
Three Analog Neurons Are Turing Universal

Jǐŕı Š́ıma?

Institute of Computer Science, Czech Academy of Sciences,
P. O. Box 5, 18207 Prague 8, Czech Republic, sima@cs.cas.cz

Abstract. The languages accepted online by binary-state neural net-
works with rational weights have been shown to be context-sensitive
when an extra analog neuron is added (1ANNs). In this paper, we pro-
vide an upper bound on the number of additional analog units to achieve
Turing universality. We prove that any Turing machine can be simulated
by a binary-state neural network extended with three analog neurons
(3ANNs) having rational weights, with a linear-time overhead. Thus,
the languages accepted offline by 3ANNs with rational weights are re-
cursively enumerable, which refines the classification of neural networks
within the Chomsky hierarchy.

Keywords: neural computing · Turing machine · Chomsky hierarchy

1 Introduction

The computational power of (recurrent) neural networks with the saturated-
linear activation function1 depends on the descriptive complexity of their weight
parameters [12, 19]. Neural nets with integer weights, corresponding to binary-
state networks, coincide with finite automata [1, 3, 4, 8, 16, 21]. Rational weights
make the analog-state networks computationally equivalent to Turing machi-
nes [4, 14], and thus (by a real-time simulation [14]) polynomial-time computa-
tions of such networks are characterized by the complexity class P. Moreover,
neural nets with arbitrary real weights can even derive “super-Turing” com-
putational capabilities [12]. In particular, their polynomial-time computations
correspond to the nonuniform complexity class P/poly while any input/output
mapping (including undecidable problems) can be computed within exponential
time [13]. In addition, a proper hierarchy of nonuniform complexity classes be-
tween P and P/poly has been established for polynomial-time computations of
neural nets with increasing Kolmogorov complexity of real weights [2].

As can be seen, our understanding of the computational power of super-
recursive (super-Turing) neural networks is satisfactorily fine-grained when chan-
ging from rational to arbitrary real weights. In contrast, there is still a gap be-
tween integer and rational weights which results in a jump from regular to recur-
sively enumerable languages in the Chomsky hierarchy. In the effort of refining

? Research was done with institutional support RVO: 67985807 and partially sup-
ported by the grant of the Czech Science Foundation No. P202/12/G061.

1 The results are valid for more general classes of activation functions [6, 11, 15, 22]
including the logistic function [5].



2 J. Š́ıma

the analysis of subrecursive neural nets we have introduced a model of binary-
state networks extended with one extra analog-state neuron (1ANNs) [17], as al-
ready a few additional analog units allow for Turing universality [4, 14]. Although
this model of 1ANNs has been inspired by theoretical issues, neural networks
with different types of units/layers are widely used in practical applications, e.g.
in deep learning [10] which also demands for the analysis.

In our previous work, we have characterized syntactically the class of lan-
guages accepted online by the 1ANNs [18] in terms of so-called cut languages [20].
The online input/output protocol means that a (potentially infinite) input word
x is sequentially read symbol after symbol, each being processed with a constant-
time overhead, while a neural network simultaneously signals via its output neu-
ron whether the prefix of x that has been read so far, belongs to the underlying
language [3, 21]. By using this characterization we have shown that the languages
recognized online by the 1ANNs with rational weights are context-sensitive, and
we have presented explicit examples of such languages that are not context-free.
In addition, we have formulated a sufficient condition when a 1ANN accepts only
a regular language in terms of quasi-periodicity of its real weight parameters.
For example, 1ANNs with weights from the smallest field extension Q(β) over
rational numbers including a Pisot number β = 1/w (e.g. β ∈ Z is an integer or

the plastic constant β =
(

3
√

9−
√

69 +
3
√

9 +
√

69
)
/ 3
√

18 ≈ 1.324718) where w

is the self-loop weight of the analog unit, have only a power of finite automata.
These results refine the classification of subrecursive neural networks with the
weights between integer and rational weights, within the Chomsky hierarchy.

A natural question arises concerning an upper bound on the number of extra
analog units with rational weights that are sufficient for simulating a Turing
machine. In this paper, we prove that any language accepted by a Turing machine
in time T (n) can be accepted offline by a binary-state neural network with three
extra analog units (3ANNs) having rational weights in time O(T (n)). The offline
input/output protocol assumes that an input word x of length n is read by a
neural network at the beginning of a computation, either sequentially symbol
after symbol in time O(n), or x is already encoded in an initial state of an analog
unit. The neural network then carries out its computation until it possibly halts
and decides whether x belongs to the underlying language, which is indicated by
its output neurons [14]. Thus, for rational weights, the languages accepted online
by 1ANNs or offline by 3ANNs are context-sensitive or recursively enumerable,
respectively, while the classification of offline 1ANNs or even 2ANNs (with two
analog units) within the Chomsky hierarchy remains open for further research.

