
Stronger Separation of Analog Neuron Hierarchy by

Deterministic Context-Free Languages

Jǐŕı Š́ımaa

aInstitute of Computer Science of the Czech Academy of Sciences,
P. O. Box 5, 18207 Prague 8, Czech Republic,

Abstract

The computational power of discrete-time recurrent neural networks (NNs)
with the saturated-linear activation function depends on the descriptive com-
plexity of their weight parameters encoding the NN program. In order to
study the power of increasing analogicity in NNs between integer (finite au-
tomata) and arbitrary rational weights (Turing machines), we have estab-
lished the analog neuron hierarchy 0ANNs ⊂ 1ANNs ⊂ 2ANNs ⊆ 3ANNs
where αANN is a binary-state NN that is extended with α ≥ 0 extra analog-
state neurons with rational weights. In our previous work, we have compared
it to the traditional Chomsky hierarchy and separated its first two levels. The
separation 1ANNs $ 2ANNs has been witnessed by the non-regular deter-
ministic context-free language (DCFL) L# = {0n1n |n ≥ 1} which cannot be
recognized by any 1ANN even with real weights, while any DCFL is accepted
by a 2ANN with rational weights. In this paper, we strengthen this separa-
tion by showing that any non-regular DCFL (DFCL′) cannot be recognized
by 1ANNs with real weights, which means DCFL′s ⊂ (2ANNs \ 1ANNs),
implying 1ANNs ∩ DCFLs = 0ANNs. For this purpose, we show that any
1ANN that would recognize a DFCL′ can be augmented to a larger 1ANN
that would recognize L#, which does not exists.

Keywords: recurrent neural network, analog neuron hierarchy,
deterministic context-free language, Chomsky hierarchy

Email address: sima@cs.cas.cz (Jǐŕı Š́ıma)

Preprint submitted to Neurocomputing January 11, 2022

1. Analog Neuron Hierarchy

In our previous work [1], we have established a neural network (NN)
version of the traditional Chomsky hierarchy which is the so-called ana-
log neuron hierarchy (ANH) 0ANNs ⊂ 1ANNs ⊂ 2ANNs ⊆ 3ANNs where
αANN is a recurrent binary-state NN that is extended with α ≥ 0 extra
analog-state neurons with rational weights. This hierarchy fills the gap be-
tween binary-state NNs with integer weights (0ANNs), implementing finite
automata (FA) [2, 3, 4, 5, 6, 7], and analog-state NNs with arbitrary rational
weights which can simulate Turing machines (TMs) [4, 8] by using only three
analog units (3ANNs) [1].

This study has primarily been motivated by theoretical issues of how the
computational power of NNs [9] increases with enlarging analogicity when we
change step by step from binary to analog states, or equivalently, from integer
to arbitrary rational weights. In particular, the weights are mainly assumed
to be just fixed fractions with a finite representation (i.e. a quotient of two
integer constants) avoiding real numbers with infinite precision1. Hence,
the states of added α analog units can thus be only rationals although the
number of digits in the representation of analog values may increase (linearly)
along a computation. Nevertheless, by bounding the precision of analog
states, we would reduce the computational power of NNs to that of finite
automata which could be implemented by binary states. This would not
allow the study of analogicity phenomena such as the transition from integer
to rational weights in NNs whose functionality (program) is after all encoded
in numerical weights.

There is nothing suspicious about the fact that the precision of analog
states in αANNs is not limited by a fixed constant in advance. The same
is true in conventional abstract models of computation such as pushdown
automata or Turing machines with unlimited (potentially infinite) size of
stack or tape, respectively, whose limitation would lead to the collapse of
Chomsky hierarchy to finite automata. Thus, the proposed abstract model
of αANNs itself has been intended for measuring the expressive power of
a binary-state NN to which analog neurons are added one by one, rather
than for solving special-purpose practical tasks or biological modeling. These
theoretical motivations are further discussed in detail within the context of

1Nevertheless, we formulate the present lower-bound results for arbitrary real weights
which hold all the more so for rationals.

