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Introduction
Delta-matroids as a generalization of matroids are an important combinatorial
structure that can be found in many different areas of mathematics, such as
graph theory and linear algebra. Delta-matroids have also been used to study
the constraint satisfaction problem (CSP), a classical topic in computer science.

The aim of our thesis is to describe the structure of delta-matroids and explore
classes of even, linear and matching-realizable delta-matroids that have been
introduced in articles regarding the edge Boolean CSP [Geelena et al., 2003,
Dvořák and Kupec, 2015, Kazda et al., 2019]. We investigate these classes in more
detail and point out their basic properties. As our main result, we show several
relations between those classes. We recall that linear and matching-realizable
delta-matroids are even. Following up on the ideas due to Geelena, Iwatab, and
Murota [2003], and applying the properties of field extensions from algebra, we
prove that every strictly matching-realizable delta-matroid is linear. We also
show that not every linear delta-matroid is matching-realizable by giving a skew-
symmetric matrix representation to the non matching-realizable delta-matroid
constructed by Kazda, Kolmogorov, and Roĺınek [2019]. In addition, we formulate
explicitly several proofs that are omitted in the papers above. We also add a few
examples and pictures that can give the reader more insight.

Our motivations thus issue from the Boolean CSP which is an important
algorithmic problem of finding an evaluation of Boolean variables such that given
constraints (each consisting of a subset of variables and a relation) are satisfied.
This is an NP-complete problem in general. Given a language of constraints Γ,
we may consider solving the instances of CSP that contain relations only from Γ.
This problem is denoted by CSP (Γ) and referred to as the fixed template CSP.

The connection between the fixed template CSP and delta-matroids is as fol-
lows. If all the variables occur in exactly two constraints, CSP has natural graph
interpretation with edges being variables and vertices being constraints. This
problem is referred to as the edge CSP. Feder [2001] provided the following strik-
ing theorem. If a constraint language Γ contains both unary constant relations
(that means constant 0 and constant 1) and unless all the relations in Γ are delta-
matroids, then the edge CSP (Γ) has the same complexity as the unrestricted case
CSP (Γ).

It has been discovered that the Boolean edge CSP is polynomially solvable for
many classes of delta-matroids. Geelena, Iwatab, and Murota [2003] solved the
delta matroid parity problem (which is in fact equivalent to the Boolean edge CSP)
for the class of linear delta-matroids which are represented by skew-symmetric
matrices. Dvořák and Kupec [2015] defined the class of matching-realizable delta-
matroids represented by graphs and showed their tractability. In a recent paper,
Kazda, Kolmogorov, and Roĺınek [2019] provided the tractability of efficiently-
coverable delta-matroids. Not only this class contains all the classes that were
known to be tractable before, but it also includes a large class of even delta-
matroids.
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The thesis is organized as follows. In Chapter 2, we introduce the key def-
inition of delta-matroids and a few basic operations on them, such as twisting,
deletion and contraction. We recall that the class of delta-matroids is closed
under these operations.

Chapter 3 addresses the class of linear delta-matroids. We give a detailed
description of their correspondence with perfect matchings which was mentioned
by Geelena et al. [2003]. For this purpose, we introduce the term Pffafian from
the book by Lovász and Plummer [2009]. In Section 3.3, we show that the
complexity of algorithms for linear delta-matroids may significantly depend on
their representation. We provide an example of a linear delta-matroid that has
exponentially more feasible sets than the size of matrix representing it.

In Chapter 4, we look more closely on the class of matching-realizable delta-
matroids. Matching-realizable delta-matroids are represented by a graph and
a subset of its vertices that corresponds to the ground set of a delta-matroid.
We call the remaining vertices hidden and we define the hiddenness number
of a matching-realizable delta-matroid as the smallest number of hidden ver-
tices needed to represent it. We come up with the definition of the class of
strictly matching-realizable delta-matroids that contains exactly the matching-
realizable delta-matroids with zero hiddenness number. We provide an example
of matching-realizable delta-matroids with an arbitrary large hiddenness number.

In Chapter 5, our main results are stated and proven. We establish the rela-
tions between classes of delta-matroids introduced in previous sections. We show
the linearity of the even delta-matroid that is not matching-realizable (mentioned
in the article by Kazda et al. [2019, Appendix A]), implying that not every lin-
ear delta-matroid is matching-realizable. We use the correspondence of linear
delta-matroids and perfect matchings, and the properties of field extensions to
prove that strictly matching-realizable delta-matroids are linear. We state the
conjecture that any matching-realizable delta-matroid is linear and verify it for
small arities. We also give possible approaches of proving the conjecture, but it
unfortunately remains open.
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1. Preliminaries

1.1 Matrices
Let A be a square matrix of size n with a row set and a column set identified with
V . We denote the determinant of a matrix A by |A|. A useful claim from linear
algebra [Barto and Tůma, Claim 7.22, Page 236] states that A is a regular matrix
if and only if |A| ≠ 0. By Ai,j we mean the submatrix of A obtained by deleting
the i-th row and j-th column of A and by Aij,kl the submatrix of A obtained by
deleting i-th and j-th rows and k-th and l-th columns of A. For X ⊆ V let A[X]
be the principal submatrix of A on rows and columns from X only.

Let us mention the Laplace expansion of determinant, a fundamental lemma
from linear algebra.