The proof exploits the classical technique of implementing two stacks of a
pushdown automaton by two analog units, which is a model equivalent to Turing
machine, including the encoding of stack contents based on a Cantor-like set [14].
In order to minimize the number of analog neurons, the first stack allows only
for the push operation while the second one realizes the top and pop operations.
To compensate for these restrictions, the third analog unit is introduced which
is used to swap the contents of these two stacks by adding and subtracting their
codes appropriately.



Three Analog Neurons Are Turing Universal 3

The paper is organized as follows. In Section 2, we introduce a formal model
of binary-state neural networks with three extra analog units. Section 3 shows
a simulation of Turing machine by a 3ANN with rational weights. We present
some open problems in Section 4.

2 Neural Networks with Three Analog Units

In this section, we specify a formal computational model of binary-state neural
networks with three extra analog units (shortly, 3ANN),N , which will be used for
simulating a Turing machine. The network N consists of s ≥ 3 units (neurons),
indexed as V = {1, . . . , s}. All the units in N are assumed to be binary-state
(shortly binary) neurons except for the first three neurons 1, 2, 3 ∈ V which are
analog-state (shortly analog) units. The neurons are connected into a directed
graph representing an architecture of N , in which each edge (i, j) ∈ V 2 leading
from unit i to j is labeled with a real weight w(i, j) ∈ R. The absence of a
connection within the architecture corresponds to a zero weight between the
respective neurons, and vice versa. The computational dynamics ofN determines

for each unit j ∈ V its state (output) y
(t)
j at discrete time instants t = 0, 1, 2, . . ..

The outputs y
(t)
1 , y

(t)
2 , y

(t)
3 from analog units 1, 2, 3 ∈ V are real numbers from

the unit interval I = [0, 1], whereas the states y
(t)
j of the remaining s−3 neurons

j ∈ V \ {1, 2, 3} are binary values from {0, 1}. This establishes the network

state y(t) =
(
y
(t)
1 , y

(t)
2 , y

(t)
3 , y

(t)
4 , . . . , y

(t)
s

)
∈ I3 × {0, 1}s−3 at each discrete time

instant t ≥ 0.
Without loss of efficiency [9], we assume a synchronous fully parallel mode

for notational simplicity. At the beginning of a computation, the neural network
N is placed in an initial state y(0) ∈ I3 × {0, 1}s−3 which may also include an
external input. At discrete time instant t ≥ 0, an excitation of any neuron j ∈ V
is defined as ξ

(t)
j =

∑s
i=0 w(i, j)y

(t)
i , including a real bias value w(0, j) ∈ R

which can be viewed as the weight from a formal constant unit input y
(t)
0 = 1

for every t ≥ 0 (i.e. 0 ∈ V ). At the next instant t + 1, all the neurons j ∈ V
compute their new outputs y

(t+1)
j in parallel by applying an activation function

σj : R −→ I to ξ
(t)
j , y

(t+1)
j = σj

(
ξ
(t)
j

)
. The analog units j ∈ {1, 2, 3} employ

the saturated-linear function σj(ξ) = σ(ξ) where

σ(ξ) =

1 for ξ ≥ 1
ξ for 0 < ξ < 1
0 for ξ ≤ 0 ,

(1)

while for neurons j ∈ V \ {1, 2, 3} with binary states yj ∈ {0, 1}, the Heaviside
activation function σj(ξ) = H(ξ) is used where

H(ξ) =

{
1 for ξ ≥ 0
0 for ξ < 0 .

(2)



4 J. Š́ıma

In this way, the new network state y(t+1) ∈ I3 × {0, 1}s−3 at time t + 1 is
determined.

