consider the regression error of approximated DNNs, measured under L_1 norm, later generalized to cross-entropy loss for classification tasks (\S ima, Vidnerová, ICONIP 2025)
- our main results apply to any approximated DNNs, including those obtained, for example, via pruning

Formal Model of DNNs

the architecture of a DNN $\mathcal N$ is a connected directed acyclic graph (V,E) composed of neurons, where edges $(i,j)\in E\subset V imes V$ are labeled with weights $w_{ji}\in\mathbb R$

w.l.o.g., excluding (max) pooling layers ($\max(y_1,y_2)=R(y_1-y_2)+y_2$)

Regression Error of Approximated DNNs

 $\widetilde{\mathcal{N}}$ is an approximated DNN of \mathcal{N} , sharing the same input neurons $(\widetilde{X}=X)$ and the same number of output neurons $(|\widetilde{Y}|=|Y|)$ (tilde denotes parameters of $\widetilde{\mathcal{N}}$)

ightarrow regression error under L_1 norm for an external input $(x_1,\ldots,x_n)\in\mathbb{R}^n$

$$E(x_1,\ldots,x_n) = \sum_{j\in Y} |y_j - \widetilde{y_j}| = \sum_{j\in Y} \left| \xi_j - \widetilde{\xi_j}
ight|$$

Weight Rounding—an important example of approximated $\widetilde{\mathcal{N}}$:

the weights (including the biases) in \mathcal{N} are rounded (e.g. to a given number of binary digits in their floating-point representations)

$$\widetilde{w_{ji}} = w_{ji} + \delta_{ji}$$
 for $j \in V \setminus X$ & $i \in j_{\leftarrow}$

where $\delta_{ii} \in \mathbb{R}$ is a real rounding error of weight w_{ii}

Worst-Case Interval State-Bounds

$$oldsymbol{a_j} \leq y_j \leq oldsymbol{b_j} \quad ext{ for } j \in V \setminus Y$$

ullet w.l.o.g., (bounded) external inputs $(x_1,\ldots,x_n)\in [0,1]^n$ (via linear mapping)

$$\to 0 = a_j \le y_j = x_j \le b_j = 1$$
 for $j \in X \setminus \{0\}$ $(a_0 = y_0 = b_0 = 1)$

feedforward propagation of interval state-bounds:

$$egin{aligned} oldsymbol{a_j} &= R(a_j') \,, \quad oldsymbol{b_j} &= R(b_j') \quad ext{for } j \in V \setminus (X \cup Y) \,, \quad ext{where} \ a_j' &= \sum_{\substack{i \in j_\leftarrow \ w_{ji} < 0}} w_{ji} b_i + \sum_{\substack{i \in j_\leftarrow \ w_{ji} > 0}} w_{ji} a_i \,, \quad b_j' &= \sum_{\substack{i \in j_\leftarrow \ w_{ji} < 0}} w_{ji} a_i + \sum_{\substack{i \in j_\leftarrow \ w_{ji} > 0}} w_{ji} b_i \end{aligned}$$

- ullet w.l.o.g., $a_j=0$ & $b_j>0$ for $j\in V\setminus Y$ (otherwise, j can be removed)
- these interval state-bounds are tight only for one neuron

Theorem. It is NP-hard to find the tight bounds even for two layers.

Worst-Case Bounds on Weight-Rounding Error

Main Idea: for each $j \in V$, find worst-case bounds $\alpha_j \leq 0 \leq \beta_j$ caused by weight-rounding errors such that

$$y_j + \alpha_j \leq \widetilde{y_j} \leq y_j + \beta_j$$

holds for every \widetilde{y}_i satisfying

$$y_i + \alpha_i \leq \widetilde{y}_i \leq y_i + \beta_i$$
 for $i \in j_{\leftarrow}$, over all $y_i \in [a_i, b_i]$:

- ullet $lpha_j=eta_j=0$ for $j\in X$ (input neurons with $j_\leftarrow=\emptyset$ unaffected by weight rounding)
- $\bullet \ \ \pmb{\alpha_j} = \min(0,\alpha_j') \leq 0 \,, \ \ \pmb{\beta_j} = \max(0,\beta_j') \geq 0 \quad \text{for } j \in V \setminus X \,,$

where
$$lpha_j' = \delta_{j0} + \sum_{\substack{i \in j_{\leftarrow} \\ \delta_{ji} < 0}} \delta_{ji} b_i + \sum_{\substack{i \in j_{\leftarrow} \\ \widetilde{w}_{ji} > 0}} \widetilde{w_{ji}} lpha_i + \sum_{\substack{i \in j_{\leftarrow} \\ \widetilde{w}_{ji} < 0}} \widetilde{w_{ji}} eta_i$$

$$eta_j' = \delta_{j0} + \sum_{\substack{i \in j_{\leftarrow} \\ \delta_{ji} > 0}} \delta_{ji} b_i + \sum_{\substack{i \in j_{\leftarrow} \\ \widetilde{w}_{ji} < 0}} \widetilde{w_{ji}} lpha_i + \sum_{\substack{i \in j_{\leftarrow} \\ \widetilde{w}_{ji} > 0}} \widetilde{w_{ji}} eta_i$$