Lemma 1 (Laplace expansion). [Barto and T̊uma, Theorem 7.32, Page 240]
Let A be a square matrix of size n and j ∈ {1, . . . , n}. Then the determinant of
A can be computed as follows:

|A| =
n∑

i=1
aij(−1)i+j|Ai,j|,

Or alternatively we fix i ∈ {1, . . . , n}:

|A| =
n∑

j=1
aij(−1)i+j|Ai,j|.

1.2 Fields
Let (F, 0, 1, +, −, ·,−1 ) be a field. We say that (E, 0, 1, +, −, ·,−1 ) is a subfield of
F (denoted E ⊆ F ), if E is a subset of F such that 0, 1 ∈ E and E is closed under
all operations of the field. That means ∀a, b ∈ E : a + b ∈ E, a · b ∈ E, −a ∈ E
and ∀a ∈ E, a ̸= 0 : a−1 ∈ E. Note that a linear equation with coefficients in
E has also its solution in E, because we can solve it using the operations of the
field.

1.3 Permutations
Let V be a finite set. By a permutation of V , we mean any bijection V → V . We
denote by SV the group of all permutations on V . Especially, for any natural n,
we denote by Sn the group of permutations on {1, . . . , n}.

We say that permutation σ ∈ SV is a cycle of length k, if we can find
{v1, . . . , vk} ∈ V such that σ(v1) = v2, σ(v2) = v3, . . . , σ(vk−1) = vk, σ(vk) = v1,
and σ(w) = w for any w ∈ V \ {v1, . . . , vk}. By a transposition, we mean a cycle
of length two.

Every permutation can be written as a composition of transpositions and the
parity of the transposition count does not depend on the decomposition of the
permutation [Barto and Tůma, Claims 7.6-7.8, Pages 227-228].
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Hence, we can define the sign of a permutation σ (denoted by sgn(σ)) as 1 if
σ is composed from an even number of transpositions and as −1 if σ is composed
from an odd number of transpositions.

Note that the sign is multiplicative; for any two permutations σ1, σ2 ∈ SV , we
have sgn(σ1 ◦ σ2) = sgn(σ1) · sgn(σ2).

1.4 Graphs and Perfect Matchings
Let G be a graph with a vertex set V and an edge set E. For X ⊆ V we denote
by G[X] the subgraph of G induced by vertices from X.

By a matching M of a graph G, we mean a subset M of E such that no two
edges from M share a vertex. We say that a matching M is perfect if all vertices
from V are incident to M . Note that if a graph G has a perfect matching, the
number of vertices of G has to be even.
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2. Delta-Matroids
In this chapter, we introduce the key definition of a delta-matroid and we present
a few basic operations on delta-matroids. Let us start with the definition of the
symmetric difference of two sets.

Definition 2 (Symmetric difference). For two sets A and B, we define their
symmetric difference as (A ∪ B) \ (A ∩ B) and we denote it by A∆B.

In other words, a symmetric difference of two sets contains elements that
are members of exactly one of them. Note that this operation is commutative
(A∆B = B∆A) and associative ((A∆B)∆C = A∆(B∆C)).

Definition 3 (Delta-matroid). A delta-matroid M is an ordered pair M =
(V, F), where V is a finite set called the ground set and F is a nonempty family
of subsets of V (F ⊆ P(V )), called feasible sets, such that the following exchange
axiom is satisfied:

(∀F, F ′ ∈ F)(∀x ∈ F∆F ′)(∃y ∈ F∆F ′) : F∆{x, y} ∈ F .

Note that the x and y in the exchange axiom do not necessarily have to be
distinct. For example, if two feasible sets have a symmetric difference of size 1 or
2, the exchange axiom is automatically satisfied.

Usually we without loss of generality assume that the ground set of a delta-
matroid is identified with first natural numbers (V = {1, . . . , |V |}). We also
sometimes prefer to list feasible sets of a delta-matroid by tuples containing 0 or 1,
depending on whether the corresponding element belongs to the feasible set or
not. For example, the delta-matroid V = {1, 2, 3}, F = {{∅}, {1}, {2, 3}, {1, 3},
{1, 2, 3}} is represented by the following tuples:

000, 100, 011, 101, 111.

Besides brevity, another advantage of this representation is that the operation ∆
on feasible sets is represented by an addition of tuples modulo 2.

Let us introduce the most important class of delta-matroids, called even delta-
matroids. In this paper, we mostly discuss delta-matroids that are even.

Definition 4 (Even delta-matroid). We say that a delta-matroid is even if its
feasible sets have the same cardinality modulo 2.

We present several basic and useful operations on delta-matroids in the fol-
lowing definition.

Definition 5 (Operations on delta-matroids). Let M = (V, F) be a delta-matroid
and X ⊆ V be a set. We define M∆X

def= (V, F∆X), where F∆X
def= {F∆X|F ∈

F}. This operation is called a twisting of M by X. By a dual of M , we mean
M∆V .
The second operation we define is a deletion of X: M \ X

def= (V \ X, F \ X),
where F \ X

def= {F |F ∈ F , F ∩ X = ∅}.
By a contraction of X, we mean M/X

def= (M∆X) \ X.
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When we represent a delta-matroid by tuples, we can realize a deletion (or
a contraction) by taking only the tuples that have 0’s (or 1’s) in specific positions
(corresponding to X). Let us illustrate it on a simple example.

Example 6. Let M be a delta-matroid with the ground set V = {1, 2, 3, 4} and
feasible sets represented by the following tuples:

0000, 1100, 1001, 0110, 0101, 0011

and let X = {3, 4}.