The computational power of neural networks has been studied analogously
to the traditional models of computations so that the networks are exploited as
acceptors of formal languages L ⊆ Σ∗ [19]. For simplicity, we assume the binary
alphabet Σ = {0, 1} and we use the following offline input/output protocol [14].
For a finite networkN , an input word (string) x = x1 . . . xn ∈ {0, 1}n of arbitrary
length n ≥ 0 can be encoded by the initial state of the analog input unit inp ∈
{1, 2, 3}, using the encoding γ′ : {0, 1}∗ −→ I, that is,

y
(0)
inp = γ′(x1 . . . xn) . (3)

We assume that the encoding γ′ could be evaluated by N in linear time O(n) if
x is read online and stored, bit after bit, in the state of inp. After N carries its
computation deciding about the input word whether it belongs to L within the
computational time of T (n) updates, N halts and produces the result, which is
indicated by the two neurons halt, out ∈ V as

y
(t)
halt =

{
1 if t = T (n)
0 if t 6= T (n)

y
(T (n))
out =

{
1 if x ∈ L
0 if x /∈ L . (4)

Note that the computation of N over x may not terminate. We say that a lan-
guage L ⊆ {0, 1}∗ is accepted by 3ANN N , which is denoted by L = L(N ) if for
any input word x ∈ {0, 1}∗, x ∈ L iff N halts and accepts x.

3 Simulating a Turing Machine

The following theorem shows how to simulate a Turing machine by a 3ANN with
rational weights and a linear-time overhead.

Theorem 1. Given a Turing machine M that accepts a language L = L(M)
in time T (n), there is a 3ANN N with rational weights, which accepts the same
language L = L(N ) in time O(T (n)).

Proof. Without loss of generality, we assume that a given Turing machine M
satisfies the following technical conditions. Its tape is arbitrarily extendable to
the left and to the right, and the tape alphabet is {0, 1} which is sufficient for
encoding the blank symbol uniquely (e.g. each symbol is encoded by two bits)
so that there is the infinite string 0ω to the left and to the right of the tape. At
startup, M begins with an input word x = x1 . . . xn ∈ {0, 1}n written on the
tape so that x1 is under the tape head.

We will construct a 3ANN N with the set of neurons V , simulating the
Turing machine M by using two stacks s1 and s2. One stack holds the contents
of the tape to the left of the head of M while the other stack stores the right
part of the tape. We assume that the first stack s1 implements only the push(b)
operation adding a given element b to the top of s1, whereas the second stack



Three Analog Neurons Are Turing Universal 5

s2 allows only for the top and pop operation which reads and removes the top
element of s2, respectively. In addition, the top element of s2 models a symbol
currently under the head ofM. In order to compensate for these restriction, we
introduce the swap operation which exchanges the contents of s1 and s2, while
the control unit remembers in its current state which part of the tape contents
ccur ∈ {L,R}, either to the left of the head for ccur = L or to the right for
ccur = R, is stored in the second stack s2.

We show how to implement one instruction of M by using the two stacks
s1 and s2 and their operations push(b), top, pop, and swap. The transition
function δ of M specifies for its current state qcur and for a symbol x under the
head, its new state qnew, a symbol b to overwrite x, and a direction d ∈ {L,R}
for the tape head to move, which is either to the left for d = L or to the right
for d = R, that is, δ(qcur, x) = (qnew, b, d). The transition from qcur to qnew is
realized by the control unit, while the tape update takes place in the stacks, for
which we distinguish two cases, a so-called short and long instruction.

The short instruction applies when d = ccur. In this case, the two operations

push(b); pop (5)

implement the corresponding update of the tape contents so that x under the
head of M is overwritten by b, the head moves to a new symbol which is next
in the desired direction d and appears at the top of s2, while cnew = ccur is
preserved. For the long instruction when d 6= ccur, the following sequence of five
operations

push(top); pop; swap; push(b); pop (6)

is employed where the first two operations push(top); pop shift the current sym-
bol x = top under the head of M from the top of s2 to the top of s1. Then the
swap operation exchanges the contents of s1 and s2 so that x is back at the top
of s2. Now, cnew = d 6= ccur, which ensures the conversion to the previous case,
and hence, the last two operations of (6) coincide with the short instruction (5).

