
Counting with Analog Neurons

Jǐŕı Š́ıma?

Institute of Computer Science, Czech Academy of Sciences,
P. O. Box 5, 18207 Prague 8, Czech Republic, sima@cs.cas.cz

Abstract. We refine the analysis of binary-state neural networks with α
extra analog neurons (αANNs). For rational weights, it has been known
that online 1ANNs accept context-sensitive languages including examples
of non-context-free languages, while offline 3ANNs are Turing complete.
We now prove that the deterministic (context-free) language containing
the words of n zeros followed by n ones, cannot be recognized offline by
any 1ANN with real weights. Hence, the offline 1ANNs are not Turing
complete. On the other hand, we show that any deterministic language
can be accepted by a 2ANN with rational weights. Thus, two extra analog
units can count to any number which is not the case of one analog neuron.

Keywords: Neural computing · Analog state · Deterministic pushdown
automaton · Deterministic context-free language · Chomsky hierarchy.

1 Introduction

The computational power of (recurrent) neural networks with the saturated-
linear activation function1 depends on the descriptive complexity of their weight
parameters [10, 18]. Neural nets with integer weights, corresponding to binary-
state networks, coincide with finite automata [1, 3, 4, 7, 14, 20]. Rational weights
make the analog-state networks computationally equivalent to Turing machi-
nes [4, 12], and thus (by a real-time simulation [12]) polynomial-time computa-
tions of such networks are characterized by the fundamental complexity class P.
Moreover, neural nets with arbitrary real weights can even derive “super-Turing”
computational capabilities [10]. In particular, their polynomial-time computa-
tions correspond to the nonuniform complexity class P/poly while any input/out-
put mapping (including undecidable problems) can be computed within exponen-
tial time [11]. In addition, a proper hierarchy of nonuniform complexity classes
between P and P/poly has been established for polynomial-time computations
of neural nets with increasing Kolmogorov complexity of real weights [2].

As can be seen, our understanding of the computational power of recursive
(Turing complete) neural networks is satisfactorily fine-grained when changing
from rational to arbitrary real weights. In contrast, there is still a gap between

? Research was done with institutional support RVO: 67985807 and partially sup-
ported by the grant of the Czech Science Foundation No. 19-05704S.

1 Some of the results are valid for more general classes of activation functions [6, 13,
21] including the logistic function [5].

2 J. Š́ıma

integer and rational weights which results in a jump from regular to recursively
enumerable languages in the Chomsky hierarchy. In the effort of refining the
analysis of subrecursive neural nets we have introduced a model of binary-state
networks extended with α extra analog-state neurons (αANNs) [15], as already
three additional analog units allow for Turing universality [16]. Although this
model of αANNs has been inspired by theoretical issues, neural networks with
different types of units/layers are widely used in practical applications, e.g. in
deep learning [9], and they thus require a detailed mathematical analysis.

In our previous work, we have characterized syntactically the class of lan-
guages accepted online by the 1ANNs with one extra analog neuron [17] in
terms of so-called cut languages [19]. The online (real-time) input/output pro-
tocol means that a (potentially infinite) input word x is sequentially read symbol
after symbol, each being processed with a constant-time overhead, while a neu-
ral network simultaneously signals via its output neuron whether the prefix of
x that has been read so far, belongs to the respective language [3, 20]. By us-
ing the underlying syntactic characterization we have shown that the languages
recognized online by the 1ANNs with rational weights are context-sensitive, and
we have presented explicit examples of such languages that are not context-free.
Furthermore, we have formulated a sufficient condition when a 1ANN accepts
only a regular language in terms of quasi-periodicity of its real weight parame-
ters. For example, 1ANNs with weights from the smallest field extension Q(β)
over rational numbers including a Pisot number β = 1/w where w is the self-loop
weight of the analog unit, have only a power of finite automata. These results [17]
refine the classification of subrecursive neural networks with the weights between
integer and rational weights, within the Chomsky hierarchy.

In addition, we have shown [16] that any language accepted by a Turing
machine in time T (n) can be accepted offline by a binary-state neural network
with three extra analog units (3ANNs) having rational weights in time O(T (n)).
The offline input/output protocol assumes that an input word x is read by a
neural network either sequentially, each symbol on request with no time bounds
for its processing (possibly with the recognition of each input prefix), or x is
already encoded in a real initial state of the analog neuron. The neural network
then carries out its computation until it possibly halts and decides whether x
belongs to the underlying language, which is indicated by its output neurons [12].
Thus, for rational weights, the languages accepted online by 1ANNs or offline
by 3ANNs are context-sensitive or recursively enumerable, respectively.

In this paper, we further refine the analysis of αANNs by showing that the
deterministic (context-free) language L = {0n1n |n ≥ 1}, containing the words
of n zeros followed by n ones, cannot be recognized even offline by any 1ANN
with one extra analog neuron having arbitrary real weights. Hence, the offline
1ANNs are not Turing complete. The proof is based on an asymptotic analysis of
computations by 1ANNs whose dynamics is quite restricted for recalling a stored
number. It follows that 1ANNs cannot count to an arbitrarily large number,
although we know 1ANNs with rational weights accept some context-sensitive
cut languages that are not context-free [17].