Observe that every feasible set of delta-matroid M has an even cardinality,
thus M is an even delta-matroid.

One can see that M \ X contains two feasible sets represented by 00, 11 and
M/X has only one feasible set represented by 00. Note that both M \ X and
M/X are also even delta-matroids. That is not a coincidence, as the next claim
shows.

Claim 7. Let M = (V, F) be a delta-matroid and X ⊆ V . Then M∆X is a delta-
matroid. M \ X and M/X are also delta-matroids, provided that they contain at
least one feasible set. In addition, the class of even delta-matroids is closed under
twisting, deletion and contraction.

Proof. We begin with showing that M∆X is a delta-matroid. The non-emptiness
of F∆X follows from its definition and from the non-emptiness of F . To verify
the exchange axiom, let us take arbitrary F, F ′ ∈ F∆X. We can find E, E ′ ∈ F
such that F = E∆X and F ′ = E ′∆X. Let x be any element of F∆F ′. We have
that F∆F ′ = (E∆X)∆(E ′∆X) = E∆E ′. Applying the exchange axiom for M
on E, E ′ ∈ F and x ∈ E∆E ′, we obtain y ∈ E∆E ′ such that E∆{x, y} ∈ F .
Since F∆{x, y} = (E∆X)∆{x, y} = (E∆{x, y})∆X, the exchange axiom for
M∆X is verified.

Let us suppose that M is an even delta-matroid, we demonstrate that M∆X
is also an even delta-matroid. Let us take any F ∈ F∆X and corresponding
E ∈ F . We have (modulo 2):

|F | = |E∆X| = |E| + |X| − 2|E ∩ X| ≡ |E| + |X|

and the evenness of M∆X follows from the evenness of M .
Let us show that M \ X is a delta-matroid. We have assumed the non-

emptiness of F \ X in the statement of this claim, thus it suffices to verify the
exchange axiom. Let us take arbitrary F, F ′ ∈ F \ X and x ∈ F∆F ′. Since
F, F ′ ∈ F , we can apply the exchange axiom for M on F, F ′ and x. We obtain
y ∈ F∆F ′ such that F∆{x, y} ∈ F . Since F ∩ X = ∅, F ′ ∩ X = ∅, and
x, y ∈ F∆F ′, we have that (F∆{x, y}) ∩ X = ∅. Therefore, (F∆{x, y}) ∈ F \ X
and the exchange axiom for M \ X is verified.

Deletion preserves evenness because F \ X is a subset of F .
Since the contraction is defined as the composition of twisting and deletion,

we are done.

Definition 8. We say that two delta-matroids M, N on a same ground set V are
equivalent if there exists a set X ⊆ V such that N = M∆X.
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3. Linear Delta-Matroids
This chapter is devoted to study linear delta-matroids that form an important
subclass of even delta-matroids. We briefly discuss basic properties of linear
delta-matroids and we look more closely at the relation of linear delta-matroids
with perfect matchings, which was introduced in the article by Geelena et al.
[2003]. We conclude this chapter by showing that the complexity of algorithms
for linear delta-matroids may significantly depend on their representation.

3.1 Definition and Basic Properties
Linear delta-matroids are represented by a skew-symmetric matrix; let us start
with its definition.

Definition 9 (Skew-symmetric matrix). Let A be a square matrix over a field
F . A is called skew-symmetric if A⊤ = −A and its diagonal entries are equal to
zero.

Note that the second condition is redundant for fields with a characteristic
different from two (it is implied by the first condition).

Let A be a skew-symmetric matrix with a row set and a column set identified
with V . Let F(A) def= {W ⊆ V , A[W ] regular} and M(A) def= (V, F(A)), where
A[W] is the principal submatrix of A; see preliminaries for more details. It is not
difficult to observe that A[W ] is also a skew-symmetric matrix for any W ⊆ V .

Lemma 10. [Bouchet, 1988, Claim 4.1, Page 172]
M(A) forms a delta-matroid for any skew-symmetric matrix A.

Definition 11 (Linear delta-matroid). Delta-matroid M is called linear if it is
equivalent to M(A) for some skew-symmetric matrix A over an arbitrary field.

Theorem 12 (Jacobi’s Theorem). Let A be a skew-symmetric matrix of size n.
If n is odd then A is singular.

Proof. From the skew-symmetry of matrix A and applying properties of a deter-
minant, we obtain:

|A| = |A⊤| = | − A| = (−1)n|A|.

Since n is odd, we have |A| = −|A|, implying |A| = 0 and the singularity of
matrix A.

Claim 13. Linear delta-matroids are even.

Proof. Let M = (V, F) be a linear delta-matroid, hence M = M(A)∆X for some
skew-symmetric matrix A and X ⊆ V . Since the class of even delta-matroids is
closed under twisting (Claim 7), it suffices to show that M(A) is an even delta-
matroid. For an arbitrary F ∈ F(A), we have the regularity of A[F ] from the
definition. As a consequence of Jacobi’s Theorem applied on the skew-symmetric
matrix A[F ], we have that |F | has to be even and it follows that M(A) is even.
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3.2 Correspondence with Perfect Matchings
In this section, we explore the relation between linear delta-matroids and perfect
matchings. To see this, let us introduce the definitions of a Pfaffian (from [Lovász
and Plummer, 2009]) and of a support graph of a skew-symmetric matrix.