The stacks s1 and s2 are implemented by analog neurons of N having the
same name, s1, s2 ∈ V . The contents a = a1 . . . ap ∈ {0, 1}∗ of stack sk for
k ∈ {1, 2}, where a1 is the top element of sk, is represented by the analog state
of neuron sk, using the encoding γ : {0, 1}∗ −→ I,

ysk = γ (a1 . . . ap) =

p∑
i=1

26 (ai + 1)− 1

(27)
i+1

∈
[
0 , 1

27

)
⊂ I . (7)

Note that the empty string ε is encoded by zero. All the possible analog state
values generated by the encoding (7) create a Cantor-like set so that two strings
with distinct top symbols are represented by two sufficiently separated num-
bers [14]. In particular, for a 6= ε, we have

a1 =


0 if γ (a1 . . . ap) ∈

[
26−1
214 , 1

28

)
1 if γ (a1 . . . ap) ∈

[
27−1
214 , 1

27

)
,

(8)



6 J. Š́ıma

which can be used for reading the top element from the stack s2 (which models
a current tape symbol under the head of M) by a binary neuron employing the
Heaviside activation function (2):

top = 1 iff − 1 + 28ys2 ≥ 0 . (9)

Furthermore, the push(b) and pop operation can be implemented by the ana-
log neuron s1 and s2, respectively, employing the linear part of the activation
function (1), as

push(b) : ynews1 = ξcurs1 =
26 (b+ 1)− 1

214
+

1

27
· ycurs1

=
26 − 1

214
+

1

28
· b+

1

27
· ycurs1 ∈

[
0 , 1

27

)
(10)

pop : ynews2 = ξcurs2 =
1− 26(top + 1)

27
+ 27 · ycurs2

=
1− 26

27
− 1

2
· top + 27 · ycurs2 ∈

[
0 , 1

27

)
(11)

according to (7), where ynewsk
and ycursk

(ξcursk
) for k ∈ {1, 2}, denotes the analog

state (excitation) of neuron sk, encoding the new and current contents of stack
sk, respectively.

According to [3], one can construct a binary-state (size-optimal) neural net-
work N ′ with integer weights that implements the finite control of Turing ma-
chineM (i.e. a finite automaton). In particular, N ′ is a subnetwork of the 3ANN
N with binary neurons in V ′ ⊂ V , which evaluates the transition function δ of
M within four time steps by using the method of threshold circuit synthesis [7]
(cf. [16]). Moreover, one can ensure that N ′ operates in the fully parallel mode
by using the technique of [9]. Thus, N ′ holds internally a current state qcur of
M and receives a current symbol x ∈ {0, 1} under the tape head ofM (which is
stored at the top of stack s2) via the neuron hd ∈ V ′ implementing the top op-
eration. Then, N ′ computes δ (qcur, x) = (qnew, b, d) within four computational
steps, replaces the current state qcur with qnew, and outputs a symbol b ∈ {0, 1}
to overwrite x, via the neuron ow ∈ V ′. In addition, N ′ holds a current value
of ccur ∈ {L,R} which together with the calculated direction of head move
d ∈ {L,R}, decides if a short or long instruction applies, depending on whether
or not ccur = d.

At the beginning of a computation, N ′ holds the initial state of M and
the stacks s1, s2 contain the initial tape contents including an input word x =
x1 . . . xn ∈ {0, 1}n which is encoded by the input neuron inp = s2 according

to (3) and (7). Thus, y
(0)
s1 = γ (0ω) =

∑∞
i=1

26−1
(27)i+1 = 26−1

27(27−1) = 63
16256 ∈

[
0 , 1

27

)
and y

(0)
s2 = γ′ (x) = γ (x0ω) =

∑n
i=1

26(xi+1)−1
(27)i+1 + 26−1

2n+1(27−1) ∈
[
0 , 1

27

)
, which N

could evaluate in linear time O(n) by using (10).
One computational step ofM is simulated within one macrostep of N which

takes 7 computational steps for a short instruction, while a long one consumes
18 steps of N . Hereafter, the computational time t of N is related to the



Three Analog Neurons Are Turing Universal 7

macrostep. At the beginning of the macrostep when t = 0, the states of analog

neurons s1, s2 encode the stack contents according to (7), that is, y
(0)
sk = zk ∈[

0, 1
27

)
for k ∈ {1, 2}. Then, N ′ reads the top element of s2 via the neuron

hd ∈ V ′ at time instant t = 1 of the macrostep, which is implemented by the
integer weights

w(0,hd) = −1 , w(s2,hd) = 28 , (12)

implying y
(1)
hd = top by (9). On the other hand, N ′ outputs a symbol b ∈ {0, 1}

to overwrite the current tape cell under the head via the neuron ow ∈ V ′ either

at time instant t = 6 for a short instruction (i.e. y
(6)
ow = b), or at time instant

t = 17 for a long one (i.e. y
(17)
ow = b), whereas the state of ow ∈ V ′ is 0 at other

times, thus producing the sequence 05b 0 or 016b 0, respectively.
We further extend N ′ with the four control neurons c1, c2, c3, c4 ∈ V ′ for

synchronizing the stack operations. Within each macrostep of N , the control
neurons c1, c2, c3, c4 produce the four sequences of binary output values, either
1111111, 1111011, 1111111, 0000010 of length 7 for a short instruction, or 140113,
115012, 160111, 05101010 of length 18 for a long instruction, respectively, which
can easily be implemented by a finite automaton and incorporated within N ′.