Counting with Analog Neurons 3

On the other hand, we prove that the deterministic languages (including L)
which are accepted by the deterministic pushdown automata (DPDA) can be
recognized by 2ANNs with two extra analog neurons and rational weights. This
means that two extra analog units can count to any number which is not the case
of one analog neuron. The proof exploits the classical technique of implementing
the stack of a DPDA by analog units, including the encoding of stack contents
based on a Cantor-like set [12]. The synchronization of a fully parallel compu-
tation by 2ANNs is implemented by alternating the storage of stack contents
between two analog neurons so that the first neuron realizes the top and push

operations while the second one carries out the pop operation.
The paper is organized as follows. In Section 2, we introduce a formal model

of binary-state neural networks αANNs with α extra analog units. Section 3
shows an example of a deterministic language that cannot be recognized by any
1ANN with real weights, while Section 4 presents a simulation of any DPDA by
a 2ANN with rational weights. We present some open problems in Section 5.

2 Neural Networks with a Few Extra Analog Units

For a small integer constant α ≥ 0 (e.g. α ≤ 3), we specify a computational model
of a binary-state neural network αANN with α extra analog units, N , which will
be used as a formal language acceptor. The network N consists of s ≥ α units
(neurons), indexed as V = {1, . . . , s}. The units in N are assumed to be binary-
state (shortly binary) neurons (i.e. perceptrons, threshold gates) except for the
first α neurons 1, . . . , α ∈ V which are analog units. The neurons are connected
into a directed graph representing an architecture of N , in which each edge
(i, j) ∈ V 2 leading from unit i to j is labeled with a real weight w(i, j) = wji ∈ R.
The absence of a connection within the architecture corresponds to a zero weight
between the respective neurons, and vice versa.

The computational dynamics of N determines for each unit j ∈ V its state

(output) y
(t)
j at discrete time instants t = 0, 1, 2, The outputs y

(t)
1 , . . . , y

(t)
α

from analog units 1, . . . , α ∈ V are real numbers from the unit interval I =

[0, 1], whereas the states y
(t)
j of the remaining s − α neurons j ∈ V ′ = V \

{1, . . . , α} are binary values from {0, 1}. This establishes the network state y(t) =(
y
(t)
1 , . . . , y

(t)
α , y

(t)
α+1, . . . , y

(t)
s

)
∈ Iα×{0, 1}s−α at each discrete time instant t ≥ 0.

For notational simplicity, we assume a synchronous fully parallel mode without
loss of efficiency [8]. At the beginning of a computation, the neural network N
is placed in an initial state y(0) ∈ {0, 1}s. At discrete time instant t ≥ 0, an

excitation of any neuron j ∈ V is defined as ξ
(t)
j =

∑s
i=0 wjiy

(t)
i , including a

real bias value wj0 ∈ R which can be viewed as the weight w(0, j) from a formal

constant unit input y
(t)
0 ≡ 1 for every t ≥ 0 (i.e. 0 ∈ V ′). At the next instant t+1,

all the neurons j ∈ V compute their new outputs y
(t+1)
j in parallel by applying an

activation function σj : R −→ I to ξ
(t)
j , that is, y

(t+1)
j = σj

(
ξ
(t)
j

)
for j ∈ V . The

analog units j ∈ {1, . . . , α} employ the saturated-linear function σj(ξ) = σ(ξ)

4 J. Š́ıma

where σ(ξ) = ξ for 0 ≤ ξ ≤ 1, while σ(ξ) = 1 for ξ > 1, and σ(ξ) = 0 for ξ < 0.
For neurons j ∈ V ′ with binary states yj ∈ {0, 1}, the Heaviside activation
function σj(ξ) = H(ξ) is used where H(ξ) = 1 for ξ ≥ 0 and H(ξ) = 0 for ξ < 0.
This determines the new network state y(t+1) ∈ Iα × {0, 1}s−α at time t+ 1.

The computational power of neural networks has been studied analogously
to the traditional models of computations so that the networks are exploited
as acceptors of formal languages L ⊆ Σ∗ [18]. For simplicity, we assume the
binary alphabet Σ = {0, 1} and for a finite αANN N , we use the following offline
input/output protocol employing its special neurons nxt, inp, out ∈ V ′. An input
word (string) x = x1 . . . xn ∈ {0, 1}n of arbitrary length n ≥ 0, is sequentially
presented to N , bit after bit, via the so-called input neuron inp ∈ V ′, at the
time instants 0 < τ1 < τ2 < · · · < τn when queried by N . Thus, once the prefix
x1, . . . , xk−1 of x for 1 ≤ k ≤ n, has been read, the next input bit xk ∈ {0, 1} is
presented to N one computational step after N activates the neuron nxt ∈ V ′,
that is, y

(t)
inp = xk and y

(t−1)
nxt = 1 if t = τk, and y

(t)
inp = y

(t−1)
nxt = 0, otherwise,

for k = 1, . . . , n. At the same time, N carries its computation deciding about
each prefix of the input word x whether it belongs to L, which is indicated by

the output neuron out ∈ V ′ when the neuron nxt is active, i.e. y
(τk+1−1)
out = 1 if

x1 . . . xk ∈ L, and y
(τk+1−1)
out = 0 if x1 . . . xk /∈ L, where τn+1 > τn is the time

instant when the input word x is decided. We say that a language L ⊆ {0, 1}∗
is accepted (recognized) by αANN N , which is denoted by L = L(N), if for any
input word x ∈ {0, 1}∗, x ∈ L iff N halts and accepts x.

