
Cross-Entropy Loss of Approximated Deep
Neural Networks

Jiří Šíma�[0000−0001−8248−9425] and Petra Vidnerová[0000−0003−3879−3459]

Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
{sima,petra}@cs.cas.cz

Abstract. Deep neural networks (DNNs), which underpin modern AI
technologies, demand substantial computational resources, posing chal-
lenges for deployment on energy-constrained devices (e.g., battery-pow-
ered smartphones). A viable solution is to reduce the complexity of
trained DNNs via approximate computing techniques, such as low-bit
quantization or pruning, which significantly lower energy consumption
with minimal impact on inference accuracy. In this paper, we adapt our
AppMax method—originally developed for estimating regression error of
approximated neural networks (NNs)—to upper-bound the cross-entropy
loss between the output categorical probability distributions of a trained
classification DNN with softmax (e.g., a convolutional NN) and its low-
energy approximation. Using the concept of shortcut weights and optimal
linear interpolation of the exponential function, AppMax bounds this
loss via linear programming over convex polytopes around test/training
data points, constrained to regions where the same category is originally
inferred with high probability. Preliminary MNIST experiments show
that AppMax identifies inputs with maximum cross-entropy loss, some
of which are misclassified by the approximated NN (with reduced weight
bitwidth), even though its overall accuracy on the test data is preserved.
This error bound can be used to evaluate different approximation strate-
gies and identify those that best balance accuracy and energy efficiency.

Keywords: Deep neural networks · Approximate Computing · Cross-
Entropy Loss · Linear programming.

1 Introduction

Deep neural networks (DNNs) have become central to modern artificial intel-
ligence, powering applications such as image and speech recognition, natural
language processing, and robotics. Their growing deployment in embedded sys-
tems—ranging from autonomous surveillance to smart healthcare—brings ad-
vanced functionality to resource-constrained devices. However, the high compu-
tational and energy demands of DNNs, often composed of numerous layers and
millions of parameters, present a major hurdle for on-device inference, particu-
larly in mobile and wearable technologies where battery life is critical.

To address these challenges, research has focused on improving the energy
efficiency of DNN processing through two main complementary strategies [24].

2 J. Šíma and P. Vidnerová

The first involves hardware-level optimization: specialized DNN accelerators [9,
20], GPUs [30], FPGAs [16], and in-memory computing platforms [17] exploit
massive parallelism to reduce computational overhead while adhering to prin-
cipled energy complexity bounds [23, 21]. The second strategy, aimed at error-
resilient applications, employs approximate computing to trade slight reduc-
tions in accuracy for substantial energy savings [2, 4, 13–15, 25]. Techniques in-
clude model compression [3], pruning [29], compact network architectures [10],
reduced-precision arithmetic, approximate multipliers [1], and quantization sche-
mes—such as fixed-point representation [28], bitwidth reduction [18], nonuniform
quantization [12], weight sharing [6]—which have been shown to dramatically
lower energy consumption per operation [7].

It has been observed that energy consumption during DNN inference is dom-
inated not only by numerical computation but also by data movement, with
memory access often accounting for over 70% of the total cost [29]. Reducing
the complexity of approximated DNNs can significantly mitigate both of these
energy components. In our previous work [22], we theoretically analyzed the
effect of arbitrary weight rounding—specified by individual deviations—on the
output of a trained DNN employing the ReLU (rectified linear unit) activation
function, where the approximation may thus be generated by any method, such
as those referenced above (e.g., reduced bitwidth, quantization). We derived
a global worst-case upper bound on the DNN regression error (under the L1

norm) induced by a given weight rounding, which turns out to be overestimated
for practical tasks. Moreover, we proved that tightening this upper bound is
NP-hard, even for two-layer networks.

Therefore, we developed a method called AppMax, which computes the max-
imum L1 regression error of an approximated DNN using linear programming,
at least over convex polytopes surrounding test/training data points [22]. To
this end, we introduced the concept of so-called shortcut weights—coefficients
expressing the linear dependence of DNN outputs on inputs under a fixed satu-
ration of neuron states, enabled by the piecewise linearity of ReLU (Section 2).

In this paper, we adapt the AppMax method to neural networks (NNs)
trained for categorical classification employing a softmax output layer (Sec-
tion 4), encompassing convolutional neural networks (CNNs) with (max) pooling
layers. AppMax thus provides an upper bound on the cross-entropy loss between
the output categorical probability distributions of the original classification DNN
and its low-energy DNN approximation, evaluated over the convex polytopes,
constrained to regions in which the same category is originally inferred with high
probability (Section 3). To achieve this, we linearly interpolate the exponential
function at optimal points that minimize the approximation error (Appendix).

In this preliminary study, we test the AppMax method on a small, fully
connected NN trained on the MNIST dataset, which was approximated by re-
ducing the bitwidth of its weights (Section 5). The experiments demonstrate
that our AppMax method yields more reliable estimates of the worst-case error
than those computed on the test data points alone for which the accuracy of
the approximated NN can be perfectly preserved. Moreover, AppMax identifies

Cross-Entropy Loss of Approximated Deep Neural Networks 3

inputs with maximum cross-entropy loss over the convex polytopes surrounding
the data points, some of which are misclassified by the approximated NN.

