
European Conference on Machine Learning
& Principles and Practice of Knowledge Discovery in Databases

September 15-19, 2025, Porto, Portugal

Weight-Rounding Error in Deep Neural Networks

Jǐŕı Š́ıma
sima@cs.cas.cz

joint work with Petra Vidnerová
petra@cs.cas.cz

Institute of Computer Science
Czech Academy of Sciences, Prague, Czechia

Efficient Processing of Deep Neural Networks (DNNs)

• DNNs are widely used in many artificial intelligence applications
(e.g. large language models, image recognition, computer vision, robotics, etc.)
• achieve state-of-the-art accuracy, but with high computational complexity

(often tens of millions of operations for a single inference)
• the energy efficiency of DNN implementations on low-power, battery-operated

hardware (e.g. cellphones, smartwatches, smart glasses) becomes crucial

−→ reducing the energy cost of DNNs:
(Sze,Chen,Yang,Emer:Efficient Processing of Deep Neural Networks,2020)

1. Hardware Design: energy efficient implementation of DNNs on various
hardware platforms, including GPUs, FPGAs, in-memory computing architectures
≈ 70% of energy is consumed on data movement within the memory hierarchy,
with the rest on numerical computations

a hardware-independent model of energy complexity for DNNs unifies asymptotic
lower and upper bounds on energy consumption across diverse DNN accelerators
(Šı́ma,Vidnerová,Mrázek,2024)

2/19

2. Approximate Computing methods in error-tolerant applications (e.g. image
classification) save large amounts of energy with minimal accuracy loss by reducing
• model size: pruning, compression, weight sharing, approximate multipliers
• arithmetic precision: fixed-point operations, reduction of weight bit-width,

nonuniform quantization

Example: an 8-bit fixed-point multiply consumes 18.5× less energy than a 32-
bit floating-point multiply (Horowitz,2014), corresponding to additional fourfold
energy reduction for data memory transfers—the most energy-intensive operation

The aim of this study: theoretical analysis of the effect of (post-training)
weight rounding on DNN output to guarantee maximum error bounds
• rounding is specified by individual weight deviations, which can be generated

by any method, such as reduced bitwidth or quantization etc.
• here, we consider the regression error of approximated DNNs, measured un-

der L1 norm, later generalized to cross-entropy loss for classification tasks
(Šı́ma,Vidnerová,ICONIP 2025)
• our main results apply to any approximated DNNs, including those obtained,

for example, via pruning
3/19

Formal Model of DNNs
the architecture of a DNN N is a connected directed acyclic graph (V, E)
composed of neurons, where edges (i, j) ∈ E ⊂ V × V are labeled with
weights wji ∈ R

Y ⊆ V output neurons

yj =


xj if j ∈ X

R(ξj) if j ∈ V \ (X ∪ Y)
ξj if j ∈ Y

output (state) of
neuron j ∈ V

R(ξ) = ReLU(ξ) = max(0, ξ) activation function

ξj =
∑

i∈j←

wjiyi excitation of j ∈ V \X

j← = {i ∈ V | (i, j) ∈ E} inputs to neuron j ∈ V \X

X = {0, 1, . . . , n} ⊆ V input neurons including
formal 0 ∈ X (y0 ≡ 1) for biases wj0 for j ∈ V \X

↑
(x1, . . . , xn) ∈ Rn external input to N

0 n

w.l.o.g., excluding (max) pooling layers (max(y1, y2) = R(y1 − y2) + y2)
4/19

Regression Error of Approximated DNNs

Ñ is an approximated DNN ofN , sharing the same input neurons (X̃ = X) and
the same number of output neurons (|Ỹ | = |Y |) (tilde denotes parameters of Ñ)

→ regression error under L1 norm for an external input (x1, . . . , xn) ∈ Rn

E(x1, . . . , xn) =
∑
j∈Y

|yj − ỹj| =
∑
j∈Y

∣∣∣ξj − ξ̃j

∣∣∣
Weight Rounding—an important example of approximated Ñ :

the weights (including the biases) in N are rounded
(e.g. to a given number of binary digits in their floating-point representations)

w̃ji = wji + δji for j ∈ V \X & i ∈ j←

where δji ∈ R is a real rounding error of weight wji

5/19

Worst-Case Interval State-Bounds

aj ≤ yj ≤ bj for j ∈ V \ Y

• w.l.o.g., (bounded) external inputs (x1, . . . , xn) ∈ [0, 1]n (via linear mapping)