3 One Analog Neuron Cannot Count

In this section, we prove that the deterministic language L, containing the words
of n zeros followed by n ones, which imitates counting, cannot be accepted by
any 1ANN N with one extra analog unit. The main idea of the proof is based on
the fact that N must keep the count of the initial segment of zeros in an input
word because this must later be compared to the number of subsequent ones in
order to decide whether the input is accepted. However, this count is unbounded
whileN has only finitely many possible binary states. Thus, this number can just
be stored by using a real state of the analog neuron. On the contrary, suppose
L = L(N) is accepted by N . By presenting a series of zeros as an input to
N , we obtain an infinite bounded sequence of real analog-state values which
has a monotone convergent subsequence according to the Bolzano-Weierstrass
theorem. This subsequence is further pruned so that it remains infinite while the
following condition is satisfied. Starting with any analog value from this pruned
convergent subsequence, the binary states enter the same cycle in a while after
a subsequent series of ones is presented to N , which induces a periodic behavior
in the limit. This periodicity provides only a finite number of thresholds for
separating an infinite number of analog values from each other, which represent
the counts of zeros. This means that N would accept two input words composed
of different number of zeros followed by the same number of ones, which is a
contradiction. The technical details are presented in the following proof sketch.

Counting with Analog Neurons 5

Theorem 1. The deterministic context-free language L = {0n1n |n ≥ 1} cannot
be recognized by a neural network 1ANN with one extra analog unit having real
weights.

Proof. (Sketch.) On the contrary, assume that N is a neural network 1ANN

with one extra analog unit such that L = L(N). Let y
(t)
j (x) and ξ

(t)
j (x) be the

state and the excitation of neuron j ∈ V at time instant t ≥ 0, respectively,
when an input word x ∈ {0, 1}n of length n is presented to N , which satisfies
t < τn+1 by the input protocol (formally, we also allow infinite input strings x ∈
{0, 1}ω). Denote by y(t)(x) =

(
y
(t)
1 (x), . . . , y

(t)
s (x)

)
∈ I×{0, 1}s−1 and ỹ(t)(x) =(

y
(t)
2 (x), . . . , y

(t)
s (x)

)
∈ {0, 1}s−1 the corresponding network state, respectively,

restricted to binary neurons. For the infinite input string 0ω, there exists t0 ≥ 0

such that the state of analog unit meets y
(t0)
1 (0ω) ∈ {0, 1} (we know y

(0)
1 (0ω) ∈

{0, 1} by definition) and 0 < y
(t)
1 (0ω) < 1 for every t > t0, since otherwise there

would be infinitely many time instants t with the same network state y(t)(0ω) due
to {0, 1}s is finite, which provides n1 < n2 such that N would accept incorrectly
the input word 0n21n1 /∈ L. For the same reason, the self-loop weight meets w11 6=
0 since for w11 = 0, the analog unit could produce only a finite number of output

values y
(t)
1 ∈

{∑
i∈V ′ w1iyi

∣∣ (y2, . . . , ys) ∈ {0, 1}s−1
}

for t > t0. Define the base

β = 1/w11 and the set of digits, A =
{
β
∑
i∈V ′ w1iyi

∣∣ (y2, . . . , ys) ∈ {0, 1}s−1
}
∪

{0, β} . We introduce an infinite sequence of digits, a1a2a3 . . . ∈ Aω as a1 =

β y
(t0)
1 (0ω) ∈ {0, β} ⊆ A and ak = β

∑
i∈V ′ w1iy

(t0+k−2)
i (0ω) ∈ A for k ≥ 2. For

every t ≥ t0, we have y
(t+1)
1 (0ω) =

∑s
i=0 w1iy

(t)
i (0ω) = β−1

(
at−t0+2 + y

(t)
1 (0ω)

)
,

which implies y
(t)
1 (0ω) =

∑t−t0+1
k=1 at−t0−k+2 β

−k. It follows that |β| > 1 because

0 < y
(t)
1 (0ω) < 1 for every t > t0.

Consider an infinite sequence of time instants 0 < t1 < t2 < t3 < · · · such
that for each n, tn = τn+1 − 1 is the last time instant before the next (n+ 1)th

bit is presented to N after the input 0n has been read, that is, y
(tn)
nxt (0n) = 1.

Since the infinite sequence of real numbers y
(tn)
1 (0n) ∈ I for n ≥ 1, is bounded,

there exists its monotone convergent subsequence y
(tnp)

1 (0np) ∈ (0 , 1) for p ≥ 1,

where tn1
> t0, n1 < n2 < n3 < · · · , and c0 = limp→∞ y

(tnp)

1 (0np), according to
Bolzano-Weierstrass theorem. We assume that this subsequence is nondecreas-

ing, that is, y
(tnp)

1 (0np) ≤ y
(tnp+1

)

1 (0np+1) for every p ≥ 1, while the argument
for a nonincreasing subsequence is analogous. In the following considerations, we
will repeatedly remove some elements from the sequence (np) given by Bolzano-
Weierstrass theorem, so that infinitely many elements remain, which satisfy ad-
ditional conditions. For simplicity, we will keep the original notation (np) for
these pruned sequences without loss of generality.