Let A be any 2n×2n skew-symmetric matrix. Let us without loss of generality
suppose that its row and column set are indexed by {1, . . . , 2n}. For a partition

P = {{x1, y1}, {x2, y2}, . . . , {xn, yn}}

of the set {1, . . . , 2n} into pairs, we define the expression AP as follows:

AP
def= sgn(σP )

n∏
i=1

axiyi
,

where σP is the following permutation:

σP
def=
(

1 2 3 4 . . . 2n − 1 2n
x1 y1 x2 y2 . . . xn yn

)
.

The expression AP is well defined, as we show in the following lemma.

Lemma 14. The value of AP defined above depends neither on the order of pairs
in the partition P nor on the order of the two elements of a pair.

Proof. It suffices to show that the value of AP does not change if we swap any
two pairs in the partition P or if we swap the elements in any pair. We discuss
these two cases one by one.

Firstly, let us suppose that we swap the j-th and k-th pair in the partition P for
some j, k ∈ {1, . . . , n}, j ̸= k. The value of the product ∏n

i=1 axiyi
does not change

because we multiply the same elements of the matrix A (only in the different
order). The sign of the corresponding permutation also stays the same because
it differs from σP by two transpositions:(

1 . . . 2j − 1 2j . . . 2k − 1 2k . . . 2n
x1 . . . xk yk . . . xj yj . . . yn

)
= σP ◦

(
xj xk

)
◦
(
yj yk

)
.

Now, let us suppose that we swap xj and yj for some j ∈ {1, . . . , n}. From
the skew-symmetry of matrix A, we have that ayjxj

= −axjyj
. Hence the value of

the product ∏n
i=1 axiyi

differs only by a sign. Sign of the corresponding permuta-
tion also changes because it differs from σP by one transposition:

(
1 . . . 2j − 1 2j . . . 2n
x1 . . . yj xj . . . yn

)
= σP ◦

(
xj yj

)
.

Thus, the value of AP does not change and we are done.

Definition 15. Let A be a skew-symmetric matrix of size 2n. Then we define
the Pffafian of A as follows:

Pf(A) def=
∑
P

AP =
∑
P

(sgn(σP )
n∏

i=1
axiyi

),

where the sum goes through all partitions P of the set {1, . . . , 2n} into pairs.
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Example 16. Let us compute the Pffafian of a general 4 × 4 skew-symmetric
matrix A.

A =

⎛⎜⎜⎜⎝
0 a b c

−a 0 d e
−b −d 0 f
−c −e −f 0

⎞⎟⎟⎟⎠
We have three partitions of the set {1, 2, 3, 4} into pairs:

P1 = {{1, 2}, {3, 4}}, P2 = {{1, 3}, {2, 4}}, and P3 = {{1, 4}, {2, 3}}.

Let us compute AP1 , AP2 , and AP3 .
AP1 = sgn(id) · a12 · a34 = af

AP2 = sgn

(
1 2 3 4
1 3 2 4

)
· a13 · a24 = −be

AP3 = sgn

(
1 2 3 4
1 4 2 3

)
· a14 · a23 = cd

Summing them up, we obtain that PfA = af − be + cd.

Definition 17 (Support graph). Let A be a skew-symmetric matrix with a vertex
set and a row set identified with V. Let us define the support graph of A as
GA

def= (V, E), such that there is an edge between i ∈ V and j ∈ V if and only if
aij ̸= 0.

When computing the Pffafian of A, we sum through all partitions P of the set
{1, . . . , 2n}. Observe that partitions with nonzero values of AP are in one-to-one
correspondence with perfect matchings of support graph GA. Using this fact and
the Definition 15, we provide an alternative computation of Pffafian.
Lemma 18. The Pfaffian of 2n × 2n skew-symmetric matrix A can be computed
as follows:

Pf(A) =
∑
M

(sgn(σM)
∏

(i,j)∈M

aij).

where the sum goes through all perfect matchings M of the support graph GA of
A and σM is the corresponding permutation to the partition M (defined in the
beginning of this section).

The following theorem shows the correspondence between the determinant
and the Pffafian of a skew-symmetric matrix.
Theorem 19 (Cayley). [Lovász and Plummer, 2009, Lemma 8.2.2, Page 318]
For a 2n×2n skew-symmetric matrix A, |A| = Pf 2(A). As a simple consequence,
we have that |A| = 0 if and only if Pf(A) = 0.

Let M = (V, F) be a linear delta-matroid represented by a skew-symmetric
matrix A and let W ⊆ V , |W | even. Applying Cayley’s Theorem and Lemma
18 on the skew-symmetric matrix A[W ], we obtain a nice rule for determining
whether W is a feasible set or not. If the support graph GA[W ] of the matrix A[W ]
has no perfect matching, the Pffafian of A[W ] is equal to zero and therefore A[W ]
has to be singular. On the other hand, if GA[W ] has exactly one perfect matching,
A is regular. When GA[W ] has more than one perfect matching, we can not decide
the regularity of A[W ], because summands in the Pffafian may sum up to zero.

10



3.3 Algorithmic Considerations
In this section, we show that the complexity of algorithms for linear delta-
matroids may significantly depend on their representation.

Kazda et al. [2019] introduced an algorithm that can efficiently solve edge
Boolean CSP with all constraints being even delta-matroids. Since Kazda et al.
represent delta-matroids by a list of tuples, the complexity of their algorithm is
polynomial in the number of feasible sets of a given delta-matroid.