→ 0 = aj ≤ yj = xj ≤ bj = 1 for j ∈ X \ {0} (a0 = y0 = b0 = 1)

• feedforward propagation of interval state-bounds:
aj = R(a′j) , bj = R(b′j) for j ∈ V \ (X ∪ Y) , where

a′j =
∑
i∈j←
wji<0

wjibi +
∑
i∈j←
wji>0

wjiai , b′j =
∑
i∈j←
wji<0

wjiai +
∑
i∈j←
wji>0

wjibi

• w.l.o.g., aj = 0 & bj > 0 for j ∈ V \Y (otherwise, j can be removed)

• these interval state-bounds are tight only for one neuron

Theorem. It is NP-hard to find the tight bounds even for two layers.

6/19

Worst-Case Bounds on Weight-Rounding Error

Main Idea: for each j ∈ V , find worst-case bounds αj ≤ 0 ≤ βj caused by
weight-rounding errors such that

yj + αj ≤ ỹj ≤ yj + βj

holds for every ỹi satisfying
yi + αi ≤ ỹi ≤ yi + βi for i ∈ j← , over all yi ∈ [ai, bi] :

• αj = βj = 0 for j ∈ X (input neurons with j← = ∅ unaffected by
weight rounding)

• αj = min(0, α′j) ≤ 0 , βj = max(0, β′j) ≥ 0 for j ∈ V \X ,

where α′j = δj0 +
∑
i∈j←
δji<0

δjibi +
∑
i∈j←
w̃ji>0

w̃jiαi +
∑
i∈j←
w̃ji<0

w̃jiβi

β′j = δj0 +
∑
i∈j←
δji>0

δjibi +
∑
i∈j←
w̃ji<0

w̃jiαi +
∑
i∈j←
w̃ji>0

w̃jiβi

7/19

Global Worst-Case Upper Bound on Weight Rounding Error

max
(x1,...,xn)∈[0,1]n

E(x1, . . . , xn) ≤
∑
j∈Y

max(−α′j, β′j)

highly overestimated → infeasible for practical use:

Example: fully connected 3-layer (784–2000–1000-10) NN N1 trained on
MNIST with 32-bit weights, rounded to 16 bits in the approximated Ñ1

Layer Smallest [αj, βj] Widest [αj, βj]
1 [-0.0016, 0.0028] [-0.0142, 0.0157]
2 [-2.0662, 2.0615] [-2.6336, 2.6642]
3 [-57.5910, 58.6081] [-84.9428, 85.1832]

much larger in magnitude
with each subsequent layer

in contrast, the actual error values are below 0.1 for all test data points

Corollary. It is NP-hard to find the maximum error of approximated DNNs
(for any approximation, not only weight rounding).

Idea of proof: by reduction from the maximum state problem (previous Theorem)
8/19

Shortcut Weights
the excitation ξj of any neuron j ∈ V \ X is a continuous piecewise linear
function of the external input (due to ReLU is piecewise linear)
→ within a subset Ξ ⊆ [0, 1]n of the input space, the excitation is a linear
function of the input-neuron states:

ξj =
∑
i∈X

Wji yi for (y1, . . . , yn) ∈ Ξ

where Wji are the coefficients of the linear function, referred to as the shortcut
weights (bias) from input neurons i ∈ X to neuron j ∈ V \X

for input (x1, . . . , xn) ∈ [0, 1]n, its neighborhood ΞS is defined so that ξj

are linear for all j ∈ V \X with fixed shortcut weights, where
S = S(x1, . . . , xn) = {j ∈ V \ (X ∪ Y) | ξj < 0}

is the set of hidden neurons saturated at zero output, yj = R(ξj) = 0
→ ΞS is a convex polytope—an intersection of finitely many half-spaces:

ξj =
∑
i∈X

Wji yi

{
< 0 if j ∈ S
≥ 0 if j /∈ S

for j ∈ V \ (X ∪ Y)

0 ≤ yi ≤ 1 for i ∈ X
9/19

Calculating Shortcut Weights

the shortcut weight Wji represents the cumulative influence from input neuron
i ∈ X to neuron j ∈ V \X, corresponding to the product of weights along
all connecting unsaturated paths in N :

Wji =
∑

paths i=j0,j1,...,jm=j in (V,E)
j1,...,jm−1 /∈S

m∏
ℓ=1

wjℓ,jℓ−1

Efficient Computation:

1. formal initialization for input neurons j ∈ X:

Wji =
{

1 if j = i
0 otherwise for all i ∈ X

2. feedforward propagation for neurons j ∈ V \X:

Wji =
∑

k∈j←\S

wjk Wki for all i ∈ X

10/19

Estimating the Maximum Error of Approximated DNNs

• the worst-case maximum error does not take the probability distribution of
the input space into account

• approximating the maximum or average error using data points from the
training or test set T :

ET = max
(x1,...,xn)∈T

E(x1, . . . , xn) , ET =
1
|T |

∑
(x1,...,xn)∈T

E(x1, . . . , xn)

• refining the error estimate using the maximum over the convex polytope
ΞS(x1,...,xn) surrounding the data point (x1, . . . , xn) ∈ T :

EΞS(T) = max
(x1,...,xn)∈T

EΞS(x1,...,xn) , EΞS(T) =
1
|T |

∑
(x1,...,xn)∈T

EΞS(x1,...,xn)

where
EΞS(x1,...,xn) = max

(y1,...,yn)∈ΞS(x1,...,xn)
E(y1, . . . , yn)

→ AppMax method for computing EΞS(x1,...,xn) :
11/19

Evaluating the Error of Approximated DNNs

ξ∗j = ξj − ξ̃j for j ∈ Y

=
∑

i∈j←

wjiyi−
∑

i∈j←

w̃ji ỹi

ξ∗j = ξ̃j − ξj for j ∈ Ỹ

=
∑

k∈j←

w̃jk yk−
∑

k∈j←

wjkỹk

N ∗ Y ∗

Y Ỹ

N Ñ

X∗ = X = X̃

y∗e = ξ∗e =
∑
j∈Y

y∗j +
∑
j∈Ỹ

y∗j =
∑
j∈Y

R
(

ξ∗j

)
+

∑
j∈Ỹ

R
(

ξ∗j

)
=

∑
j∈Y

(
R

(
ξj − ξ̃j

)
+ R

(
ξ̃j − ξj

))
=

∑
j∈Y

∣∣∣ξj − ξ̃j

∣∣∣ = E(x1, . . . , xn)

12/19

AppMax Method

Input: DNN N , its approximation Ñ , data point (x1, . . . , xn) ∈ T

Output: EΞS∗(x1,...,xn) = max
(y1,...,yn)∈ΞS∗(x1,...,xn)

E(y1, . . . , yn)

Algorithm:
• construct N ∗ from N & Ñ , computing the approximation error

y∗e = E(x1, . . . , xn) =
∑
j∈Y

|yj − ỹj|

• determine the saturated neurons S∗ = S∗(x1, . . . , xn)

• compute the shortcut weights W ∗
ji ofN ∗ for all j ∈ V ∗ \X∗ and i ∈ X∗

• solve the linear program (LP) to find the input-neuron states y1, . . . , yn that

maximize y∗e =
∑
i∈X

W ∗
ei yi → EΞS∗(x1,...,xn)

subject to ξ∗j =
∑
i∈X

W ∗
ji yi

{
≤ 0 if j ∈ S∗

≥ 0 if j /∈ S∗
for j ∈ V ∗\(X∗∪Y ∗)