For realizing the stack operations, the binary neurons pop1,pop2,bias ∈ V
and the third auxiliary analog unit s3 ∈ V are introduced in N . In Table 1,
the incoming rational weights to the neurons in V \ V ′ are defined in the form
of weight matrix with the entry w(i, j) ∈ Q in the ith row and jth column,
where the analog neurons are separated from the binary ones by the double
lines. For example, the weight of the connection from the control neuron c1 ∈ V ′
and from the analog neurons s2 to pop1 ∈ V \ V ′ is w(c1,pop1) = −23 and
w(s2,pop1) = 23, respectively, whereas the bias of pop1 is w(0,pop1) = −1.

We will verify the implementation of the long instruction including the short
one, within one macrostep of N which is composed of 18 network state updates.
The state evolution of neurons during the macrostep is presented in Table 2
which also shows the short instruction when the block bounded by the horizontal
double lines corresponding to the time interval from t = 6 to t = 16 within the
long instruction, is skipped. Moreover, alternatives for the short instruction are
presented after the slash symbol, e.g. t = 17/6 means the seventeenth/sixth
computational step of the long/short instruction within the macrostep.

Observe that for every t = 1, . . . , 18 and k ∈ {1, 2},

y(t)popk
= 0 if (k = 1 & t 6= 6) or (k = 2 & t 6= 17) (13)

since

ξ(t−1)popk
= w(0,popk) + w(ck,popk)y(t−1)ck

+ w(s2,popk)y(t−1)s2

= −1− 23y(t−1)ck
+ 23y(t−1)s2 , (14)

by Table 1, reducing to ξ
(t−1)
popk

= −1 − 23 + 23y
(t−1)
s2 < 0 for y

(t−1)
ck = 1 which

holds for (k = 1 & t 6= 6) or (k = 2 & t 6= 17). Similarly, we have

y
(t)
bias = 1 iff y(t−1)c3 = 0 iff t = 8 for every t = 1, . . . , 18 , (15)



8 J. Š́ıma

Table 1. The weight matrix with w(i, j) in the ith row and jth column for j ∈ V \ V ′

pop1 pop2 bias s1 s2 s3

0 −1 −1 0 0 0 1
4

ow 0 0 0 1
28

0 0

c1 −23 0 0 0 0 0

c2 0 −23 0 0 0 0

c3 0 0 -1 0 0 -5

c4 0 0 0 26−1
214

1−26

27
0

pop1 0 0 0 1
28

− 1
2

0

pop2 0 0 0 0 − 1
2

0

bias 0 0 0 − 1
4

1
4

0

s1 0 0 0 1
2

0 − 1
4

s2 23 23 0 0 2 4

s3 0 0 0 1 -1 0

because ξ
(t−1)
bias = w(c3,bias)y

(t−1)
c3 = −y(t−1)c3 ≥ 0 iff y

(t−1)
c3 = 0 . Furthermore,

y(t)s3 = 0 if t 6= 8 for every t = 1, . . . , 18 , (16)

since ξ
(t−1)
s3 = w(0, s3) + w(c3, s3)y

(t−1)
c3 + w(s1, s3)y

(t−1)
s1 + w(s2, s3)y

(t−1)
s2 =

1
4 − 5y

(t−1)
c3 − 1

4y
(t−1)
s1 + 4y

(t−1)
s2 which implies ξ

(t−1)
s3 < 0 for y

(t−1)
c3 = 1 holding

for t 6= 8.

