European Conference on Machine Learning

& Principles and Practice of Knowledge Discovery in Databases
: Septemberl5-19, 2025, PortoyPortugal

Weight-Rounding Error in Deep Neural Networks

Jiri Sima
sima@cs.cas.cz

joint work with Petra Vidnerova
petra@cs.cas.cz

) Institute of Computer Science
Czech Academy of Sciences, Prague, Czechia

Efficient Processing of Deep Neural Networks (DNNs)

® DNNs are widely used in many artificial intelligence applications

(e.g. large language models, image recognition, computer vision, robotics, etc.)

® achieve state-of-the-art accuracy, but with high computational complexity
(often tens of millions of operations for a single inference)

e the energy efficiency of DNN implementations on low-power, battery-operated
hardware (e.g. cellphones, smartwatches, smart glasses) becomes crucial

—— reducing the energy cost of DNNs:
(Sze,Chen,Yang,Emer:Efficient Processing of Deep Neural Networks,QOQO)

1. Hardware Design: energy efficient implementation of DNNs on various
hardware platforms, including GPUs, FPGAs, in-memory computing architectures

~ 70% of energy is consumed on data movement within the memory hierarchy,
with the rest on numerical computations

a hardware-independent model of energy complexity for DNNs unifies asymptotic
lower and upper bounds on energy consumption across diverse DNN accelerators
(Sima,Vidnerové,Mrézek,2024)

2/19

2. Approximate Computing methods in error-tolerant applications (e.g. image
classification) save large amounts of energy with minimal accuracy loss by reducing

® model size: pruning, compression, weight sharing, approximate multipliers

® arithmetic precision: fixed-point operations, reduction of weight bit-width,
nonuniform quantization

Example: an 8-bit fixed-point multiply consumes 18.5 X less energy than a 32-
bit floating-point multiply (Horowitz,2014), corresponding to additional fourfold
energy reduction for data memory transfers—the most energy-intensive operation

The aim of this study: theoretical analysis of the effect of (post-training)
weight rounding on DNN output to guarantee maximum error bounds

e rounding is specified by individual weight deviations, which can be generated
by any method, such as reduced bitwidth or quantization etc.

® here, we consider the regression error of approximated DNNs, measured un-
der L; norm, later generalized to cross-entropy loss for classification tasks
(Sima,Vidnerova,ICONIP 2025)

® our main results apply to any approximated DNNs, including those obtained,
for example, via pruning

3/19

Formal Model of DNNs

the architecture of a DNN AN is a connected directed acyclic graph (V, E)
composed of neurons, where edges (¢,7) € E C V X V are labeled with

weights wj; € R

Y C V output neurons

a:j If] - X
Y = { R(g) 5 € V\(XUY) oubt e o
&; ifg€eyYy

R(&) = ReLU(&) = max(0,&) activation function

£ = Z wj;y; excitationof j € V \ X
€]

X ={0,1,...,n} C V input neurons including

@ tee O tt @) formal 0 € X (yo = 1) for biases wjg for 3 € V' \ X

(T1y...,%n) € R" external input to N

w.l.o.g., excluding (max) pooling layers (max(y1,¥y2) = R(y1 — y2) + y2)
4/19

Regression Error of Approximated DNNs

—~—

N is an approximated DNN of A/, sharing the same input neurons (:3\(/ = X)) and

——

the same number of output neurons (|Y| = |Y'|) (tilde denotes parameters of N/)

— regression error under Ly norm for an external input (x1,...,2,) € R”

E(wi,-sm) = Y lys — G5l = Y [& — &

JeY JEY

Weight Rounding—an important example of approximated N

the weights (including the biases) in A/ are rounded
(e.g. to a given number of binary digits in their floating-point representations)

where 9; € R is a real rounding error of weight w;;