On the other hand, Geelena et al. [2003] presented an algorithm for lin-
ear delta-matroids that has polynomial complexity in terms of the dimension
of the skew-symmetric matrix representing a given linear delta-matroid.

In the following claim, we provide an example of linear delta-matroids that
have exponentially more feasible sets than is size of the matrix representing them,
implying that the complexity of these algorithms can significantly differ.

Claim 20. Let n ∈ N and Vn be a finite set with cardinality 2n. Take Fn = {F ⊆
Vn, |F | even}. Then the delta-matroid Mn = (Vn, Fn) is linear.

Proof. For any n ∈ N, let us denote by An the following 2n × 2n skew-symmetric
matrix:

An =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 . . . 1 1
−1 0 1 . . . 1 1
−1 −1 0 . . . 1 1
... ... ... . . . ... ...

−1 −1 −1 . . . 0 1
−1 −1 −1 . . . −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We claim that Mn = M(An). As a result of Jacobi’s Theorem (Theorem 12),
we have that F(An) does not contain sets of an odd cardinality. We have to
show that F(An) contains every subset of Vn that has an even size. Since every
principal submatrix of size 2k of the matrix An is the matrix Ak, the proof is
completed by showing that matrix Ak is regular for every natural k. We proceed
by induction and we will prove a stronger statement that |Ak| = 1 for every k.

Case k = 1 is easy. For proving the induction step, let us suppose that
|Ak−1| = 1 and let us denote A = Ak and aij the element on i-th row and j-th
column of the matrix A.

Applying the Laplace expansion of determinant (see Lemma 1) on matrix A
and noting that a11 = 0, we get:

|A| =
2k∑

i=1
ai1(−1)i+1|Ai,1| =

2k∑
i=2

ai1(−1)i+1|Ai,1|. (3.1)

By expanding the determinant of Ai,1 for i ̸= 1:

|Ai,1| =
2k∑

j=2
a1j(−1)j|A1i,1j|. (3.2)

11



Plugging (3.2) into (3.1), we obtain:

|A| =
2k∑

i=2

2k∑
j=2

ai1a1j(−1)i+j+1|A1i,1j|.

For each i, j ∈ {2, . . . , 2k} we have ai1 = −1, a1j = 1 from the definition of
Ak. Therefore:

|A| =
2k∑

i,j=2
(−1)i+j|A1i,1j|.

Noting that A1i,1j is the matrix Ak−1, we can apply the induction hypothesis:

|A| =
2k∑

i,j=2
(−1)i+j.

The last sum contains (2k − 1)2 = 4k2 − 4k + 1 summands and their value
depends on the parity of i + j. We have that (−1)i+j = 1 if and only if i and j
have the same parity. We obtain k2 summands with both i and j even and (k−1)2

with both of them odd. In total, we have 2k2 − 2k + 1 summands equal to 1 and
the rest (2k2 − 2k) equal to −1. Altogether, it sums up to 1 and we are done.
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4. Matching-Realizable
Delta-Matroids

4.1 Definition and Basic Properties
In this section, we investigate the class of matching-realizable delta-matroids that
was introduced by Dvořák and Kupec [2015] in their article regarding the planar
Boolean CSP. Matching-realizable delta-matroids are represented by graphs.

Let G = (V, E) be a finite graph and W = {w1, . . . , wn} its pairwise distinct
vertices. For X ⊆ V , we denote by G[X] the induced subgraph of G on vertices
from X.

We define:

F(G, W ) def= {F ⊆ W : G[(V \ W ) ∪ F ] has a perfect matching}

M(G, W ) def= (W, F(G, W )).

We call vertices from V \ W hidden. Note that the sets in F(G, W ) correspond
to subgraphs of G that contain all hidden vertices and have a perfect matching.

Claim 21. Let G = (V, E) be a graph, W ⊆ V , and F(G, W ) ̸= ∅. Then
M(G, W ) is an even delta-matroid.

Proof. We are going to start with verifying the exchange axiom. Let F1, F2 ∈
F(G, W ) and let M1, M2 be the corresponding perfect matchings of G[(W \V )∪F1]
and G[(W \ V ) ∪ F2] respectively. Let x be an arbitrary element of F1∆F2.

We construct the auxiliary graph H = (V, M1∆M2). Since the degree of every
vertex of H is clearly at most two, H is a union of paths and cycles. Vertex x
belongs to the symmetric difference of F1 and F2, hence it is an endpoint of a path
P in H. Let us denote by y the second endpoint of the path P . Observe that
the vertex y also lies in F1∆F2.

Figure 4.1: Alternating path P.

We claim that F1∆{x, y} ∈ F(G, W ). One can see that the subgraph
G[(W \ V ) ∪ (F1∆{x, y})] is perfectly matched by the matching M1∆P .

To show that M(G, W ) is even, we take an arbitrary F ∈ F(G, W ).
The induced subgraph G[(V \W )∪F ] has a perfect matching, implying |V \W ∪F |
has to be even. Since |F | = |(V \ W ) ∪ F |− |V \ W | and |V \ W | does not depend
on a choice of F , all feasible sets of M(G, W ) have the same parity.

Definition 22 (Matching-realizable delta-matroids). A delta-matroid M is said
to be matching-realizable if there exists a graph G = (V, E) and W ⊆ V , such
that M = M(G, W ).