For a given symbol under the head of M held in y
(1)
hd at time instant t = 1

according to (12), the binary-state subnetwork N ′ evaluates the transition func-
tion δ of M during four computational steps for t = 2, 3, 4, 5, deciding whether

a long or short instruction occurs, which is indicated through the state y
(5)
c1 of

control neuron c1 at time instant t = 5, that is, y
(5)
c1 = 0 iff a long instruction

applies. In the meantime, the state of analog unit sk for k ∈ {1, 2}, starting with

y
(0)
sk = zk ∈

[
0, 1

27

)
, is multiplied by its self-loop weight w(sk, sk) at each time

instant t = 1, . . . , 6, producing

y(t)sk
= w(sk, sk)tzk =


z1
2t ∈

[
0, 1

2t+7

)
if k = 1

2tz2 ∈
[
0, 1

27−t

)
if k = 2

for t = 0, . . . , 6 , (17)

since y
(t)
ow = y

(t)
c4 = y

(t)
pop1

= y
(t)
pop2

= y
(t)
bias = y

(t)
s3 = 0 for every t = 0, . . . , 5 due to

(13), (15), and (16).

For a long instruction, we have y
(5)
c1 = 0 which implies

ξ(5)pop1
= −1− 23y(5)c1 + 23y(5)s2 = −1 + 28z2 (18)



Three Analog Neurons Are Turing Universal 9

Table 2. The macrostep of 3ANN N simulating one long/short instruction of TM M

t y
(t)

hd y
(t)
ow y

(t)
c1 y

(t)
c2 y

(t)
c3 y

(t)
c4 y

(t)
pop1

y
(t)
pop2

y
(t)

bias y
(t)
s1 y

(t)
s2 y

(t)
s3

0 0 1 1 1 0 0 0 0 z1 z2 0

1 top 0 1 1 1 0 0 0 0 z1
2

2z2 0

2 0 1 1 1 0 0 0 0 z1
22

22z2 0

3 0 1 1 1 0 0 0 0 z1
23

23z2 0

4 0 1 1 1 0 0 0 0 z1
24

24z2 0

5 0 0/1 1/0 1 0 0 0 0 z1
25

25z2 0

6 0 1 1 1 1 top 0 0 z1
26

26z2 0

7 0 1 1 0 0 0 0 0 z′1 (19) z′2 (20) 0

8 0 1 1 1 0 0 0 1
z′1
2

2z′2
1
4
− z′1

4
+ 4z′2

9 0 1 1 1 0 0 0 0 4z′2
z′1
4

0

10 0 1 1 1 0 0 0 0 2z′2
z′1
2

0

11 0 1 1 1 0 0 0 0 z′2 z′1 0

12 0 1 1 1 0 0 0 0
z′2
2

2z′1 0

13 0 1 1 1 0 0 0 0
z′2
22

22z′1 0

14 0 1 1 1 0 0 0 0
z′2
23

23z′1 0

15 0 1 1 1 0 0 0 0
z′2
24

24z′1 0

16 0 1 0 1 0 0 0 0
z′2
25

25z′1 0

17/6 b 1 1 1 1 0 top 0
z′2
26

/
z1
26

26z′1
/

26z2 0

18/7≡ 0 0 1 1 1 0 0 0 0 z′′1 (29) z′′2 (30) 0

according to (14) and (17). Hence, y
(6)
pop1

= top by (9), which gives

y(7)s1 = w(ow, s1)y(6)ow + w(c4, s1)y(6)c4 + w(pop1, s1)y(6)pop1

+w(bias1, s1)y
(6)
bias + w(s1, s1)y(6)s1 + w(s3, s1)y(6)s3

=
26 − 1

214
+

1

28
· top +

z1
27

= z′1 ∈
[
0 , 1

27

)
(19)

by Table 1, since y
(6)
ow = y

(6)
bias = y

(6)
s3 = 0, y

(6)
c4 = 1, and y

(6)
s1 = z1

26 due to (15),
(16), and (17). It follows from (10) and (19) that z′1 encodes the contents of
the stack s1 after the first operation push(top) of long instruction (6) has been
applied to γ−1(z1). Similarly,

y(7)s2 = w(c4, s2)y(6)c4 + w(pop1, s2)y(6)pop1
+ w(pop2, s2)y(6)pop2

+ w(s2, s2)y(6)s2

=
1− 26

27
− 1

2
· top + 27z2 = z′2 ∈

[
0 , 1

27

)
(20)



10 J. Š́ıma

due to y
(6)
pop2

= 0 and y
(6)
s2 = 26z2 by (13) and (17), respectively. According to

(11) and (20), we thus know that z′2 encodes the contents of the stack s2 after
the second operation pop of long instruction (6) has been applied to γ−1(z2).