There are only finitely many possible states of binary neurons taken from
{0, 1}s−1, and hence, there exists ũ ∈ {0, 1}s−1 which occurs infinitely many
times in the corresponding subsequence ỹ(tnp)(0np) for p ≥ 1. By skipping the re-
maining elements, we can assume without loss of generality that ỹ(tnp)(0np) = ũ

6 J. Š́ıma

for every p ≥ 1. It follows that the subsequence y
(tnp)

1 (0np) for p ≥ 1, is increas-

ing since for y
(tnp)

1 (0np) = y
(tnp+1

)

1 (0np+1), we have y(tnp)(0np) = y(tnp)(0np+1),
and hence, the input 0np+11np /∈ L would be incorrectly accepted by N .

We will inductively construct an increasing infinite sequence (mp) of natural
numbers mp ≥ 0 such that for each p ≥ 1 and for every q > p,

ỹ(tnp+k)(0np1np) = ỹ(tnq+k)(0nq1np) for every k = 0, . . . ,mp (1)

ỹ(tnp+mp+1)(0np1np) 6= ỹ(tnq+mp+1)(0nq1np) , (2)

while pruning the corresponding sequence (np) so that the number of elements in
(np) remains infinite. Observe that by definition, mp ≤ mp+1, and condition (1)
holds at least for k = 0, whereas condition (2) is met before the next input bit
is presented to N after the input 0np1np ∈ L has been read, due to 0nq1np /∈ L
for q > p. Suppose m1 < m2 < · · · < mp−1 have been constructed, satisfying
(1) and (2). For the next index p ≥ 1, let m̃p ≥ 0 be the maximal natural
number that meets (1) with mp replaced by m̃p, which means m̃p ≥ mp−1. On
the contrary assume that m̃p = mp−1. There exists ũ′ ∈ {0, 1}s−1 such that the

set Q =
{
q ≥ p

∣∣∣ ỹ(tnq+m̃p+1)(0nq1np) = ũ′
}

is infinite since there are only 2s−1

possible states of binary neurons. We omit all the elements nq in (np) such that
p ≤ q /∈ Q, while the pruned sequence (np), including the indices from infinite
Q, remains infinite, and p = minQ is the new succeeding index in the pruned
(np). In addition, the new maximal value of m̃p satisfying (1) for this index
p, increases by at least 1, and hence, we have m̃p > mp−1. Moreover, we can
assume without loss of generality that there are infinitely many indices q that
meet (2) with mp replaced by m̃p, since otherwise we could skip them in (np),
while increasing m̃p. Thus, the constructed sequence m1, . . . ,mp−1 is extended
with mp = m̃p > mp−1 and the sequence (np) is further pruned by removing
those indices q > p for which (2) is not satisfied. This completes the inductive
construction which ensures the sequence (mp) which corresponds to (np) and
satisfies (1) and (2), is increasing, and hence unbounded. Hereafter, we assume
there are infinitely many even numbers in (mp) while the proof for the opposite
case when there are infinitely many odd numbers in (mp), is analogous. Thus,
by pruning the sequence (np) we can assume without loss of generality that mp

is even for every p ≥ 1.
In addition, for each p ≥ 1, define m′p to be the maximum number such that

0 ≤ m′p ≤ mp and 0 ≤ ξ
(tnp+k)

1 (0np1np) ≤ 1 for every k = 0, . . . ,m′p, which

holds at least for k = 0 because ξ
(tnp)

1 (0np1np) = y
(tnp+1)

1 (0np+1) ∈ (0 , 1). We

introduce bk = β
∑
i∈V ′ w1iy

(tnp+k−1)
i (0np1np) ∈ A for k = 1, . . . ,mp + 1, which

is a consistent definition for every p ≥ 1, due to (1). We have y
(tnp+k)

1 (0np1np) =∑s
i=0 w1iy

(tnp+k−1)
i (0np1np) = β−1

(
bk + y

(tnp+k−1)
1 (0np1np)

)
for 1 ≤ k ≤

m′p+1. Hence, ξ
(t)
1 (0np1np) = β−(t−tnp+1)y

(tnp)

1 (0np)+
∑t−tnp+1

k=1 bt−tnp−k+2 β
−k

for each p ≥ 1 and tnp
≤ t ≤ tnp

+min(m′p+1,mp). One can prove that m′p = mp

for every p ≥ 1.

Counting with Analog Neurons 7

Since the sequence y
(tnp)

1 (0np) is increasing, we have for every p ≥ 1,

y
(tnp+mp)

1 (0np1np) = β−mp y
(tnp)

1 (0np) +

mp∑
k=1

bmp−k+1 β
−k

< β−mp y
(tnp+1

)

1 (0np+1) +

mp∑
k=1

bmp−k+1 β
−k = y

(tnp+1
+mp)

1 (0np+11np) (3)

due to y
(tnp+mp)