0 ≤ yi ≤ 1 for i ∈ X∗

13/19

Experiments
• Dataset: MNIST handwritten digits (28x28 grayscale pixels) categorized

into 10 classes (0–9)
• Software Libraries: PyTorch (deep learning), SciPy (linear programming)
• Source Code: publicly available at

https://github.com/PetraVidnerova/RoundingErrorEstimation

• DNNs: trained on MNIST with 32-bit weights
1. fully connected NN N1: 3 FC layers 784–2000–1000–10
2. convolutional NN N2:
– 2 convolutional layers with 32 and 64 3x3-kernels (stride 1, padding 1),
– 1 max pooling layer with 64 2x2-kernels (stride 2)
– 2 FC layers (1024–10)
→ 8 FC layers 784–25088–50176–50176–25088–25088–12544–1024–10

robust accuracies of Ñ1 and Ñ2 on the test set for rounded weights:
weight bit-width 32b 16b 12b 8b 6b 4b

Ñ1 98.30 98.30 98.30 98.30 98.30 24.85
Ñ2 99.25 99.25 99.25 99.25 99.25 99.14

14/19

Refining the Error Estimation Using the AppMax Method
• weights of approximated Ñ1 and Ñ2 rounded to 16 bits

• test set T contains all available 70,000 data points (i.e. 70,000 LPs)

ET EΞS(T) ET EΞS(T)

Ñ1 0.032854 0.099374 0.007629 0.030884
Ñ2 0.013466 0.014763 0.006127 0.006777

Error Histograms: E at data points in T vs. EΞS
over convex polytopes ΞS

surrounding data points in T

Ñ1 Ñ2

15/19

Worst-Case Points in Polytopes Identified by AppMax
data points (x1, . . . , xn) ∈ T

Ñ1

Ñ2

arg max
(y1,...,yn)∈ΞS(x1,...,xn)

E(y1, . . . , yn)

Reducing the Sample Size for AppMax
70,000 data points (∼ LPs) required several days using dozens of parallel processors

(e.g., Ñ2: 250 s per one data point on Intel® Xeon® E5-2620 v4 2.10 GHz processor)

error estimates ETs and EΞS(Ts) for random samples Ts ⊂ T of increasing size
(50–60,000), averaged over 100 trials:

Ñ1 Ñ2

16/19

Error Estimates for Decreasing Bit-Width of Weights
sample T of 10,000 randomly chosen test points for Ñ1:

weight bit-width ET EΞS(T) ET EΞS(T)

16 bits 0.024727 0.093156 0.007558 0.030998
12 bits 0.613171 1.049668 0.135616 0.384750
8 bits 8.191886 17.585771 2.138221 6.070758
6 bits 40.410836 85.562221 10.226672 25.475516
4 bits 301.230476 479.39271 81.117751 153.583925

violin plots of EΞS
(log scale) for different weight bit-widths:

17/19

Error Estimates for Decreasing Bit-Width of Weights
sample T of 2,000 randomly chosen test points for Ñ2:

weight bit-width ET EΞS(T) ET EΞS(T)

16 bits 0.012124 0.013333 0.006172 0.006853
12 bits 0.044369 0.049109 0.022313 0.024935
8 bits 0.821959 0.898328 0.368140 0.411297
6 bits 3.522414 3.848394 1.486143 1.665951
4 bits 16.409141 17.810625 7.662384 8.548645

violin plots of EΞS
(log scale) for different weight bit-widths:

18/19

Summary
• theoretical analysis of the effect of weight-rounding on outputs of trained DNNs
• worst-case upper bound on weight-rounding error (overestimated in practice)
• computing regression error for approximated DNNs is NP-hard
• AppMax method: finds maximum error in convex polytopes around data points
• AppMax shows improved error guarantees (vs. test data only) on MNIST

database for decreasing bit-width of weights
• AppMax enables comparison of approximation strategies, identifies optimal

accuracy-performance tradeoffs, supports energy-efficient DNNs

Future Research Directions
• AppMax for cross-entropy loss in classification DNNs with softmax via linear

interpolation of ex (ICONIP 2025) vs. Karush-Kuhn-Tucker optimization ?
• approximate global error by estimating the probabilities of convex polytopes

from their volumes measured by mean width
• broaden AppMax evaluation to other datasets (e.g., CIFAR-100, ImageNet)
• extend error analysis to modern architectures (e.g., ResNet, Transformers)
• identify DNN components that can be neglected (e.g., specific weights to be

rounded) under explicitly bounded output error
19/19