2 A Formal Model of DNNs and Shortcut Weights

We define a formal model of (artificial) feedforward neural networks (NNs) with
the ReLU (rectified linear unit) activation function, which encompasses deep
neural networks (DNNs) commonly used for classification tasks, such as convo-
lutional neural networks (CNNs). The architecture of a NN N is a connected,
directed acyclic graph (V,E) where E ⊂ V ×V and V is composed of units, called
neurons, whose real-valued states (outputs) are denoted by yj for j ∈ V . This in-
cludes a set of n input neurons X = {1, . . . , n} ⊆ V that serve only for presenting
an external n-dimensional real-valued input to N from a bounded domain, say
(x1, . . . , xn) ∈ [0, 1]n without loss of generality [22], that is yj = xj for j ∈ X.
Moreover, a set of m ≥ 2 output neurons, Y ⊆ V ′ = V \X provides the output
N (x1, . . . , xn) ∈ [0, 1]m from N for this input, which is interpreted as m categor-
ical probabilities. For any neuron j ∈ V , we denote by j← = {i ∈ V | (i, j) ∈ E}
the set of units in N from which connections (edges) lead to j, which represent
the inputs to j. Thus, we assume j← = ∅ for j ∈ X, and j← ∩ Y = ∅ for j ∈ V .

For any non-input neuron j ∈ V ′ and its input i ∈ j←, let wji ∈ R be a real
weight associated with the connection (i, j) ∈ E, whereas formally wji = 0 for
i ∈ V \j←. In addition, wj0 ∈ R denotes its real-valued bias, which, as usual, can
be viewed as the weight of an edge (0, j) ∈ E leading from an additional formal
input neuron 0 ∈ X to j, whose state y0 = 1 is constantly one and 0 ∈ j← for
every j ∈ V ′ such that wj0 ̸= 0. The excitation ξj of neuron j ∈ V ′ is evaluated
as a weighted sum of its inputs:

ξj =
∑
i∈j←

wjiyi , (1)

provided that the states yi have already been computed for all units i ∈ j←,
after an external input (x1, . . . , xn) to N was given at the beginning. Then, the
state yj of a non-output neuron j ∈ V ′ \ Y is computed by applying the ReLU
activation function R : R → R to its excitation ξj ,

yj = R(ξj) = max(0, ξj) . (2)

The states yj of output neurons j ∈ Y normalize their excitations into a cate-
gorical probability distribution by using the softmax function

yj =
eξj∑

k∈Y eξk
∈ (0, 1) . (3)

The convolutional layers in CNNs are sometimes interleaved with max pool-
ing layers whose units j ∈ V ′ \ Y implement the maximum of its inputs, yj =
maxi∈j← yi. Note that yi ≥ 0 for i ∈ V due to (2). Such a max pooling unit can

4 J. Šíma and P. Vidnerová

be replaced in N by a subnetwork composed of neurons that compute their states
according to (1) and (2), since the maximum of two numbers, max(x, y) = R(x−
y)+ y for x, y ≥ 0, can be used for evaluating the maximum of |j←| nonnegative
inputs (e.g., the maxima of pairs is used to compute the maxima of fours, eights,
sixteens, etc.). Similarly, average pooling can be implemented. Thus, we will here-
after assume without loss of generality that N does not contain pooling layers.

Furthermore, we introduce the concept of so-called shortcut weights [22]. For
any external input (x1, . . . , xn) ∈ [0, 1]n to N , we define a subset of hidden
neurons (i.e. excluding input and output units),

S = S(x1, . . . , xn) = {j ∈ V ′ \ Y | ξj < 0} (4)

whose states are said to be saturated at yj = 0 according to (2), whereas its
complement of unsaturated units is denoted by U = V \(S∪Y), which, formally,
also includes the input neurons X ⊆ U . Under such a fixed saturation, the
excitation ξj of neuron j ∈ V ′ is a linear function of the states y1, . . . , yn of
input neurons (i.e. any external input to N) that satisfy (4), since only the linear
parts of the ReLU function are used, namely, either yj = 0 if j ∈ S or yj = ξj if
j ∈ U \X, according to (2). Hence, for each neuron j ∈ V ′, we define its real-
valued shortcut weights Wji ∈ R for input neurons i ∈ X (including its shortcut
bias Wj0), which are coefficients of this linear function, ξj =

∑
i∈X Wjiyi for

any external input that meets (4). If condition (4) is satisfied, then it can be
rewritten using the shortcut weights as∑

i∈X
Wjiyi

{
< 0 if j ∈ S
≥ 0 if j ∈ U

for every j ∈ V ′ \ Y . (5)

For any unit j ∈ V ′, the shortcut weight Wji for input neuron i ∈ X can be
expanded from (1) and (2) as

Wji =
∑

path i=j0,j1,...,jm=j in (V,E)
j1,...,jm−1∈U

m∏
ℓ=1

wjℓ,jℓ−1
(6)

which can be efficiently computed using feedforward propagation through N . We
start with the input neurons j ∈ X ⊆ U , for which we formally define Wji = 1
if j = i, whereas Wji = 0 otherwise, for every i ∈ X. Then for any non-input
unit j ∈ V ′, we calculate its shortcut weights as

Wji =
∑

k∈j←∩U

wjkWki for every i ∈ X , (7)

provided that the shortcut weights Wki have already been computed for all
neurons k ∈ j← and i ∈ X.