Global Worst-Case Upper Bound on Weight Rounding Error

$$\max_{(x_1,...,x_n)\in[0,1]^n} E(x_1,\ldots,x_n) \leq \sum_{j\in Y} \max(-lpha_j',eta_j')$$

highly overestimated \rightarrow infeasible for practical use:

Example: fully connected 3-layer (784–2000–1000-10) NN \mathcal{N}_1 trained on MNIST with 32-bit weights, rounded to 16 bits in the approximated $\widetilde{\mathcal{N}}_1$

Layer	Smallest $[lpha_j,eta_j]$	Widest $[lpha_j,eta_j]$	
1	[-0.0016, 0.0028]	[-0.0142, 0.0157]	much larger in magnitude
2	[-2.0662, 2.0615]	[-2.6336, 2.6642]	with each subsequent layer
3	[-57.5910, 58.6081]	[-84.9428, 85.1832]	

in contrast, the actual error values are below 0.1 for all test data points

Corollary. It is NP-hard to find the maximum error of approximated DNNs (for any approximation, not only weight rounding).

Idea of proof: by reduction from the maximum state problem (previous Theorem)

Shortcut Weights

the excitation ξ_j of any neuron $j \in V \setminus X$ is a continuous piecewise linear function of the external input (due to ReLU is piecewise linear)

 \rightarrow within a subset $\Xi\subseteq [0,1]^n$ of the input space, the excitation is a linear function of the input-neuron states:

$$\xi_j = \sum_{i \in X} oldsymbol{W_{ji}} y_i \quad ext{for } (y_1, \dots, y_n) \in \Xi$$

where W_{ji} are the coefficients of the linear function, referred to as the shortcut weights (bias) from input neurons $i \in X$ to neuron $j \in V \setminus X$

for input $(x_1,\ldots,x_n)\in [0,1]^n$, its neighborhood Ξ_S is defined so that ξ_j are linear for all $j\in V\setminus X$ with fixed shortcut weights, where

$$S=S(x_1,\ldots,x_n)=\{j\in V\setminus (X\cup Y)\mid \xi_j<0\}$$

is the set of hidden neurons saturated at zero output, $y_j = R(oldsymbol{\xi}_j) = 0$

 \rightarrow Ξ_S is a convex polytope—an intersection of finitely many half-spaces:

$$\xi_j = \sum_{i \in X} oldsymbol{W_{ji}} y_i igg\{ egin{array}{l} < 0 & ext{if } j \in S \ \geq 0 & ext{if } j
otin S \ \end{pmatrix} & ext{for } j \in V \setminus (X \cup Y) \ 0 \leq y_i \leq 1 & ext{for } i \in X \ \end{pmatrix}$$

Calculating Shortcut Weights

the shortcut weight W_{ji} represents the cumulative influence from input neuron $i \in X$ to neuron $j \in V \setminus X$, corresponding to the product of weights along all connecting unsaturated paths in \mathcal{N} :

$$egin{aligned} m{W_{ji}} &= \sum_{\substack{j_0,j_1,...,j_m=j \ j_1,...,j_{m-1}
otin S}} \prod_{\ell=1}^{m} w_{j_\ell,j_{\ell-1}} \end{aligned}$$

Efficient Computation:

1. formal initialization for input neurons $j \in X$:

$$oldsymbol{W_{ji}} = \left\{egin{array}{ll} 1 & ext{if } j=i \ 0 & ext{otherwise} \end{array}
ight. ext{ for all } i\in X$$

2. feedforward propagation for neurons $j \in V \setminus X$:

$$oldsymbol{W_{ji}} = \sum_{k \in j_\leftarrow \setminus S} w_{jk} \, W_{ki} \quad ext{for all } i \in X$$

Estimating the Maximum Error of Approximated DNNs

- the worst-case maximum error does not take the probability distribution of the input space into account
- ullet approximating the maximum or average error using data points from the training or test set T:

$$E_T = \max_{(x_1,...,x_n)\in T} oldsymbol{E}(x_1,\ldots,x_n) \ , \ \ \overline{E_T} = rac{1}{|T|} \sum_{(x_1,...,x_n)\in T} oldsymbol{E}(x_1,\ldots,x_n)$$