The swap operation starts at time instant t = 8 when

y(8)s1 = w(s1, s1)y(7)s1 =
z′1
2
∈
[
0 , 1

28

)
(21)

y(8)s2 = w(s2, s2)y(7)s2 = 2z′2 ∈
[
0 , 1

26

)
(22)

y(8)s3 = w(0, s3) + w(s1, s3)y(7)s1 + w(s2, s3)y(7)s2

=
1

4
− z′1

4
+ 4z′2 ∈

[
27−1
29 , 2

3+1
25

)
(23)

according to (19), (20), and Table 1, since y
(7)
ow = y

(7)
c3 = y

(7)
c4 = y

(7)
pop1

= y
(7)
pop2

=

y
(7)
bias = 0 due to (13) and (15). At time instant t = 9, we have

y(9)s1 = w(bias, s1)y
(8)
bias + w(s1, s1)y(8)s1 + w(s3, s1)y(8)s3

= −1

4
+
z′1
4

+
1

4
− z′1

4
+ 4z′2 = 4z′2 ∈

[
0 , 1

25

)
(24)

y(9)s2 = w(bias, s2)y
(8)
bias + w(s2, s2)y(8)s2 + w(s3, s2)y(8)s3

=
1

4
+ 4z′2 −

1

4
+
z′1
4
− 4z′2 =

z′1
4
∈
[
0 , 1

29

)
(25)

by (21)–(23) and Table 1, since y
(8)
ow = y

(8)
c4 = y

(8)
pop1

= y
(8)
pop2

= 0 and y
(8)
bias = 1

due to (13) and (15). This means that the respective multiples of z′1 and z′2 are
exchanged between s1 and s2, cf. (21), (22) and (24), (25), respectively. Similarly

to (17), the state of analog unit sk for k ∈ {1, 2}, starting with y
(9)
sk in (24) and

(25), respectively, is further multiplied by its self-loop weight w(sk, sk) at each
time instant t = 10, . . . , 17, producing

y(t)sk
= w(sk, sk)tzk =


z′2

2t−11 ∈
[
0, 1

2t−4

)
if k = 1

2t−11z′1 ∈
[
0, 1

218−t

)
if k = 2

for t = 9, . . . , 17 , (26)

since y
(t)
ow = y

(t)
c4 = y

(t)
pop1

= y
(t)
pop2

= y
(t)
bias = y

(t)
s3 = 0 for every t = 9, . . . , 16 due to

(13), (15), and (16). Thus, the swap operation is finished at time instant t = 11

when y
(11)
s1 = z′2 and y

(11)
s2 = z′1.

Analogously to (18), y
(16)
c2 = 0 ensures

ξ(16)pop2
= −1− 23y(16)c2 + 23y(16)s2 = −1 + 28z′1 (27)

according to (14) and (26), which implies

y(17)pop2
= top (28)



Three Analog Neurons Are Turing Universal 11

by (9). At time instant t = 18, (19) reads as

y(18)s1 = w(ow, s1)y(17)ow + w(c4, s1)y(17)c4 + w(s1, s1)y(17)s1

=
26 − 1

214
+

1

28
· b+

z′2
27

= z′′1 ∈
[
0 , 1

27

)
, (29)

since y
(17)
pop1

= y
(17)
bias = y

(17)
s3 = 0, y

(17)
ow = b, y

(17)
c4 = 1, and y

(17)
s1 =

z′2
26 due to (13),

(15), (16), and (26). It follows from (10) and (29) that z′′1 encodes the contents of
the stack s1 after the fourth operation push(b) of long instruction (6) has been
applied to γ−1(z′2). Similarly to (20),

y(18)s2 = w(c4, s2)y(17)c4 + w(pop2, s2)y(17)pop2
+ w(s2, s2)y(17)s2

=
1− 26

27
− 1

2
· top + 27z′1 = z′′2 ∈

[
0 , 1

27

)
(30)

by (26) and (28). According to (11) and (30), we thus know that z′′2 encodes the
contents of the stack s2 after the fifth operation pop of (6) has been applied to
γ−1(z′1), which completes the macrostep of N for a long instruction. For a short

instruction when y
(5)
c1 = 1, y

(5)
c2 = 0, y

(5)
s1 = z1

25 and y
(5)
s2 = 25z2, which coincides

with a long instruction at time instant t = 16, the push(b) and pop operations
of (5) are implemented analogously.