1 (0np1np) = ξ
(tnp+mp−1)
1 (0np1np) and mp is even. There exists

ṽ ∈ {0, 1}s−1 such that ỹ(tnp+mp)(0np1np) = ṽ for infinitely many p ≥ 1, since
there are only 2s−1 states of binary neurons, and by pruning the sequence (np),

we can assume without loss of generality that ỹ(tnp+mp)(0np1np) = ṽ for ev-
ery p ≥ 1. Similarly, assume there exists a binary neuron j0 ∈ {2, . . . , s} such

that y
(tnp+mp+1)

j0
(0np1np) 6= y

(tnp+1
+mp+1)

j0
(0np+11np) for every p ≥ 1, according

to (2), since there are only s − 1 binary neurons. It follows that wj0,1 6= 0

because ỹ(tnp+mp) (0np1np) = ỹ(tnp+1
+mp)(0np+11np) by (1), and we define

c = − 1
wj0,1

∑
i∈V ′ wj0,i y

(tnp+mp)

i (0np1np), which is a consistent definition due to

ỹ(tnp+mp)(0np1np) = ṽ for every p ≥ 1. Assume wj0,1 > 0, while the argument for

wj0,1 < 0 is analogous. We have y
(tnp+mp+1)

j0
(0np1np) = 1 iff ξ

(tnp+mp)

j0
(0np1np)

≥ 0 iff y
(tnp+mp)

1 (0np1np) ≥ c, and similarly, y
(tnp+1

+mp+1)

j0
(0np+11np) = 1 iff

y
(tnp+1

+mp)

1 (0np+11np) ≥ c, which implies

y
(tnp+mp)

1 (0np1np) < c ≤ y
(tnp+1

+mp)

1 (0np+11np) (4)

by (3). We obtain y
(tnp)

1 (0np) < βmp
(
c−

∑mp

k=1 bmp−k+1 β
−k) ≤ y

(tnp+1
)

1 (0np+1)
for every p ≥ 1, which implies limp→∞

∑mp

k=1 bmp−k+1 β
−k = c.

For p ≥ 1, cp = limq→∞ y
(tnq+mp)

1 (0nq1mp) = β−mpc0 +
∑mp

k=1 bmp−k+1β
−k

according to (3), which implies limp→∞ cp = c. We introduce the intervals, Ip,r =[
β−rc+

∑r
k=1 bmp+r−k+1β

−k , β−rcp +
∑r
k=1 bmp+r−k+1β

−k) for every p ≥ 1
and r = 0, . . . , `p − 1, where `p = mp+1 −mp is even. Note that for notational
simplicity, we assume β > 1 while for β < −1 when the interval lower and upper
bounds are swapped for odd r, the argument is similar. It follows from (4) that

y
(tnq+mp+r)

1 (0nq1mp) ∈ Ip,r for every q > p. For all sufficiently large p ≥ p0, we
will prove by induction on r = 0, . . . , `p − 1 that Ip+1,r ⊂ Ip,r and

ỹ(tnp+1
+mp+r)(0np+11np+1) = ỹ(tnp+2

+mp+1+r)(0np+21np+2) . (5)

For the base case r = 0, the length of Ip,0 = [c, cp) is β`p times greater than

that of the interval Ip+1 =
[
β−`pc+

∑`p
k=1 bmp+1−k+1β

−k , cp+1

)
because cp+1 =

β−`pcp+
∑`p
k=1 bmp+1−k+1β

−k. According to (4), β−`pc+
∑`p
k=1 bmp+1−k+1β

−k ≤
β−`py

(tnp+1
+mp)

1 (0np+11np) +
∑`p
k=1 bmp+1−k+1β

−k = y
(tnp+1

+mp+1)

1 (0np+11np+1)

8 J. Š́ıma

< c, which means Ip+1,0 = [c, cp+1) ⊂ Ip+1. Hence, cp+1 < cp and Ip+1,0 ⊂ Ip,0.

In addition, ỹ(tnp+1
+mp)(0np+11np+1) = ỹ(tnp+2

+mp+1)(0np+21np+2) = ṽ by (1).

For the induction step, assume Ip+1,k ⊂ Ip,k and ỹ(tnp+1
+mp+k)(0np+11np+1)

= ỹ(tnp+2
+mp+1+k)(0np+21np+2) for k = 0, . . . , r−1. By definition of bk, we know

bmp+k = bmp+1+k for k = 1, . . . , r. Hence, the intervals Ip,r and Ip+1,r have the
same lower bound by definition, which ensures Ip+1,r ⊂ Ip,r due to their upper

bounds satisfy cp+1 < cp. On the contrary assume ỹ(tnp+1
+mp+r)(0np+11np+1) 6=

ỹ(tnp+2
+mp+1+r)(0np+21np+2), which means there is j1 ∈ {2, . . . , s} such that

y
(tnp+1

+mp+r)

j1
(0np+11np+1) 6= y

(tnp+2
+mp+1+r)

j1
(0np+21np+2). It follows that wj1,1

6= 0 because ỹ(tnp+1
+mp+r−1)(0np+11np+1) = ỹ(tnp+2

+mp+1+r−1)(0np+21np+2). We

define c′ = − 1
wj1,1

∑
i∈V ′ wj1,i y

(tnp+1
+mp+r−1)

i (0np+11np+1). For example, con-

sider the case when wj1,1 > 0 and y
(tnp+1

+mp+r)

j1
(0np+11np+1) = 1, while the

argument for the remaining cases is similar. By the analogy to c, we have

y
(tnp+2

+mp+1+r−1)
1 (0np+21np+2) < c′ ≤ y

(tnp+1
+mp+r−1)