3 Upper Bounding the Cross-Entropy Loss

Consider a NN N that is approximated by another NN Ñ (e.g., by rounding the
weights to a given number of binary digits in their floating-point representations),

Cross-Entropy Loss of Approximated Deep Neural Networks 5

which shares the same inputs, X̃ = X, and has the same number of outputs, that
is, |Ỹ | = |Y | = m. We denote the corresponding categorical probabilities and
excitations of output neurons k ∈ Ỹ by ỹk and ξ̃k, respectively. For any input
(y1, . . . , yn) ∈ [0, 1]n, we can measure the error of Ñ using the cross-entropy loss
between the categorical probability distributions of N and Ñ :

L(y1, . . . , yn) = −
∑
k∈Y

yk ln ỹk . (8)

which upper bounds the Kullback-Leibler divergence of N from Ñ .
Suppose a data point (x1, . . . , xn) ∈ T from a test or training set T ⊆ [0, 1]n

belongs to the category c ∈ Y . We aim to find an upper bound on the cross-
entropy loss (8) over a neighborhood ΞS ∩ΞS̃ of this point, where

ΞS = {(y1, . . . , yn) ∈ [0, 1]n | S(y1, . . . , yn) = S} (9)

is a convex polytope defined by the set of saturated units S = S(x1, . . . , xn)
for the input (x1, . . . , xn) presented to N according to (5), and ΞS̃ is specified
analogously for Ñ . In addition, this neighborhood is further constrained by the
condition

yc ≥ p (10)

for some probability threshold p (e.g., p = 0.8), that is,

Ξ =
{
(y1, . . . , yn) ∈ ΞS ∩ΞS̃ | yc ≥ p

}
(11)

which includes only those inputs that N classifies into the same category c ∈ Y
as the data point (x1, . . . , xn) with probability at least p. Using the softmax
function (3), the constraint (10) can be rewritten as∑

j∈Y \{c}

eξj−ξc ≤ 1− p

p
. (12)

From the cross-entropy loss (8), we isolate the term corresponding to the
output c ∈ Y and bound the remaining sum from above using the summand
with maximum ln(1/ỹk) > 0:

L(y1, . . . , yn) ≤ yc ln
1

ỹc
+ (1− yc) max

k∈Ỹ \{c}
ln

1

ỹk
(13)

since 0 < yk < 1 for all k ∈ Y , and
∑

k∈Y yk = 1 due to (3). Because the
logarithmic function is increasing, this can be rewritten by plugging the softmax
function (3) as

L(y1, . . . , yn) ≤ max
k∈Ỹ \{c}

(
ln

1

ỹc
yc

+ ln
1

ỹk
1−yc

)
= ln

(
max

k∈Ỹ \{c}

1

ỹk

(
ỹk
ỹc

)yc
)

= ln

 max
k∈Ỹ \{c}

∑
j∈Ỹ

eξ̃j−ξ̃k+yc(ξ̃k−ξ̃c)

 (14)

6 J. Šíma and P. Vidnerová

which can further be upper bounded for (y1, . . . , yn) ∈ Ξ as

L(y1, . . . , yn) ≤ ln

 max
k∈Ỹ \{c}

∑
j∈Ỹ

eξ̃j−ξ̃k+R(ξ̃k−ξ̃c)−pR(ξ̃c−ξ̃k)

 (15)

according to (2), since p ≤ yc < 1 holds in Ξ due to (11).
Notice that both the constraint formula (12) and the loss function bound

(15) involve the exponential function applied to linear functions from (2) and
(1), depending on the excitations of the output neurons of N and Ñ , respec-
tively. In order to evaluate these formulas using a NN, we linearly interpolate
the exponential function ex at r + 3 points a0 < a1 < · · · < an < ar+1 < ar+2

by a continuous piecewise linear function Ne(x).
For i ∈ {0, . . . , r + 1}, denote by mi and bi the slope and y-intercept, re-

spectively, of the linear interpolant between ai and ai+1. This means zi = eai =
miai + bi and zi+1 = eai+1 = miai+1 + bi which determines

mi =
eai+1 − eai

ai+1 − ai
and bi =

ai+1e
ai − aie

ai+1

ai+1 − ai
for i ∈ {0, . . . , r + 1} . (16)

In the Appendix, we show how to find the r unique points a1, . . . , ar inside a
given interval [a0, ar+1] that minimize the approximation error

E(a1, . . . , ar) =

r∑
i=0

∫ ai+1

ai

(mix+ bi − ex) dx , (17)

which prove to satisfy

eai =
eai+1 − eai−1

ai+1 − ai−1
for i ∈ {1, . . . , r} . (18)

In addition, ar+2 is chosen to be sufficiently large so that it exceeds the common
arguments of the exponential function in (15) but not so large that the expo-
nential values become numerically unstable in computer calculations (e.g., due
to floating-point overflow), which further constrains the polytope Ξ.