13



In Section 5.2 of this thesis, we discuss a relation between linear and matching-
realizable delta-matroids. In order to keep the notation compatible, our definition
of matching-realizable delta-matroids differs by twisting from the definition intro-
duced in the article from Dvořák and Kupec [2015] and in the article from Kazda
et al. [2019]. This difference is insignificant, since the class of matching-realizable
delta-matroids is closed under twisting, as the following claim states.
Claim 23. The class of matching-realizable delta-matroids is closed under twist-
ing. In other words, for a matching-realizable delta-matroid M = (W, F) and
X ⊆ W, M∆X is also a matching-realizable delta-matroid.
Proof. Since M is matching-realizable, we can find a graph G = (V, E) and
W ⊆ V such that M = M(G, W ). We construct a graph G′ from G as follows.
We replace each vertex xi from X with a new vertex yi. Then we add a new
vertex xi and an edge between xi and yi. To make the construction more clear,
we give a picture below.

Figure 4.2: The construction of the graph G’ from the graph G.

We claim that M(G, W )∆X = M(G′, W ). Let F be any subset of W . We are
reduced to proving that F ∈ F(G, W ) implies that (F∆X) ∈ F(G′, W ), since
the second inclusion can be shown similarly. Let us suppose that the subgraph
G[(V \ W ) ∪ F ] has a perfect matching N . Note that N forms a matching
in the graph G. We will construct a matching N ′ in the graph G′ from the
matching N . For each vertex xi from X, we make the following changes. If xi

occurs in a matching N , we replace it by yi, otherwise we add an edge {yi, xi}
to N . Observing that N ′ is a perfect matching of G′[(V ′ \ W ) ∪ (F∆X)], we are
done.

4.2 Strictly Matching-Realizable Delta-Matroids
Definition 24 (Strictly matching-realizable delta-matroid). Let M = (W, F)
be a matching-realizable delta-matroid represented by a graph G = (V, E) and
W ⊆ V . We say that a vertex of G is hidden if it belongs to V \ W . We
define the hiddenness number of a graph G representing M as the number of
hidden vertices of G. The hiddenness number of a delta-matroid M is the lowest
hiddenness number among all graphs that represent M . We say that M is strictly
matching-realizable if its hiddenness number is equal to zero.

14



Strictly matching-realizable delta-matroids are an important subclass of ma-
tching-realizable delta-matroids. Note that for any matching-realizable delta-
matroid M , the hiddenness number of graphs representing M has the same parity.
Hence, matching-realizable delta-matroids that contain feasible sets with odd
cardinality have an odd hiddenness number and can not be strictly matching-
realizable. As the following claim shows, we can even find a matching-realizable
delta-matroid with sufficiently large hiddenness number.
Claim 25. For any natural n, there exists a matching-realizable delta-matroid M
whose hiddenness number is n.
Proof. We shall construct such a delta-matroid. For every natural n, let us define
a graph Gn = (Vn, En), where Vn = {1, . . . , n, h1, . . . hn} and En = {{i, hi}, i ∈
{1, . . . , n}} and let Mn = M(Gn, {1, . . . , n}).

Figure 4.3: Graph Gn representing the delta-matroid Mn.

Since Gn is a union of n isolated edges, the only induced subgraph that con-
tains all hidden vertices and has a perfect matching is the graph Gn itself. Hence,
Mn has exactly one feasible set: {1, . . . , n}. It is clear from the construction that
the hiddenness number of Mn is at most n.

We are going to show that the hiddenness number of Mn is at least n. For
a contradiction, let us consider a graph G′ = (V ′, E ′) that represents Mn and has
a smaller hiddenness number m. We have that Mn = M(G′, {1, . . . , n}) for some
vertices {1, . . . , n} ⊆ V ′. Since {1, . . . , n} is a feasible set of Mn, we have that
G′ has a perfect matching, let us denote it by M . Because {1, . . . , n} is strictly
larger than the number of hidden vertices of G′, we are able to find a pair of
vertices i, j ∈ {1, . . . , n} that are matched in M . Therefore G′[V ′ \ {i, j}] has
a perfect matching, implying that {1, . . . , n} \ {i, j} is another feasible set of Mn

which is a contradiction.

Note that the structure of the delta matroids from the previous claim is simple;
they all contain only one feasible set. And we also have Mn = ({1, . . . , n}, {∅})
∆{1, . . . , n}. Since the delta-matroid ({1, . . . , n}, {∅}) can be represented by
a graph containing n vertices and no edges, delta-matroids Mn are indeed equiv-
alent to a delta-matroid that has hiddenness number zero. We are often able to
reduce the hiddenness number by twisting the delta-matroid.

Even though the hiddenness number of constructed Mn can be arbitrarily
large, it is still in a linear correspondence with its arity. Can we find matching-
realizable delta-matroids with hiddenness numbers exponentially larger than their
arity? We leave this question as an impulse for further study.
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5. Relations Between Classes of
Delta-Matroids
In this chapter, we discuss the relations between previously introduced classes of
delta-matroids.

5.1 Not Every Linear Delta-Matroid Is
Matching-Realizable

In the section 4.1, we have pointed out that matching-realizable delta-matroids
are even (Claim 21). On the other hand, is every even delta-matroid matching
realizable? Dvořák and Kupec [2015, Page 442] provided a table of representative
even delta-matroids and graphs by that they are matching-realized. Using a pro-
gram, they examined that every even delta-matroid of arity at most 5 differs from
one listed in the table by twisting and/or by permuting the ground set. Since
the class of matching-realizable delta-matroids is closed under those operations
(see Claim 23), every even delta-matroid of arity at most 5 is matching-realizable.