Finally, if M reaches its final state at the computational time T (n) and ac-
cepts the input word x, then this is indicated by the two neurons halt, out ∈ V ′
of subnetwork N ′ during the macrostep T (n) according to (4). Hence, N sim-
ulates M in time O(T (n)) because each macrostep takes only constant number
of network’s updates, which completes the proof of the theorem. ut

4 Conclusion

In this paper, we have achieved an upper bound on the number of extra analog
units that are sufficient to make binary-state neural networks Turing univer-
sal. We have proven that three additional analog neurons with rational weights
suffices for simulating a Turing machine with a linear-time overhead, which com-
plements the lower bound that neural networks with one extra analog unit and
rational weights accept online context-sensitive languages. It is an open ques-
tion whether the upper bound can be improved, that is, if only one or two extra
rational-weight analog units suffice for simulating any Turing machine.

Another challenge for further research is to generalize the characterization of
languages [18] that are accepted offline to 2ANNs employing two (or even more)
extra analog units. Nevertheless, the ultimate goal is to prove a proper “natu-
ral” hierarchy of neural networks between integer and rational weights similarly
as it is known between rational and real weights [2] and possibly, map it to
known hierarchies of regular/context-free languages. This problem is related to
a more general issue of finding suitable complexity measures of subrecursive neu-
ral networks establishing the complexity hierarchies, which could be employed
in practical neurocomputing, e.g. the precision of weight parameters, energy
complexity [16], temporal coding etc.



12 J. Š́ıma

References

1. Alon, N., Dewdney, A.K., Ott, T.J.: Efficient simulation of finite automata by
neural nets. Journal of the ACM 38(2), 495–514 (1991)

2. Balcázar, J.L., Gavaldà, R., Siegelmann, H.T.: Computational power of neural net-
works: A characterization in terms of Kolmogorov complexity. IEEE Transactions
on Information Theory 43(4), 1175–1183 (1997)

3. Horne, B.G., Hush, D.R.: Bounds on the complexity of recurrent neural network
implementations of finite state machines. Neural Networks 9(2), 243–252 (1996)

4. Indyk, P.: Optimal simulation of automata by neural nets. In: Proceedings of the
STACS 1995 Twelfth Annual Symposium on Theoretical Aspects of Computer
Science. LNCS, vol. 900, pp. 337–348 (1995)

5. Kilian, J., Siegelmann, H.T.: The dynamic universality of sigmoidal neural net-
works. Information and Computation 128(1), 48–56 (1996)

6. Koiran, P.: A family of universal recurrent networks. Theoretical Computer Science
168(2), 473–480 (1996)

7. Lupanov, O.B.: On the synthesis of threshold circuits. Problemy Kibernetiki 26,
109–140 (1973)

8. Minsky, M.: Computations: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs (1967)

9. Orponen, P.: Computing with truly asynchronous threshold logic networks. Theo-
retical Computer Science 174(1-2), 123–136 (1997)

10. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Networks
61, 85–117 (2015)

11. Siegelmann, H.T.: Recurrent neural networks and finite automata. Journal of Com-
putational Intelligence 12(4), 567–574 (1996)

12. Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing
Limit. Birkhäuser, Boston (1999)

13. Siegelmann, H.T., Sontag, E.D.: Analog computation via neural networks. Theo-
retical Computer Science 131(2), 331–360 (1994)

14. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. Jour-
nal of Computer System Science 50(1), 132–150 (1995)

15. Š́ıma, J.: Analog stable simulation of discrete neural networks. Neural Network
World 7(6), 679–686 (1997)

16. Š́ıma, J.: Energy complexity of recurrent neural networks. Neural Computation
26(5), 953–973 (2014)

17. Š́ıma, J.: The power of extra analog neuron. In: Proceedings of the TPNC 2014
Third International Conference on Theory and Practice of Natural Computing.
LNCS, vol. 8890, pp. 243–254 (2014)

18. Š́ıma, J.: Neural networks between integer and rational weights. In: Proceedings of
the IJCNN 2017 Thirties International Joint Conference on Neural Networks. pp.
154–161. IEEE (2017)

19. Š́ıma, J., Orponen, P.: General-purpose computation with neural networks: A sur-
vey of complexity theoretic results. Neural Computation 15(12), 2727–2778 (2003)

20. Š́ıma, J., Savický, P.: Quasi-periodic β-expansions and cut languages. Theoretical
Computer Science 720, 1–23 (2018)

21. Š́ıma, J., Wiedermann, J.: Theory of neuromata. Journal of the ACM 45(1), 155–
178 (1998)

22. Šorel, M., Š́ıma, J.: Robust RBF finite automata. Neurocomputing 62, 93–110
(2004)