5/19

Worst-Case Interval State-Bounds
aj Sy; by forje VY
e w.lo.g., (bounded) external inputs (x1,...,x,) € [0,1]™ (via linear mapping)
— 0=a;<{yj=x; <b;=1 for 3 € X\ {0} (ap=1yo=0by=1)

e feedforward propagation of interval state-bounds:

aj = R(a}), bj=R(b)) for j€V\(XUY), where

a; = Z wj;b; + Z wja;, b= Z wj;a; + Z wj;b;

i€ie i€ie iCe i€ie
w;;<0 w;; >0 w;; <0 w;; >0

e wlog.,a; =0& b; >0 forj € V\Y (otherwise, j can be removed)

® these interval state-bounds are tight only for one neuron

Theorem. [t is NP-hard to find the tight bounds even for two layers.

6/19

Worst-Case Bounds on Weight-Rounding Error

Main ldea: for each 3 € V/, find worst-case bounds a; < 0 < 3; caused by
weight-rounding errors such that

yi +o; S y; S y;+ B
holds for every wy; satisfying
Y; + o S :fyvz S yz—l—ﬁz for 2 €j<_, over all Y; € [Cl,i,bi] :

e o = [3; =0 for 3 € X (input neurons with j._ = @ unaffected by
weight rounding)

o o, = min(0,a’) <0, B; =max(0,3%) >0 forje V\X
J (0, i/ =Y Hj »HFji) = J ’

where a;. = 00 + Z 0;;b; + Z wj; o + Z wji i

1€J¢+ 1€ 1€
0;;<0 wﬂ>0 wﬂ<0
/
/Bj — 30"' E 6gzb + g wgzaz‘|‘ g wgz/Bz
1€J¢+ }\E/ﬁ— }\E/ﬁ—
0;;>0 w;;<0 w;; >0

7/19

Global Worst-Case Upper Bound on Weight Rounding Error

max E(xyy...,x,) < Z max(—a, B7)
(mlrﬂamn)e[o?l]n jeEY

highly overestimated —> infeasible for practical use:

Example: fully connected 3-layer (784-2000-1000-10) NN A/ trained on
MNIST with 32-bit weights, rounded to 16 bits in the approximated N3

Layer ~ Smallest (o, 3] Widest [, 5]
1 [-0.0016, 0.0028] [-0.0142, 0.0157] much larger in magnitude
2 [-2.0662, 2.0615] [-2.6336, 2.6642] with each subsequent layer
3 [-57.5910, 58.6081] [-84.9428, 85.1832]

in contrast, the actual error values are below 0.1 for all test data points

Corollary. It is NP-hard to find the maximum error of approximated DNNs
(for any approxzimation, not only weight rounding).

|dea of proof: by reduction from the maximum state problem (previous Theorem)
8/19

Shortcut Weights

the excitation &; of any neuron 5 € V \ X is a continuous piecewise linear
function of the external input (due to RelLU is piecewise linear)

— within a subset 2 C [0, 1]™ of the input space, the excitation is a linear
function of the input-neuron states:

§ = ZWgzyz for (y17°°°7yn) €=
1€eX
where W;; are the coefficients of the linear function, referred to as the shortcut
weights (bias) from input neurons ¢ € X to neuron 3 € V \ X

for input (x1,...,x,) € [0, 1], its neighborhood Eg is defined so that &;
are linear for all 7 € V' \ X with fixed shortcut weights, where

S=85@1,...,zn) ={J EV\(XUY) | & < 0}
is the set of hidden neurons saturated at zero output, y; = R(£;) = 0

— Eg is a convex polytope—an intersection of finitely many half-spaces:

<0ifyjes :
e X —
0<y; <1 forr e X
9/19

Calculating Shortcut Weights

the shortcut weight W;; represents the cumulative influence from input neuron
t € X toneuron j € V \ X, corresponding to the product of weights along
all connecting unsaturated paths in N/

m
Wi =) 1] wieies

paths isz,jl,....,jm:j in (V,E) £=1
Jla"'a]m—1¢s

Efficient Computation:

1. formal initialization for input neurons 3 € X:

Wﬁ:{l 1= aliex

0 otherwise

2. feedforward propagation for neurons 3 € V' \ X:

Wii= > wjpWy forallie X
k€j\S

10/19

Estimating the Maximum Error of Approximated DNNs

® the worst-case maximum error does not take the probability distribution of
the input space into account

® approximating the maximum or average error using data points from the
training or test set T

_ 1
Er= max FE(xzy,...,x,), Er = — Z E(xy,...,xy,)
e Tl 2

® refining the error estimate using the maximum over the convex polytope
ES(x1,...,z,,) SUrrounding the data point (z1,...,x,) € T:

1
EE = Imax EE) EE = — EE
S(T) (wla-..,wn)ET S(z1,.--9Tn) S(T) |T| (wl zw:)eT S(z15.--9Tn)
where
EE‘S(ml,...,wn) = max E(yis---sYn)

(Y1seee5Yn) EES(wl,...,aSn)

— AppMax method for computing E=

=S (x1yeeesn)

11/19

Evaluating the Error of Approximated DNNs

\!\f /L /\9
. @...O...@X*:X:fj

£ = -—Ej forj €Y
- Y v Y w
Sy - €]

==Y+ u=Y R(€)+ X R(g)

JjeyY jey JeEY

JeY

=Y (R(&-&)+R(§-4)) =D |6 -&| = B@.....a0)

JjeY

12/19

AppMax Method

Input: DNN A/, its approximation N, data point (1,...,x,) €T
Output: Ez = max E(yiy---sYn)

(ylv---ayn)EES*(ml wn)

Algorithm:
e construct N'* from N & N, computing the approximation error

y: — E(wh"'awn) — Z |yj _?I?l
JeEY
® determine the saturated neurons S* = S*(x1,...,x,)

e compute the shortcut weights W of N*forallj € V*\ X*andi € X*

@ solve the linear program (LP) to find the input-neuron states y1, . . . , y,, that

maximize ¥y, = Z Wiy, — E=

e X
_ . . <0 if €8 : . o
subject to £ = iji yz{ >0 ;f ; ; G for 3 € V*\(X*UY™)

e X
0<y; <1 forz e X*
13/19

Experiments

e Dataset: MNIST handwritten digits (28x28 grayscale pixels) categorized
into 10 classes (0-9)

e Software Libraries: PyTorch (deep learning), SciPy (linear programming)

e Source Code: publicly available at
https://github.com/PetraVidnerova/RoundingErrorEstimation

e DNNs: trained on MNIST with 32-bit weights
1. fully connected NN W;: 3 FC layers 784-2000-1000-10

2. convolutional NN N5:
— 2 convolutional layers with 32 and 64 3x3-kernels (stride 1, padding 1),

— 1 max pooling layer with 64 2x2-kernels (stride 2)
— 2 FC layers (1024-10)

— 8 FC layers 784-25088-50176-50176-25088-25088-12544-1024-10

robust accuracies of A7 and N2 on the test set for rounded weights:

weight bit-width 32b 16b 12b 8b 6b 4b
N 98.30 98.30 98.30 98.30 98.30 24.85

N 99.25 99.25 9925 99.25 99.25 99.14
14/19

Refining the Error Estimation Using the AppMax Method

® weights of approximated .//\v/'l and .//\v/'z rounded to 16 bits
@ test set 7" contains all available 70,000 data points (i.e. 70,000 LPs)
Er Er
N, 0.032854 0.099374 0.007629 0.030884
N 0.013466 0.014763 0.006127 0.006777