The interpolation Ne(x) of ex extends to any real x as

Ne(x) =

 z0 if x ≤ a0
mqx+ bq if aq < x ≤ aq+1 for some q ∈ {0, . . . , r + 1}
mr+1x+ br+1 if x > ar+2 ,

(19)

which satisfies ex ≤ Ne(x) for x ∈ (−∞, ar+2] and eai = Ne(ai) for i ∈
{0, . . . , r + 2}, since ex is a convex function. Hence, Ne can be used to rewrite
the constraint (12) as∑

j∈Y \{c}

eξj−ξc ≤
∑

j∈Y \{c}

Ne(ξj − ξc) ≤
1− p

p
(20)

Cross-Entropy Loss of Approximated Deep Neural Networks 7

for ar+2 ≥ ln(1 − p)/p ≥ a0 (e.g., ar+2 ≥ 0 and a0 = −5 suffice for 0.5 ≤ p ≤
0.99), and the loss function bound (15) as

ln

(
max

k∈Ỹ \{c}
max

(y1,...,yn)∈Ξ

∑
j∈Ỹ

Ne

(
ξ̃j − ξ̃k +R

(
ξ̃k − ξ̃c

)
− pR

(
ξ̃c − ξ̃k

)))
(21)

for all (z1, . . . , zn) ∈ Ξ such that ξ̃j − ξ̃k + R
(
ξ̃k − ξ̃c

)
− pR

(
ξ̃c − ξ̃k

)
≤ ar+2,

where Ξ is the closure of Ξ including zero excitations for saturated units.

4 The AppMax Method

In this section, we will adapt our AppMax method [22] to compute an upper
bound on the cross-entropy loss between the categorical probability distributions
of N and Ñ over a convex polytope surrounding a data point (x1, . . . , xn) ∈ T

which belongs to category c ∈ Y . For c ∈ Y and each k ∈ Ỹ \ {c}, we construct
a NN N ∗ck that evaluates the sums

∑
j∈Y \{c}

Ne(ξj − ξc) and
∑
j∈Ỹ

Ne

(
ξ̃j − ξ̃k +R

(
ξ̃k − ξ̃c

)
− pR

(
ξ̃c − ξ̃k

))
(22)

for an input (y1, . . . , yn) ∈ Ξ, which occur in the constraint (20) and the loss
function bound (21), respectively. The NN N ∗ck is composed of N and Ñ placed
side-by-side in parallel, which share the same input neurons X∗ = X = X̃.
Moreover, their output neurons Y and Ỹ are replaced by subnetworks N ∗c and
Ñ ∗k that evaluate the sums (22) using neurons based on equations (1) and (2).

We prove that the interpolation formula (19) can be implemented by a two-
layer NN using 2r + 3 hidden neurons as

Ne(x) = z0 +

r+1∑
i=0

R(mix+ bi − zi)−
r∑

i=0

R(mix+ bi − zi+1) . (23)

For all i ∈ {0, . . . , r + 1}, we have mix + bi − zi+1 < mix + bi − zi ≤ 0 iff
x ≤ ai, by the definition of zi, and mi > 0 due to (16). Suppose aq < x ≤ aq+1

for some q ∈ {0, . . . , r + 1}. Then R(mix + bi − zi) = mix + bi − zi > 0 if
0 ≤ i ≤ q whereas R(mix + bi − zi) = 0 if q + 1 ≤ i ≤ r + 1. Hence, Ne(x) =

z0 +
∑q

i=0(mix + bi − zi) −
∑q−1

i=0 (mix + bi − zi+1) = mqx + bq. For x ≤ a0,
formula (23) gives Ne(x) = z0, whereas Ne(x) = mr+1x + br+1 for x > ar+2,
which completes the proof that (23) implements (19).

In order to implement N ∗c , we plug (23) into the first sum in (22) and
obtain

∑
j∈Y \{c}Ne(ξj − ξc) =

∑
j∈Y \{c}

(
z0 +

∑r+1
i=0 R (mi(ξj − ξc) + bi − zi)

8 J. Šíma and P. Vidnerová

−
∑r

i=0 R (mi(ξj − ξc) + bi − zi+1)
)

which reduces to the formula

ξ∗o = (m− 1)z0 +
∑

j∈Y \{c}

r+1∑
i=0

R

∑
ℓ∈j←

miwjℓyℓ −
∑
ℓ∈c←

miwcℓyℓ + bi − zi


−

r∑
i=0

R

∑
ℓ∈j←

miwjℓyℓ −
∑
ℓ∈c←

miwcℓyℓ + bi − zi+1

 (24)

that depends on the states of non-output neurons ℓ ∈ V \ Y in N , according
to (1). Thus, the subnetwork N ∗c evaluates formula (24) in the excitation ξ∗o =∑

j∈Y \{c} Ne(ξj − ξc) of its output neuron o ∈ Y ∗ using two layers and 2r + 3
hidden units.