However, Kazda et al. [2019, Appendix A] provided an example of an even
delta-matroid of arity 6 (let us denote it by R6) that is not matching realizable.

R6 contains following feasible sets:
000000 100100 001111 111111

100010 011011
011000 100111
010001 101011
001100 101101
001010 110011
001001 110101
000101 111010

111100
Kazda et al. verified by a computer that R6 is indeed an even delta-matroid.

Even though the list of tuples above may seem irregular, we provide the repre-
sentation of R6 by a skew-symmetric matrix in the following claim.

Claim 26. R6 is a linear delta-matroid.

Proof. We would like to find a 6 × 6 skew-symmetric matrix A and a set X such
that R6 = M(A)∆X. We choose X = ∅. Since |A[{i, j}]| = (aij)2, we want
aij = 0 if and only if {i, j} /∈ R6. Therefore, A has a form below (the star stands
for some nonzero element):

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 ∗ ∗ 0
0 0 ∗ 0 0 ∗
0 ∗ 0 ∗ ∗ ∗
∗ 0 ∗ 0 0 ∗
∗ 0 ∗ 0 0 0
0 ∗ ∗ ∗ 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Now we have to choose appropriate nonzero elements. One of the possibilities
is shown below:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 −1 0
0 0 1 0 0 1
0 −1 0 −1 1 1

−1 0 1 0 0 1
1 0 −1 0 0 0
0 −1 −1 −1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

With enough patience, one can check that R6 is linearly represented by the matrix
A.

Not only does Claim 26 give R6 the structure of an even delta-matroid, but
it is also an example of a linear delta-matroid that is not matching realizable.

5.2 Linearity of Strictly Matching-Realizable
Delta-Matroids

In Chapter 3 concerning linear delta-matroids, we have pointed out the relation
between linear delta-matroids and perfect matchings of their support graphs. We
will use this relation to prove the following theorem.

Theorem 27. Strictly matching realizable delta-matroids are linear.

Proof. Let us suppose that M is strictly matching-realizable by a graph G =
(V, E). We can without loss of generality suppose that V ={1,. . . ,n}. Let m = |E|
and we denote the edges of G by {e1, . . . , em} in any order. We are going to
construct a skew-symmetric matrix A such that M = M(A).

Let K0 ⫋ K1 ⫋ K2 ⫋ · · · ⫋ Km be a chain of fields. Let us denote by ki+1
one arbitrary element that belongs to Ki+1 \ Ki. For example we can choose
K0 = Q, Ki = Q( 2i√2), ki = 2i√2, i ∈ {1, . . . , m} and observe it has the properties
above.

Let A be a square matrix of size n whose elements are defined as follows:

aij =

⎧⎪⎪⎨⎪⎪⎩
0 {i, j} /∈ E

kl {i, j} ∈ E, {i, j} = el, i < j

−kl {i, j} ∈ E, {i, j} = el, i > j

The matrix A is clearly skew-symmetric and we claim that M(G, V ) = M(A).
In other words, we would like to prove that F ∈ F(G, V ) if and only if F ∈ F(A)
for any F ⊆ V . Noting that G is identical to the support graph GA of A, we
obtain:

F ∈ F(G, V ) ⇐⇒ G[F ] has a perf.m. ⇐⇒ GA[F ] = GA[F ] has a perf.m.

As a consequence of Theorem 19, we have:

F ∈ F(A) ⇐⇒ |A[F ]| ≠ 0 ⇐⇒ Pf(A[F ]) ̸= 0.

17



We finish the proof by showing that Pf(A[F ]) ̸= 0 if and only if GA[F ] has
a perfect matching.

Firstly, let us suppose that Pf(A[F ]) ̸= 0. Since the Pfaffian can be written
as a sum over perfect matchings of its support graph (see Lemma 18), there has
to be at least one summand, hence GA[F ] has a perfect matching.

We prove the converse by contradiction. Let us suppose GA[F ] has at least
one perfect matching and Pf(A[F ]) is zero. From Lemma 18 we have:

0 = Pf(A[F ]) =
∑
M

(σM

∏
(i,j)∈M

aij),

where M goes through all perfect matchings of GA[F ] and σM ∈ {−1, 1}.
Since the sum above contains at least one summand, let l be the largest natural

number such that kl occurs in the sum above. Let us solve this linear equation
for kl and convert it to the standard form a · kl = b, where a, b have to belong to
Kl−1. We are going to distinguish two cases.

If a ̸= 0, then kl = ba−1. But kl /∈ Kl−1 from the definition, however ba−1 ∈
Kl−1, contradiction.

When a = 0, we choose l2 < l largest such that kl2 occurs in the expression
of a and we apply the same argument for the linear equation a = 0 and kl2 .
Iterating the process above, we either find ln such that the first case occurs, or we
construct an infinite strictly decreasing sequence of natural numbers, which is
a contradiction.

In order to make the construction in the proof above more clear, we provide
a simple example. Let M be a strictly matching-realizable delta-matroid rep-
resented by a graph G below. In the first step, we denote the edges of G by
{e1, . . . , em} in any order.

Figure 5.1: Graph G that represents matching-realizable delta-matroid M.