1 (0np+11np+1). If c′ ∈
Ip+1,r−1 ⊂ Ip,r−1, then y

(tnq+mp+1+r−1)
1 (0nq1np+2) ≥ c′ for sufficiently large q >

p + 2, which implies y
(tnp+2

+mp+1+r)

j1
(0np+21np+2) 6= y

(tnq+mp+1+r)

j1
(0nq1np+2),

contradicting (1). If c′ /∈ Ip+1,r−1, then c′ /∈ Iq,r−1 ⊆ Ip+1,r−1 for every q > p,

which gives y
(tnq+1

+mq+r)

j1
(0nq+11nq+1) = y

(tnq+2
+mq+1+r)

j1
(0nq+21nq+2) for every

q > p. Thus, for all sufficiently large p ≥ p0, we have ỹ(tnp+1
+mp+r) (0np+11np+1)

= ỹ(tnp+2
+mp+1+r)(0np+21np+2) since there are only 2s−1 possible values of c′,

which completes the induction step.
We conclude that for all sufficiently large p ≥ p0, b′r = bmp+r = bmp+1+r

for r = 1, . . . , `p = `, according to (5), which implies c = B
∑∞
q=1 β

−`(q−1) =
B

1−β−` where B =
∑`
r=1 b

′
`−r+1β

−r. Hence, one can show that the expression

βmp
(
c−

∑mp

k=1 bmp−k+1 β
−k) = βmp0

(
c−

∑mp0

k=1 bmp0−k+1β
−k) = C is constant

for every p ≥ p0. Thus, y
(tnp)

1 (0np) < C ≤ y
(tnp+1

)

1 (0np+1) for every p ≥ p0, which
is a contradiction. This completes the proof of the theorem. ut

4 Two Analog Neurons Accept Deterministic Languages

In this section, we show that a deterministic pushdown automaton can be sim-
ulated by a 2ANN with two extra analog unit.

Theorem 2. For any deterministic context-free language L ⊆ {0, 1}∗, there is
a neural network 2ANN with two extra analog units having rational weights, N ,
which accepts L = L(N).

Proof. Let L = L(M) be accepted by a DPDAM = (Q,Σ, Γ, q0, Z0, F, δ) where
Q 6= ∅ is a finite set of states, Σ and Γ are finite sets of input and stack symbols,
respectively, which are assumed for simplicity to be the binary alphabetΣ = Γ =
{0, 1}. In addition, q0 ∈ Q is the start state, Z0 ∈ Γ is the starting stack symbol,

Counting with Analog Neurons 9

and F ⊆ Q is the set of accepting states. Moreover, δ : (Q× (Σ ∪ {ε})× Γ) −→
P(Q×Γ ∗) is a transition function that given a current state q ∈ Q ofM, a next
symbol x ∈ Σ ∪ {ε} of an input word which is read from left to right (including
the empty string ε, which means no symbol is read), and a symbol Z ∈ Γ on the
top of the stack, produces either the empty set δ(q, x, Z) = ∅ (i.e.M halts), or a
one-element set δ(q, x, Z) = {(q′, γ)} with a new state q′ ∈ Q and a string γ ∈ Γ ∗
that replaces Z on the top of the stack where the first symbol of γ becomes the
top element. In order to ensure thatM is truly deterministic, it is assumed that
for any q ∈ Q, Z ∈ Γ , if δ(q, ε, Z) 6= ∅, then δ(q, x, Z) = ∅ for every x ∈ Σ. An
input word x ∈ Σ∗ is accepted byM if there is a (unique) sequence of transitions
of M defined by δ, from the start state q0 with the starting symbol Z0 on the
stack, which, while reading x, terminates in an accepting state qf ∈ F . We
assume without loss of generality that if δ(q, x, Z) = {(q′, γ)}, then the length
|γ| of string γ is at most 2, whereas γ = Z ′Z for some Z ′ ∈ Γ , if |γ| = 2.

We will construct a neural network 2ANN with two extra analog units, N ,
which accepts the same language L = L(N) = L(M) by simulating the deter-
ministic pushdown automatonM. The stack ofM is realized by the two analog
neurons 1, 2 ∈ V of N , where the first unit implements the top and push oper-
ations while the pop operation is performed by the second analog neuron. The
current contents of the stack, Z1 . . . Zp ∈ Γ p are encoded by the state of an
analog neuron,

ycurk =

p∑
i=1

2Zi + 1

4i
∈ I for k ∈ {1, 2} , (6)

using a Cantor-like set which allows an efficient neural implementation of the
stack operations [12], producing the new state of analog neurons:

top = H(2y1 − 1) (7)

push(Z) : ynew1 = σ

(
1

4
ycur1 +

1

2
Z +

1

4

)
(8)

pop : ynew2 = σ(4ycur2 − 2top− 1) . (9)

The finite control of M which is defined by the transition function δ, is
implemented by binary neurons. We will describe its functionality while the
omitted technical details are ensured using known techniques of implementing
finite automata by neural networks with only integer weights [1, 3, 4, 7, 14, 20]. At
the beginning of the simulation ofM byN , the stack is initialized by the starting
stack symbol Z0. This is implemented by a special binary neuron init ∈ V ′ which

is only initially active, that is, y
(t)
init = 1 iff t = 0. Thus, init is connected to the

first analog neuron 1 ∈ V via the weight w(init, 1) = (2Z0 + 1)/4, which encodes

the stack contents Z0 by analog state y
(1)
1 = (2Z0 + 1)/4, according to (6).