Similarly, the subnetwork Ñ ∗k computes the second sum in (22) in the excita-
tion ξ∗õ of its output neuron õ ∈ Y ∗ as ξ∗õ = mz0+

∑
j∈Ỹ

(∑r+1
i=0 R(miζ̃

∗
ckj+bi−zi)

−
∑r

i=0 R(miζ̃
∗
ckj + bi − zi+1)

)
including the subexcitations

ζ̃∗ckj =
∑
ℓ∈j←

w̃jℓỹℓ −
∑
ℓ∈k←

w̃kℓỹℓ +R

(∑
ℓ∈k←

w̃kℓỹℓ −
∑
ℓ∈c←

w̃cℓỹℓ

)

− pR

(∑
ℓ∈c←

w̃cℓỹℓ −
∑
ℓ∈k←

w̃kℓỹℓ

)
for j ∈ Ỹ , (25)

which is implemented using three layers with 2m and 2r + 3 hidden neurons,
respectively. Altogether, the size of N ∗ck is |V ∗| = |V \Y |+ |Ṽ ′ \ Ỹ |+2m+4r+8
units, including n = |X∗| input and |Y ∗| = |{o, õ}| = 2 output neurons.

Let S∗ = S∗ck(x1, . . . , xn) be the set of saturated units in N ∗ck for the external
input (x1, . . . , xn) according to (4), which induces the set U∗ = V ∗ \(S∗∪Y ∗) of
unsaturated neurons. For this fixed saturation, we calculate the shortcut weights
Wji of units j ∈ V ∗ in N ∗ck for its input neurons i ∈ X∗, according to (7).
Analogously, we determine the shortcut weights Vji for the subexcitations ζ̃∗ckj =∑

i∈X∗ Vjiyi for j ∈ Ỹ . Thus, we can formulate a linear program of finding the
states y1, . . . , yn of its input neurons X∗ \ {0} that

maximize ξ∗õ = Wõ0 +

n∑
i=1

Wõiyi (26)

subject to ξ∗o = Wo0 +

n∑
i=1

Woiyi ≤
1− p

p
(27)

ζ̃∗ckj = Vj0 +

n∑
i=1

Vjiyi ≤ ar+2 for every j ∈ Ỹ (28)

ξ∗j = Wj0 +

n∑
i=1

Wjiyi ≤ 0 for every j ∈ S∗ (29)

Cross-Entropy Loss of Approximated Deep Neural Networks 9

ξ∗j = Wj0 +

n∑
i=1

Wjiyi ≥ 0 for every j ∈ U∗ \X∗ (30)

0 ≤ yi ≤ 1 for every i ∈ {1, . . . , n} . (31)

For each k ∈ Ỹ \ {c}, we solve the linear program (26)–(31) to determine the
maximum

σk = max
(y1,...,yn)∈Ξ∗ck

ξ∗õ = max
(y1,...,yn)∈Ξ∗ck

∑
j∈Ỹ

Ne

(
ξ̃j − ξ̃k +R

(
ξ̃k − ξ̃c

)
−pR

(
ξ̃c − ξ̃k

))
(32)

where Ξ∗ck ⊆ Ξ is a closed convex polytope around the data point (x1, . . . , xn),
consisting of points (y1, . . . , yn) that satisfy the constraints (27)–(31), according
to (11). From (21) and (32), it follows that the cross-entropy loss can then be
upper bounded as

L(y1, . . . , yn) ≤ ln

(
max

k∈Ỹ \{c}
σk

)
(33)

for every input (y1, . . . , yn) ∈
⋃

k∈Ỹ \{c}Ξ
∗
ck.

5 Experiments

For a preliminary study, we tested our AppMax method, introduced in Section 4,
on a simple, small NN N . Nevertheless, AppMax had previously demonstrated
its computational efficiency even on large CNNs when estimating regression er-
ror [22]. Thus, N is composed of three fully connected layers with 784–64–32–10
neurons (including n = 784 input and m = 10 output units), respectively, which
employs the ReLU activation function (2) in the two hidden layers and the
softmax function (3) in the output layer. It was trained with 32-bitwidth for
weights on the MNIST database [5] of handwritten digits (28x28 grayscale pix-
els) categorized into 10 classes (0–9). We carried out our experiments using the
deep learning library PyTorch [19] and the SciPy linear programming routine
scipy.optimize.linprog [27, 8]. The source code is publicly available [26].

The approximated NN Ñ was derived from N by rounding its weights to 4 bi-
nary digits in their floating-point representations. In the experiments we use test
data corresponding to one class c, particularly the digit 1, which comprises 1135
data points. The accuracy of N and Ñ on this test set is 100% and 99.91%, re-
spectively. Specifically, Ñ classifies correctly (i.e. argmaxk∈Y ỹk = c) all but one
data point, which shows high robustness with respect to the data points. In the
AppMax method we use the linear interpolation of the exponential function (see
Section 3) on the interval [−5, 5] (i.e. a0 = −5 and ar+1 = 5) at r = 14 optimal
internal points (see the Appendix) extended to sufficiently large ar+2 = 20.