Error Histograms: E at data points in T vs. over convex polytopes Eg
surrounding data points in 7T

r variable 4000 - as variable
16000 4 O F A [

—=H 3500
14000 1

12000 - 3000 7

10000 & 2500 7

Count
Count

8000 20007

6000 - 1500 1

4000 1000 1
L S~

2000 N’ 1 500 -

T T T T T
0.00 0.02 0.04 0.06 0.08 0.10
error value error value

15/19

Worst-Case Points in Polytopes Identified by AppMax

III[']IIII dota points (1., 20) €T

4 ’@‘
Nl arg max E(y1y..-3Yn)

"'E
. . . ﬂ (yl,...’yn)EES(wl’.“’wn)

Reducing the Sample Size for AppMax

70,000 data points (~ LPs) required several days using dozens of parallel processors
(e.g., Na2: 250 s per one data point on Intel® Xeon® E5-2620 v4 2.10 GHz processor)

error estimates E/7, and for random samples Ts C T of increasing size
(50-60,000), averaged over 100 trials:

0.10

—~—— —~—

Nl NZ

0.08 A

0.014 -

L]

(=]

[=]

=

[¥¥)
1

error value
(=]
[=]

(=]
error value
_.\\

]

o
=]
bar’
)

0.04 ’

“ N N 0.011 ~

/.r-"". —— E]"S —e— E'Ir;

Ezgr,

. ——

]
L]
002 £ (=
0

T T T T T T 0.010 T T T T T T
10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000 16 / 19

sample size sample size

Error Estimates for Decreasing Bit-Width of Weights

sample T" of 10,000 randomly chosen test points for J\NG:

weight bit-width Er Er
16 bits 0.024727 0.093156 0.007558 0.030998
12 bits 0.613171 1.049668 0.135616 0.384750
8 bits 8.191886 17.585771 2.138221 6.070758
6 bits 40.410836 85.562221 10.226672 25.475516
4 bits 301.230476 479.39271 81.117751 153.583925

violin plots of

(log scale) for different weight bit-widths:

B>
K
e

T T T T ALY | T T
10-1 100 10l 102
error value

T
102

103

variable

[=
oy =
B E,
[=
[=

16-bitwidth
12-bitwidth
8-bitwidth
6-bitwidth
4-bitwidth

17/19

Error Estimates for Decreasing Bit-Width of Weights

sample 1" of 2,000 randomly chosen test points for ./\N/'2:

weight bit-width Er Er
16 bits 0.012124 0.013333 0.006172 0.006853
12 bits 0.044369 0.049109 0.022313 0.024935
8 bits 0.821959 0.898328 0.368140 0.411297
6 bits 3.522414 3.848394 1.486143 1.665951
4 bits 16.409141 17.810625 7.662384 8.548045

violin plots of

(log scale) for different weight bit-widths:

_0

‘

.‘

-

@

variable
B F-_16bits
[E:, 12bits
I E-. 8bits
Il £ 6bits
I E-, 4bits

T
102

Tl
101

error value

T T T LN |
100 101

18/19

Summary

® theoretical analysis of the effect of weight-rounding on outputs of trained DNNs
® worst-case upper bound on weight-rounding error (overestimated in practice)

® computing regression error for approximated DNNs is NP-hard

o AppMax method: finds maximum error in convex polytopes around data points

® AppMax shows improved error guarantees (vs. test data only) on MNIST
database for decreasing bit-width of weights

® AppMax enables comparison of approximation strategies, identifies optimal
accuracy-performance tradeoffs, supports energy-efficient DNNs
Future Research Directions

® AppMax for cross-entropy loss in classification DNNs with softmax via linear
interpolation of e” (1coNIP 2025) vs. Karush-Kuhn-Tucker optimization ?

® approximate global error by estimating the probabilities of convex polytopes
from their volumes measured by mean width

® broaden AppMax evaluation to other datasets (e.g., CIFAR-100, ImageNet)
® extend error analysis to modern architectures (e.g., ResNet, Transformers)

e identify DNN components that can be neglected (e.g., specific weights to be
rounded) under explicitly bounded output error

19/19