• refining the error estimate using the maximum over the convex polytope $\Xi_{S(x_1,...,x_n)}$ surrounding the data point $(x_1,\ldots,x_n)\in T$:

$$E_{\Xi_{S(T)}} = \max_{(x_1,...,x_n) \in T} E_{\Xi_{S(x_1,...,x_n)}} \,, \ \ \overline{E}_{\Xi_{S(T)}} = rac{1}{|T|} \sum_{(x_1,...,x_n) \in T} E_{\Xi_{S(x_1,...,x_n)}}$$

where

$$E_{\Xi_{S(x_1,...,x_n)}} = \max_{(y_1,...,y_n) \in \Xi_{S(x_1,...,x_n)}} E(y_1,\ldots,y_n)$$

ightarrow AppMax method for computing $E_{\Xi_{S(x_1,...,x_n)}}$:

Evaluating the Error of Approximated DNNs

$$oldsymbol{\xi}_j^* = oldsymbol{\xi}_j - \widetilde{oldsymbol{\xi}_j} \quad ext{for } j \in oldsymbol{Y} \ = \sum_{i \in j_\leftarrow} w_{ji} y_i - \sum_{i \in j_\leftarrow} \widetilde{w_{ji}} \, \widetilde{y}_i$$

$$egin{aligned} oldsymbol{\xi}_j^* &= \widetilde{oldsymbol{\xi}_j} - oldsymbol{\xi}_j & ext{for } j \in oldsymbol{\widetilde{Y}} \ &= \sum_{k \in j_\leftarrow} \widetilde{w_{jk}} \, y_k - \sum_{k \in j_\leftarrow} w_{jk} \widetilde{y_k} \end{aligned}$$

$$y_e^* = \xi_e^* = \sum_{j \in Y} y_j^* + \sum_{j \in \widetilde{Y}} y_j^* = \sum_{j \in Y} R\left(\frac{\xi_j^*}{t}\right) + \sum_{j \in \widetilde{Y}} R\left(\frac{\xi_j^*}{t}\right)$$
$$= \sum_{j \in Y} \left(R\left(\xi_j - \widetilde{\xi_j}\right) + R\left(\widetilde{\xi_j} - \xi_j\right)\right) = \sum_{j \in Y} \left|\xi_j - \widetilde{\xi_j}\right| = E(x_1, \dots, x_n)$$

AppMax Method

Input: DNN \mathcal{N} , its approximation $\widetilde{\mathcal{N}}$, data point $(x_1,\ldots,x_n)\in T$

Output:
$$E_{\Xi_{S^*(x_1,...,x_n)}} = \max_{(y_1,...,y_n) \in \Xi_{S^*(x_1,...,x_n)}} E(y_1,\ldots,y_n)$$

Algorithm:

• construct \mathcal{N}^* from \mathcal{N} & $\widetilde{\mathcal{N}}$, computing the approximation error

$$oldsymbol{y_e^*} = E(x_1, \dots, x_n) = \sum_{j \in Y} |y_j - \widetilde{y_j}|$$

- ullet determine the saturated neurons $S^* = S^*(x_1, \dots, x_n)$
- ullet compute the shortcut weights W_{ji}^* of \mathcal{N}^* for all $j \in V^* \setminus X^*$ and $i \in X^*$
- ullet solve the linear program (LP) to find the input-neuron states y_1, \ldots, y_n that

maximize
$$y_e^* = \sum_{i \in X} W_{ei}^* \, y_i \quad o \quad {E_{\Xi_{S^*(x_1,...,x_n)}}}$$

subject to
$$egin{aligned} \xi_j^* &= \sum_{i \in X} W_{ji}^* \, y_i \, iggl\{ egin{aligned} \leq 0 & ext{if } j \in S^* \\ \geq 0 & ext{if } j
otin S^* \end{aligned} \end{aligned} \qquad ext{for } j \in V^* ackslash (X^* \cup Y^*) \ 0 \leq y_i \leq 1 \quad ext{for } i \in X^* \end{aligned}$$