We apply the AppMax method to find inputs within the convex polytope
(27)–(31) that maximize the upper bound (21) on the cross-entropy loss between

10 J. Šíma and P. Vidnerová

Table 1. Number of misclassified polytopes out of 1135 around the test data points.

p 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99
misclassified 134 71 30 11 8 0 0 0 0

the categorical probability distributions of N and Ñ . This is done for different
values of the probability threshold p with which at least the corresponding class
c is inferred by N according to (10) implemented by (27). Table 1 shows the
number of the so-called misclassified polytopes around the original test data
points in which these inputs with maximum cross-entropy loss are classified by
Ñ into a category κ = argmaxk∈Y ỹk different from the category c inferred by
N (we call them misclassified inputs). Clearly, the number of misclassified poly-
topes decreases when these are more constrained by increasing the probability
threshold p.

Furthermore, Fig. 1 depicts the histograms of output probabilities yc and yκ
for these misclassified inputs generated for different p (top down) which are com-
pared for N (left) and Ñ (right). The diagrams show that for the misclassified
inputs, the approximated Ñ produces the categorical probability distributions
with widely spread low yc and high yκ, which clearly differ from those by the
original N separating high yc from low yκ. Thus, the AppMax method identifies
the data points belonging to the category c, in the vicinity of which there are
inputs that are assigned to the same category c by N with probability at least
p while they are misclassified by Ñ . This exposes the weaknesses of the approx-
imated Ñ even though its accuracy on the test set is almost the same as that of
the original N .

6 Conclusion

In this paper, we have modified our AppMax technique [22] to estimate an upper
bound on the cross-entropy loss between the categorical probability distributions
of a trained classification DNN and its corresponding low-energy DNN approx-
imation. We tested experimentally the method on a simple fully connected NN
trained on the MNIST dataset, which is approximated by reducing the bitwidth
of the weight representations. Our results demonstrate a notable refinement of
the error bounds compared to results derived from test data alone.

In future studies, we aim to tackle the non-linear optimization challenge of
locating the maximum cross-entropy loss, potentially using techniques such as
the Karush-Kuhn-Tucker conditions. Another open question involves approxi-
mating this error on a global scale by estimating the volumes of relevant convex
polytopes to infer probability distributions. A key objective remains leveraging
this error analysis to pinpoint parts of a DNN—such as specific weights—that
can be simplified (e.g., rounded) while ensuring a provably bounded increase in
output error. We also intend to expand our preliminary experimental validation
of the AppMax method to larger CNNs (already used in its previous tests [22]),
and to other benchmark datasets, including CIFAR-10 [11].

Cross-Entropy Loss of Approximated Deep Neural Networks 11

Fig. 1. Histograms of output probabilities yc and yκ over misclassified inputs (with
maximum cross-entropy loss estimated by our AppMax method in misclassified poly-
topes around data points from the category c) that are classified into the category c

by N (left) with the probability at least p and into category κ ̸= c by Ñ (right).

12 J. Šíma and P. Vidnerová

Acknowledgments. This research was institutionally supported by RVO: 67985807;
J. Šíma was partially supported by the Czech Science Foundation grant GA25-15490S;
P. Vidnerová was partially supported by the research programme of the Strategy AV21
“AI: Artificial Intelligence for Science and Society.”

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

Appendix: The Optimal Interpolation Points

We show how to compute the optimal interpolation points a1, . . . , ar inside a
given interval [a0, ar+1] for the exponential function ex so as to minimize the
approximation error (17). Note that εi(x) = mix + bi − ex ≥ 0 for all x ∈
[ai, ai+1] and i ∈ {0, . . . , r}, due to the convexity of the exponential function.
The antiderivative Ei(x) = mi

2 x2+ bix− ex of εi(x) is used to calculate the error
(17) as

E(a1, . . . , ar) =

r∑
i=0

(Ei(ai+1)− Ei(ai))

=

r∑
i=0

(mi

2

(
a2i+1 − a2i

)
+ bi (ai+1 − ai)− eai+1 + eai

)
(34)

according to the fundamental theorem of calculus. Substituting (16) into (34),
we obtain

E(a1, . . . , ar) =

r∑
i=0

(12 (e
ai+1 − eai) (ai+1 + ai) + ai+1e

ai − aie
ai+1 − eai+1 + eai)

=

r∑
i=0

(
1
2 (ai+1e

ai+1 − aie
ai + ai+1e

ai − aie
ai+1)− eai+1 + eai

)
(35)

which sums up to

E(a1, . . . , ar) =
1
2 (ar+1e

ar+1 − a0e
a0) + 1

2

r∑
i=0

(ai+1e
ai − aie

ai+1)− ear+1 + ea0

= 1
2

r∑
i=1

(ai+1 − ai−1) e
ai +

(
a1 − a0

2
+ 1

)
ea0

+

(
ar+1 − ar

2
− 1

)
ear+1 . (36)