2

relevant literature in [1].
Nevertheless, as a secondary use, our theoretical analysis may poten-

tially be relevant to practical hybrid NNs that combine binary and analog
neurons in deep networks employing the LSTM, GRU or ReLU units [10],
which have recently been studied [11, 12, 13]. Moreover, various models
of memory-augmented recurrent NNs [14, 15, 16, 17] have been explored for
their empirical as well as theoretical capability to learn context-free languages
(CFLs) which require some stack-based mechanism. Modeling CFLs in re-
current NNs is of great interest for natural language processing [18], machine
translation, and speech recognition, because natural languages exhibit the
hierarchical structure including long-distance dependencies, counting, repe-
tition etc. Since the analog-state neurons in αANNs can naturally be viewed
as a stack memory augmented to binary-state NNs [1], the placement of CFLs
in the ANH appears to be an important issue which is completely answered
for the deterministic CFLs (DCFLs) in this paper.

In order to compare the ANH to the classical Chomsky hierarchy, we
have characterized syntactically the class 1ANNs in terms of so-called cut
languages [19], which has been exploited for deriving a sufficient condition
when a 1ANN accepts only a regular language (REG). This condition defines
the subclass QP-1ANNs = 0ANNs of so-called quasi-periodic 1ANNs whose
parameters, depending on weights, are quasi-periodic in a numeral system
with non-integer radix [20]. For example, this class includes the 1ANNs with
the self-loop weight w of the only analog neuron such as w = 1/n for some
integer n > 1, or w = 1/ϕ where ϕ = (1 +

√
5)/2 is the golden ratio. In

addition, we have proven that any language accepted by 1ANNs online2, is
context-sensitive (CSL), which implies 1ANNs ⊂ CSLs. On the other hand,
there are examples of languages accepted by 1ANNs such as

L1 =

{
x1 . . . xn ∈ {0, 1}∗

∣∣∣∣∣
n∑
k=1

xn−k+1

(
27
8

)−k
< 1

4

}
(1)

that are not context-free [19], which provides the separation 0ANNs $ 1ANNs.
Furthermore, we have proven that the (non-regular) deterministic context-

2In online input/output protocols, the time between reading two consecutive input
symbols as well as the delay in outputting the result after an input has been read, is
bounded by a constant, while in offline protocols these time intervals are not bounded.

3

Figure 1: The analog neuron hierarchy

free language
L# = {0n1n |n ≥ 1} , (2)

which contains the words of n zeros followed by n ones, cannot be recog-
nized even offline2 by any 1ANN with arbitrary real weights. Nevertheless,
any DCFL can be recognized by a 2ANN by simulating a corresponding de-
terministic pushdown automaton (DPDA) [1]. This provides the separation
1ANNs $ 2ANNs. In addition, we have shown that any TM accepting a
recursively enumerable language (RE) can be simulated by a 3ANN with a
linear-time overhead [1], which proves the collapse of ANH at its third level.
It appears that the ANH which is schematically depicted in Figure 1, is only
partially comparable to that of Chomsky.

In this paper, we further study the relation between the ANH and the
Chomsky hierarchy. We show that any non-regular DCFL (DCFL′) cannot
be recognized online by 1ANNs with real weights, which provides the stronger
separation

DCFL′s = (DCFLs \ REG) ⊂ (2ANNs \ 1ANNs) ,

implying REG = 0ANNs = QP-1ANNs = 1ANNs ∩ DCFLs. Thus, the
class of DCFL′s is contained in 2ANNs, having the empty intersection with
1ANNs, as depicted in Figure 1.

In order to prove this stronger lower bound on the computational power
of 1ANNs, we have shown in another paper [21] that the language L# defined
in (2) is in some sense the simplest DCFL′ (a so-called DCFL′-simple prob-
lem), by reducing L# to any language in DCFL′s. Namely, given any DCFL′

L, we can recognize the language L# by a Mealy machine (a deterministic
finite-state transducer) that is allowed to call a subroutine for deciding L
(oracle) on its output extended with a few suffixes of constant length. In

4

computability theory, this is a truth-table (a special case of Turing) reduc-
tion by a Mealy machine with oracle L. In this paper, we prove that such
a reduction can be implemented by an online 1ANN. Thus, if the DCFL′ L
were accepted by an online 1ANN, then we could recognize L# by a 1ANN,
which is a contradiction, implying that L cannot be accepted by any online
1ANN even with real weights.