Experiments

- Dataset: MNIST handwritten digits (28x28 grayscale pixels) categorized into 10 classes (0–9)
- Software Libraries: PyTorch (deep learning), SciPy (linear programming)
- Source Code: publicly available at https://github.com/PetraVidnerova/RoundingErrorEstimation
- DNNs: trained on MNIST with 32-bit weights
 - 1. fully connected NN \mathcal{N}_1 : 3 FC layers 784–2000–1000–10
 - 2. convolutional NN \mathcal{N}_2 :
 - -2 convolutional layers with 32 and 64 3x3-kernels (stride 1, padding 1),
 - 1 max pooling layer with 64 2x2-kernels (stride 2)
 - 2 FC layers (1024-10)
 - \rightarrow 8 FC layers 784–25088–50176–50176–25088–25088–12544–1024–10

robust accuracies of $\widetilde{\mathcal{N}}_1$ and $\widetilde{\mathcal{N}}_2$ on the test set for rounded weights:

weight bit-width	32b	16b	12b	8b	6b	4b
$\widetilde{\widetilde{\mathcal{N}}_1}$	98.30	98.30	98.30	98.30	98.30	24.85
$\widetilde{\mathcal{N}}_2$	99.25	99.25	99.25	99.25	99.25	99.14

Refining the Error Estimation Using the AppMax Method

- ullet weights of approximated $\widetilde{\mathcal{N}}_1$ and $\widetilde{\mathcal{N}}_2$ rounded to $16~\mathrm{bits}$
- test set T contains all available 70,000 data points (i.e. 70,000 LPs)

	$oldsymbol{E_T}$	$E_{\Xi_{S(T)}}$	$\overline{\boldsymbol{E_T}}$	$\overline{m{E}_{\Xi_{S(T)}}}$
$\overline{\widetilde{\mathcal{N}}_1}$	0.032854	0.099374	0.007629	0.030884
$\widetilde{\mathcal{N}_2}$	0.013466	0.014763	0.006127	0.006777

Error Histograms: E at data points in T vs. E_{Ξ_S} over convex polytopes Ξ_S surrounding data points in T

Worst-Case Points in Polytopes Identified by AppMax

Reducing the Sample Size for AppMax

70,000 data points (\sim LPs) required several days using dozens of parallel processors (e.g., $\widetilde{\mathcal{N}}_2$: 250 s per one data point on Intel[®] Xeon[®] E5-2620 v4 2.10 GHz processor)

error estimates E_{T_s} and $E_{\Xi_{S(T_s)}}$ for random samples $T_s \subset T$ of increasing size (50–60,000), averaged over 100 trials:

Error Estimates for Decreasing Bit-Width of Weights

sample T of 10,000 randomly chosen test points for $\widetilde{\mathcal{N}}_1$:

weight bit-width	$oldsymbol{E_T}$	$oldsymbol{E}_{\Xi_{S(T)}}$	$\overline{oldsymbol{E_T}}$	$\overline{E_{\Xi_{S(T)}}}$
16 bits	0.024727	0.093156	0.007558	0.030998
12 bits	0.613171	1.049668	0.135616	0.384750
8 bits	8.191886	17.585771	2.138221	6.070758
6 bits	40.410836	85.562221	10.226672	25.475516
4 bits	301.230476	479.39271	81.117751	153.583925

violin plots of E_{Ξ_S} (log scale) for different weight bit-widths:

Error Estimates for Decreasing Bit-Width of Weights

sample T of 2,000 randomly chosen test points for $\widetilde{\mathcal{N}}_2$:

	weight bit-width	$oldsymbol{E_T}$	$oldsymbol{E}_{\Xi_{S(T)}}$	$\overline{\boldsymbol{E_T}}$	$\overline{m{E}_{\Xi_{S(T)}}}$	
•	16 bits	0.012124	0.013333	0.006172	0.006853	
	12 bits	0.044369	0.049109	0.022313	0.024935	
	8 bits	0.821959	0.898328	0.368140	0.411297	
	6 bits	3.522414	3.848394	1.486143	1.665951	
	4 bits	16.409141	17.810625	7.662384	8.548645	

violin plots of E_{Ξ_S} (log scale) for different weight bit-widths:

Summary

- theoretical analysis of the effect of weight-rounding on outputs of trained DNNs
- worst-case upper bound on weight-rounding error (overestimated in practice)
- computing regression error for approximated DNNs is NP-hard
- AppMax method: finds maximum error in convex polytopes around data points
- AppMax shows improved error guarantees (vs. test data only) on MNIST database for decreasing bit-width of weights
- AppMax enables comparison of approximation strategies, identifies optimal accuracy-performance tradeoffs, supports energy-efficient DNNs

Future Research Directions

- AppMax for cross-entropy loss in classification DNNs with softmax via linear interpolation of e^x (ICONIP 2025) vs. Karush-Kuhn-Tucker optimization ?
- approximate global error by estimating the probabilities of convex polytopes from their volumes measured by mean width
- broaden AppMax evaluation to other datasets (e.g., CIFAR-100, ImageNet)
- extend error analysis to modern architectures (e.g., ResNet, Transformers)
- identify DNN components that can be neglected (e.g., specific weights to be rounded) under explicitly bounded output error