Then, each transition ofM is realized by one so-called macrostep τ ≥ 1 which is
composed of 12 computational steps of N , starting at the discrete time instant
t = 12(τ−1)+2 (including the first two steps t = 0, 1 for the stack initialization).
Hereafter, the computational time t = 0, 1, 2, . . . , 12 of N is for simplicity related

10 J. Š́ıma

Table 1. The macrostep of 2ANN N simulating one transition of DPDAM (including
the pop and push operations)

t y
(t)
1 y

(t)
2 y

(t)

ctrl y
(t)
z0 y

(t)
z1 y

(t)

z′0
y
(t)

z′1
y
(t)
top y

(t)
nxt y

(t)
out y

(t)
inp

0 z 0 1 0 0 0 0 0 0 0

1 0 z 0 0 0 0 0 Z 0 0 0

2 z 0 1 0 0 0 0 0 0 0

3 0 z 0 0 0 0 0 1 q ∈ F 0

4 z 0 1 0 0 0 0 0 0 x

5 0 z 0 0 0 0 0 0 0 0

6 z 0 1 0 0 0 0 0 0 0

7 0 z 1 0 0 0 0 0 0 0

8 0 2z 1 Z = 0 Z = 1 0 0 0 0 0

9 0 z′ = 4z − 2Z − 1 0 0 0 0 0 0 0 0

10 z′ 0 0 0 0 0 0 0 0 0

11 z′

2
0 0 0 0 Z′ = 0 Z′ = 1 0 0 0

12 ≡ 0 z′′ = z′

4
+ Z′

2
+ 1

4
0 1 0 0 0 0 0 0 0

to the macrostep. The state evolution of selected neurons during the macrostep
is presented in Table 1.

At the beginning of the macrostep when t = 0, the state of the first analog

neuron 1 ∈ V encodes the current contents of the stack, that is, y
(0)
1 = z ∈ I

by (6). The storage of the stack contents alternates between the two analog
neurons which are connected by the weights w(1, 2) = w(2, 1) = 1. These unit
weights copy the state from the first analog neuron to the second one and back,
under the control of binary neuron ctrl ∈ V ′. During the macrostep, the output
of ctrl produces a sequence of binary states given by the regular expression

1(01)3(110 + 010)(001 + 101) starting with y
(0)
ctrl = 1, where the strings 110 and

001 deviating from the regular signal (01)∗ correspond to the pop and push

operations, respectively, if they occur as described below. For this purpose, the
weights w(ctrl, 1) = −W , w(ctrl, 2) = W , and w(0, 2) = −W are introduced,
where W > 0 is a sufficiently large positive parameter excluding the influence

from other neurons. It follows that z = y
(0)
1 = y

(1)
2 = y

(2)
1 = y

(3)
2 = y

(4)
1 = · · ·

and 0 = y
(0)
2 = y

(1)
1 = y

(2)
2 = y

(3)
1 = y

(4)
2 = · · · , as shown in Table 1.

At time instant t = 1 of the macrostep, the binary neuron top ∈ V ′ reads

the top element Z ∈ Γ from the stack, that is, y
(1)
top = Z ∈ {0, 1}, which is

implemented by the weight w(1, top) = 2 and the bias w(0, top) = −1, according
to (7). If δ(q, x, Z) 6= ∅ for some x ∈ Σ, where q ∈ Q is a current state of M
encoded by binary neurons of N , which is tested at time instant t = 2, then

y
(3)
nxt = 1, y

(3)
out = 1 iff q ∈ F is a final state, and y

(4)
inp = x ∈ {0, 1} is the next

input symbol, by the input/output protocol. Anyway, the next two steps t = 5, 6
of the macrostep are exploited for evaluating the transition function δ(q, x, Z)
where x = ε is the empty word if δ(q, ε, Z) 6= ∅. If δ(q, x, Z) = ∅, then the
simulation by N terminates since the computation of M halts.

Counting with Analog Neurons 11

Thus, assume δ(q, x, Z) = {(q′, γ)} where q′ ∈ Q is the new state of M,
which substitutes the old one encoded by binary neurons of N , and γ ∈ Γ ∗

should replace the top symbol on the stack. If |γ| ≤ 1, then the top symbol Z is
popped from the stack during time instant t = 7, 8, 9 of the macrostep. At time
instant t = 7, the current contents of the stack are stored by the second analog

neuron as y
(7)
2 = z. The pop operation is implemented by the weights w(2, 2) = 2,

w(z0, 2) = −1, and w(z1, 2) = −3 from the binary neurons z0, z1 ∈ V ′ whose

outputs are activated at time instant t = 8 of the macrostep so that y
(8)
zb = 1 iff