We set the partial derivatives equal to zero:

∂E

∂ai
= 1

2 (ai+1 − ai−1) e
ai − 1

2 (e
ai+1 − eai−1) = 0 for i ∈ {1, . . . , r} , (37)

Cross-Entropy Loss of Approximated Deep Neural Networks 13

which provides the necessary conditions (18) for (a1, . . . , ar) ∈ Rr to be a mini-
mizer of E(a1, . . . , ar). We apply the second partial derivative test to show that
the conditions (18) are also sufficient. The second partial derivatives

hij =
∂E

∂ai∂aj
=


1
2 (ai+1 − ai−1) e

ai if j = i
1
2 (e

ai−1 − eai) if j = i− 1
1
2 (e

ai − eai+1) if j = i+ 1
0 otherwise

for i, j ∈ {1, . . . , r} , (38)

form the entries of the r × r Hessian matrix HE = (hij). Denote by H this
Hessian HE at a1, . . . , ar satisfying (18) which means the diagonal entries of H
in (38) read

hii =
1
2 (e

ai+1 − eai−1) for i ∈ {1, . . . , r} . (39)

We prove that H is positive definite. For any nonzero real vector x⊤ = (x1, . . . , xr)
∈ Rr \ {0}, we have

x⊤Hx =
1

2

r∑
i=1

(eai+1 − eai−1)x2
i −

r−1∑
i=1

(eai+1 − eai)xixi+1 (40)

according to (38) and (39). By subtracting and adding eai to eai+1 − eai−1 , the
first sum in (40) can be split into two sums as

r∑
i=1

(eai+1 − eai−1)x2
i =

r∑
i=1

(eai+1 − eai)x2
i +

r−1∑
i=0

(eai+1 − eai)x2
i+1 (41)

which being plugged into (40), gives

x⊤Hx =
1

2

r−1∑
i=1

(eai+1 − eai) (xi − xi+1)
2

+(ea1 − ea0)x2
1 + (ear+1 − ear)x2

r > 0 . (42)

Hence, the conditions (18) determine a local minimum of E(a1, . . . , ar).
In addition, observe that (a1, . . . , ar) satisfying the conditions (18), would

represent the unique global minimum of E(a1, . . . , ar). Given a0 and a1, these
conditions determine uniquely element by element the subsequent sequence
a2, . . . , ar, ar+1 which ends with the given fixed point ar+1. This is because,
geometrically, ai+1 is the x-coordinate of the intersection eai+1 = miai+1 + bi
of the exponential function and the line drawn from the point (ai−1, eai−1) with
slope mi = eai for each i ∈ {1, . . . , r}, according to (18). Thus, for different
values of a1 we could not achieve the same ar+1.

This global minimum can be approximated using the following fixed-point
iteration, which also proves its existence. We can start with any ordered distinct
points a

(0)
1 , . . . , a

(0)
r in the open interval (a0, ar+1), for example, equally spaced

a
(0)
i = a0 +

ar+1 − a0
r + 1

i for i ∈ {1, . . . , r} , (43)

14 J. Šíma and P. Vidnerová

and continue

a
(t+1)
i =

 ln

(
e
a
(t)
i+1−ea

(t)
i−1

a
(t)
i+1−a

(t)
i−1

)
if t = kr + i

a
(t)
i otherwise

for i ∈ {1, . . . , r} , k ≥ 0 (44)

where a
(t)
0 = a0 and a

(t)
r+1 = ar+1 for all t ≥ 0, according to (18). It follows from

(44) and (36) that

∆t+1 = E
(
a
(t+1)
1 , . . . , a(t+1)

r

)
− E

(
a
(t)
1 , . . . , a(t)r

)
= 1

2

(
a
(t)
i+1 − a

(t)
i−1

)(
ea

(t+1)
i − ea

(t)
i

)
− 1

2

(
ea

(t)
i+1 − ea

(t)
i−1

)(
a
(t+1)
i − a

(t)
i

)
(45)

for any t = kr + i ≥ 0 such that i ∈ {1, . . . , r} and k ≥ 0. Clearly, ∆t+1 = 0 if
a
(t+1)
i = a

(t)
i .

For a
(t+1)
i ̸= a

(t)
i , we show that ∆t+1 < 0 which is equivalent to

ea
(t+1)
i − ea

(t)
i

a
(t+1)
i − a

(t)
i

{
< ea

(t+1)
i if a(t+1)

i > a
(t)
i

> ea
(t+1)
i if a(t+1)

i < a
(t)
i

(46)

due to (45) and (44). Consider the case when a
(t+1)
i > a

(t)
i , whereas the argument

for a
(t+1)
i < a

(t)
i is analogous. By the mean value theorem for the exponential

function on the closed interval
[
a
(t)
i , a

(t+1)
i

]
, there is a ∈

(
a
(t)
i , a

(t+1)
i

)
such that

ea =
ea

(t+1)
i − ea

(t)
i

a
(t+1)
i − a

(t)
i

(47)

which implies (46) because ea < ea
(t+1)
i , completing the proof of ∆t+1 < 0 for

a
(t+1)
i ̸= a

(t)
i . Since E(a1, . . . , ar) is a bounded function, this ensures that the

fixed-point iteration (44) converges to its global minimum ai = limt→∞ a
(t)
i for

i ∈ {1, . . . , r}, which satisfies (18).