Now let Ki = Q( 2i√2), ki = 2i√2 for every i ∈ {1, . . . , 7}. The matrix A
constructed in the theorem above is:

A =

⎛⎜⎜⎜⎜⎜⎜⎝
0

√
2 4

√
2 0 8

√
2

−
√

2 0 0 16
√

2 32
√

2
− 4

√
2 0 0 64

√
2 0

0 − 16
√

2 − 64
√

2 0 128
√

2
− 8

√
2 − 32

√
2 0 − 128

√
2 0

⎞⎟⎟⎟⎟⎟⎟⎠
and we proved that M(G, {1, . . . , 5}) = M(A).
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5.3 Linearity of Matching-Realizable
Delta-Matroids

In the previous section, we proved that the subclass of strictly matching-realizable
delta-matroids belongs to the class of linear delta-matroids. But are we able to
linearly represent a general matching-realizable delta-matroid? In this section,
we provide a few approaches and ideas about this problem but it unfortunately
remains open. Let us start with examining delta-matroids of small arities. If
we narrow down our interest to delta-matroids of arity at most 5, we obtain
the following:

Claim 28. Every even delta-matroid of arity at most 5 is linear.

Proof. We proceed by case consideration; we went through the table of represen-
tatives of even delta-matroids of arity at most 5 that was introduced in the article
by Dvořák and Kupec [2015, Page 442] (for more details, see the beginning of
the section 5.1. We showed that these representatives are linear delta-matroids
(the most of them are equivalent to a strictly matching-realizable delta-matroid).
Because the class of linear delta-matroids is clearly closed under twisting and
permuting the ground set, we are done.

Matching-realizable delta-matroids are even (see Claim 21). As a consequence
of this fact and the claim above, we have the partial result that matching-
realizable delta-matroids of arity at most 5 are linear.

We already know that strictly matching-realizable delta-matroids are linear.
The natural approach to finding linear representation of a matching-realizable
delta-matroid is to reduce its hiddenness number. One of the ways is to find
an equivalent delta-matroid with a lower hiddenness number. Even though this
approach works for many matching-realizable delta-matroids, it fails in general,
as the next example shows.

Example 29. Matching-realizable delta-matroid M represented by the graph G
below has hiddenness number one and is not equivalent to a strictly matching-
realizable delta-matroid.

Figure 5.2: Graph G representing delta-matroid M .
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Proof. For a contradiction, let us suppose that we can find a graph H = (V, E),
where V = {1, . . . , 6}, and a subset X of V such that M = M(H, V )∆X. Since
∅ ∈ F(H, V ), X has to be chosen as one of the feasible sets of M . Since G is
symmetric, we can without loss of generality assume that X ∈ {{1}, {1, 2, 3},
{1, 2, 3, 4, 5}} and distinguish these three options.
Case 1, X = {1}.

We have that {1, 3} ∈ F(H, V ) because {3, h} is an edge of G and {2, 5} ∈
F(H, V ) because G[{1, 2, 5, h}] has a perfect matching. Therefore {1, 3} and
{2, 5} are edges of the graph H, implying that {1, 2, 3, 5} has a perfect matching
in H. On the other hand {1, 2, 3, 5} /∈ F(H, V ) because the graph G[{2, 3, 5, h}]
does not have a perfect matching, which is a contradiction.
Case 2, X = {1, 2, 3}.

The argument is similar as in the first case. We have that {2, 4} and {3, 5}
are edges of the graph H, because subgraphs induced in G by {1, 3, 4, h} and
{1, 2, 5, h} have a perfect matching. But {2, 3, 4, 5} /∈ F(H, V ) because the graph
G[{1, 4, 5, h}] has no perfect matching.
Case 3, X = {1, 2, 3, 4, 5}.

As in previous cases, we have {2, 6} ∈ F(H, V ), {4, 5} ∈ F(H, V ) but also
{2, 4, 5, 6} /∈ F(H, V ) which is a contradiction.

However, the delta-matroid M from the example above is not a counterex-
ample to our conjecture, because we can represent M linearly. We have that
M = M(A)∆{1}, where A is the following skew-symmetric matrix:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 1 0
0 0 1 0 1 0

−1 −1 0 1 0 0
0 0 −1 0 0 0

−1 −1 0 0 0 1
0 0 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Unfortunately, we are not always able to reduce the hiddenness number by
twisting. Let us present another approach to deal with the hiddenness number.
Let M be a matching-realizable delta-matroid with a nonzero hiddenness number
that is represented by the graph G = (V, E) and W ⫋ V . We define the strictly
matching-realizable delta-matroid M ′ as M(G, V ). As a result of Theorem 27, M ′

is linear. It is not difficult to observe that M = M ′/(V \W ). Our problem reduces
to showing that the class of linear delta-matroids in closed under contraction.
Unfortunately, we do not know if that holds.
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Conclusion
Throughout this thesis, we have pointed out several connections between classes
of delta-matroids. Most importantly, we have proven that strictly matching-
realizable delta-matroids are linear and showed an example of a linear delta-
matroid that is not matching-realizable. To summarize and give a better un-
derstanding of how the classes of even, linear, and (strictly) matching-realizable
delta-matroids interact, we provide the following diagram.

Figure 5.3: Diagram of relations between classes of delta-matroids.

If we confine ourselves to the arity at most 5, we obtain that the classes of
even, linear, and matching-realizable delta-matroids coincide. Studying the delta-
matroids of small arities led us to believe that the class of matching-realizable
delta-matroids is included in the class of linear delta-matroids, but this conjecture
remains open for further studies.
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Libor Barto and Jǐŕı Tůma. Lineárńı algebra, manuscript. URL http://www.

karlin.mff.cuni.cz/˜barto/LinAlg/skripta_la5.pdf.
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