Z = b ∈ {0, 1}. Moreover, we know y
(7)
ctrl = y

(8)
ctrl = 1 and y

(9)
ctrl = 0 when the pop

operation applies (otherwise, y
(7)
ctrl = 0). Hence, y

(8)
2 = 2z by w(2, 2) = 2, and

y
(9)
2 = 4z − 2top − 1 = z′ ∈ I due to w(z0, 2) = −1 and w(z1, 2) = −3, which

pops the top symbol Z = top from the stack according to (9).
If |γ| ≥ 1, then either γ = Z ′ or γ = Z ′Z, where Z ′ ∈ Γ is the new top

symbol which is pushed to the stack during time instant t = 10, 11, 12 of the
macrostep. At time instant t = 10, the current contents of the stack are stored by

the first analog neuron as y
(10)
1 = z′. The push(Z ′) operation is implemented by

the weights w(1, 1) = 1
2 , w(z′0, 1) = 1

4 , and w(z′1, 1) = 3
4 from the binary neurons

z′0, z
′
1 ∈ V ′ whose outputs are activated at time instant t = 11 of the macrostep

so that y
(11)
z′b

= 1 iff Z ′ = b ∈ {0, 1}. Moreover, we know y
(10)
ctrl = y

(11)
ctrl = 0

and y
(12)
ctrl = 1 when the push operation applies (otherwise, y

(10)
ctrl = 1). Hence,

y
(11)
1 = z′

2 by w(1, 1) = 1
2 , and y

(12)
2 = z′

4 + Z′

2 + 1
4 = z′′ ∈ I due to w(z′0, 1) = 1

4
and w(z′1, 1) = 3

4 , which pushes the symbol Z ′ to the stack according to (8). At
time instant t = 12, the macrostep of N simulating one transition of M using
rational weights is finished while the new contents z′′ of the stack are stored by
the first analog neuron as required for the next macrostep. This completes the
simulation and the proof of the theorem. ut

5 Conclusion

In this paper, we have refined the analysis of the computational power of binary-
state neural networks αANNs extended with α analog-state neurons. We have
proven that the deterministic (context-free) language L = {0n1n |n ≥ 1} which
imitates counting to any number n, cannot be recognized offline by any 1ANN
with real weights. It is an open question whether a 1ANN can recognize any non-
regular context-free language and whether there is a non-context-sensitive lan-
guage that can be accepted offline by a 1ANN. In addition, we have shown that
any deterministic language can be accepted by a 2ANN with rational weights. It
is an open problem whether two extra rational-weight analog units suffice for sim-
ulating any Turing machine. Another challenge for further research is to prove
a proper “natural” hierarchy of neural networks between integer and rational
weights similarly as it is known between rational and real weights [2] and possi-
bly, map it to known hierarchies of regular/context-free languages. This problem
is related to a more general issue of finding suitable complexity measures of sub-
recursive neural networks establishing the complexity hierarchies, which could be

12 J. Š́ıma

employed in practical neurocomputing, e.g. the precision of weight parameters,
energy complexity [14], temporal coding etc.

References

1. Alon, N., Dewdney, A.K., Ott, T.J.: Efficient simulation of finite automata by
neural nets. Journal of the ACM 38(2), 495–514 (1991)

2. Balcázar, J.L., Gavaldà, R., Siegelmann, H.T.: Computational power of neural net-
works: A characterization in terms of Kolmogorov complexity. IEEE Transactions
on Information Theory 43(4), 1175–1183 (1997)

3. Horne, B.G., Hush, D.R.: Bounds on the complexity of recurrent neural network
implementations of finite state machines. Neural Networks 9(2), 243–252 (1996)

4. Indyk, P.: Optimal simulation of automata by neural nets. In: Proceedings of the
STACS 1995 Twelfth Annual Symposium on Theoretical Aspects of Computer
Science. LNCS, vol. 900, pp. 337–348 (1995)

5. Kilian, J., Siegelmann, H.T.: The dynamic universality of sigmoidal neural net-
works. Information and Computation 128(1), 48–56 (1996)

6. Koiran, P.: A family of universal recurrent networks. Theoretical Computer Science
168(2), 473–480 (1996)

7. Minsky, M.: Computations: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs (1967)

8. Orponen, P.: Computing with truly asynchronous threshold logic networks. Theo-
retical Computer Science 174(1-2), 123–136 (1997)

9. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Networks
61, 85–117 (2015)

10. Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing
Limit. Birkhäuser, Boston (1999)

11. Siegelmann, H.T., Sontag, E.D.: Analog computation via neural networks. Theo-
retical Computer Science 131(2), 331–360 (1994)

12. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. Jour-
nal of Computer System Science 50(1), 132–150 (1995)

13. Š́ıma, J.: Analog stable simulation of discrete neural networks. Neural Network
World 7(6), 679–686 (1997)

14. Š́ıma, J.: Energy complexity of recurrent neural networks. Neural Computation
26(5), 953–973 (2014)

15. Š́ıma, J.: The power of extra analog neuron. In: Proceedings of the TPNC 2014
Third International Conference on Theory and Practice of Natural Computing.
LNCS, vol. 8890, pp. 243–254 (2014)

16. Š́ıma, J.: Three analog units are Turing universal. In: Proceedings of the TPNC
2018 Seventh International Conference on Theory and Practice of Natural Com-
puting. LNCS, vol. 11324, pp. 460–472 (2018)

17. Š́ıma, J.: Subrecursive neural networks. Neural Networks 116, 208–223 (2019)
18. Š́ıma, J., Orponen, P.: General-purpose computation with neural networks: A sur-

vey of complexity theoretic results. Neural Computation 15(12), 2727–2778 (2003)
19. Š́ıma, J., Savický, P.: Quasi-periodic β-expansions and cut languages. Theoretical

Computer Science 720, 1–23 (2018)
20. Š́ıma, J., Wiedermann, J.: Theory of neuromata. Journal of the ACM 45(1), 155–

178 (1998)
21. Šorel, M., Š́ıma, J.: Robust RBF finite automata. Neurocomputing 62, 93–110

(2004)