References

1. Ansari, M.S., et al.: Improving the accuracy and hardware efficiency of neural
networks using approximate multipliers. IEEE Trans. Very Large Scale Integr.
VLSI Syst. 28, 317–328 (2020)

2. Armeniakos, G., et al.: Hardware approximate techniques for deep neural network
accelerators: A survey. ACM Comput. Surv. 55, 83 (2023)

3. Chen, Y., et al.: Eyeriss: An energy-efficient reconfigurable accelerator for deep
convolutional neural networks. IEEE J. Solid-State Circuits 52, 127–138 (2017)

4. Deng, L., et al.: Model compression and hardware acceleration for neural networks:
A comprehensive survey. Proc. IEEE 108, 485–532 (2020)

5. Deng, L.: The MNIST database of handwritten digit images for machine learning
research. IEEE Signal Process Mag. 29, 141–142 (2012)

Cross-Entropy Loss of Approximated Deep Neural Networks 15

6. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
work with pruning, trained quantization and Huffman coding. In: Proc. ICLR 2016
(2016)

7. Horowitz, M.: 1.1 Computing’s energy problem (and what we can do about it). In:
Proc. ISSCC 2014. pp. 10–14 (2014)

8. Huangfu, Q., Hall, J.A.J.: Parallelizing the dual revised simplex method. Math.
Program. Comput. 10, 119–142 (2018)

9. Jouppi, N.P., et al.: A domain-specific architecture for deep neural networks. Com-
mun. ACM 61, 50–59 (2018)

10. Kim, Y., et al.: Compression of deep convolutional neural networks for fast and
low power mobile applications. In: Proc. ICLR 2016 (2016)

11. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR (Canadian Institute for Advanced
Research), http://www.cs.toronto.edu/ kriz/cifar.html

12. Lee, E.H., et al.: LogNet: Energy-efficient neural networks using logarithmic com-
putation. In: Proc. ICASSP 2017. pp. 5900–5904 (2017)

13. Li, Z., Li, H., Meng, L.: Model compression for deep neural networks: A survey.
Computers 12, 60 (2023)

14. Lyu, Z., et al.: A survey of model compression strategies for object detection.
Multimedia Tools Appl. 83, 48165–48236 (2024)

15. Mittal, S.: A survey of techniques for approximate computing. ACM Comput. Surv.
48, 62 (2016)

16. Mittal, S.: A survey of FPGA-based accelerators for convolutional neural networks.
Neural Comput. Appl. 32, 1109–1139 (2020)

17. Mittal, S., et al.: A survey of SRAM-based in-memory computing techniques and
applications. J. Syst. Archit. 119, 102276 (2021)

18. Moons, B., Verhelst, M.: An energy-efficient precision-scalable ConvNet processor
in 40-nm CMOS. IEEE J. Solid-State Circuits 52, 903–914 (2017)

19. Paszke, A., et al.: PyTorch: An imperative style, high-performance deep learning
library. CoRR, arXiv:1912.01703 [cs.LG] (2019)

20. Silvano, C., et al.: A survey on deep learning hardware accelerators for heteroge-
neous HPC platforms. CoRR, arXiv:2306.15552 [cs.AR] (2023)

21. Šíma, J., Cabessa, J., Vidnerová, P.: On energy complexity of fully-connected lay-
ers. Neural Netw. 178, 106419 (2024)

22. Šíma, J., Vidnerová, P.: Weight-rounding error in deep neural networks (to appear
at ECML PKDD 2025), https://www.cs.cas.cz/sima/rnderr.pdf

23. Šíma, J., Vidnerová, P., Mrázek, V.: Energy complexity of convolutional neural
networks. Neural Comput. 36, 1601–1625 (2024)

24. Sze, V., et al.: Efficient Processing of Deep Neural Networks. Synthesis Lectures
on Computer Architecture, Morgan & Claypool Publishers (2020)

25. Tang, Y., et al.: A survey on transformer compression. CoRR, arXiv:2402.05964
[cs.LG] (2024)

26. Vidnerová, P.: Source code for experiments, https://github.com/PetraVidnerova/
ClassificationRoundingErrors

27. Virtanen, P., et al.: SciPy 1.0: Fundamental algorithms for scientific computing in
Python. Nat. Methods 17, 261–272 (2020)

28. Wang, P., Cheng, J.: Fixed-point factorized networks. In: Proc. CVPR 2017. pp.
3966–3974 (2017)

29. Yang, T., Chen, Y., Sze, V.: Designing energy-efficient convolutional neural net-
works using energy-aware pruning. In: Proc. CVPR 2017. pp. 6071–6079 (2017)

30. Zhou, G., Zhou, J., Lin, H.: Research on NVIDIA deep learning accelerator. In:
Proc. ASID 2018. pp. 192–195 (2018)