The definition of DCFL′-simple problems which any DCFL′ language
must include, that have been introduced in [21], appears to be an inter-
esting achievement in formal language theory. A DCFL′-simple problem can
be reduced to all the DCFL′ problems by the truth-table reduction using
oracle Mealy machines, which is somewhat methodologically opposite to the
usual hardness results in computational complexity theory where all prob-
lems in a class are reduced to its hardest problem such as in NP-completeness
proofs. The concept of DCFL′-simple problems has been motivated by our
analysis of the computational power of 1ANNs and this paper represents its
first non-trivial application to proving the lower bounds. Our result can thus
open a new direction of research in computability theory aiming towards the
existence of the simplest problems in traditional complexity classes which
could provide new proof techniques of extending a lower-bound result known
for one problem to the whole class of problems.

The paper is organized as follows. In Section 2, we introduce basic defi-
nitions of a language acceptor based on 1ANNs. In Section 3, we prove two
technical lemmas concerning the properties of 1ANNs which are used in Sec-
tion 4 for the reduction of L# to any DCFL′ by a 1ANN, implying that one
extra analog neuron even with real weights is not sufficient for recognizing
any DCFL′ online. Finally, we summarize the results and list some open
problems in Section 5.

A preliminary version of this paper [22] contains only a sketch of the proof
exploiting the representation of DCFLs by so-called deterministic monotonic
restarting automata [23], while the complete argument for L# to be the
DCFL′-simple problem has eventually been achieved by using DPDAs [21].

2. Neural Language Acceptors with One Analog Unit

We specify the computational model of a discrete-time binary-state recur-
rent neural network with one extra analog unit (shortly, 1ANN), N , which
will be used as a formal language acceptor. The network N consists of s ≥ 1
units (neurons), indexed as V = {1, . . . , s}. All the units in N are assumed

5

to be binary-state (shortly binary) neurons (i.e. perceptrons, threshold gates)
except for the last sth neuron which is an analog-state (shortly analog) unit.
The neurons are connected into a directed graph representing an architecture
of N , in which each edge (i, j) ∈ V 2 leading from unit i to j is labeled with
a real weight wji ∈ R. The absence of a connection within the architecture
corresponds to a zero weight between the respective neurons, and vice versa.

The computational dynamics ofN determines for each unit j ∈ V its state
(output) y

(t)
j at discrete time instants t = 0, 1, 2, The states y

(t)
j of the

first s−1 binary neurons j ∈ Ṽ = V \{s} are Boolean values 0 or 1, whereas

the output y
(t)
s from the analog unit s is a real number from the unit interval

I = [0, 1]. This establishes the network state y(t) =
(
y
(t)
1 , . . . , y

(t)
s−1, y

(t)
s

)
∈

{0, 1}s−1 × I at each discrete time instant t ≥ 0.
For notational simplicity, we assume the synchronous fully parallel mode

without loss of efficiency [24]. At the beginning of a computation, the
1ANN N is placed in a predefined initial state y(0) ∈ {0, 1}s−1 × I. At
discrete time instant t ≥ 0, an excitation of any neuron j ∈ V is defined as

ξ
(t)
j =

s∑
i=0

wjiy
(t)
i , (3)

including a real bias value wj0 ∈ R which, as usually, can be viewed as the

weight from a formal constant unit input y
(t)
0 ≡ 1 for every t ≥ 0. At the

next instant t+ 1, all the neurons j ∈ V compute their new outputs y
(t+1)
j in

parallel by applying an activation function σj : R −→ I to ξ
(t)
j , that is,

y
(t+1)
j = σj

(
ξ
(t)
j

)
for every j ∈ V . (4)

For the neurons j ∈ Ṽ with binary states yj ∈ {0, 1}, the Heaviside activation
function σj(ξ) = H(ξ) is used where

H(ξ) =

{
1 for ξ ≥ 0
0 for ξ < 0 ,

(5)

while the analog unit s ∈ V with real output ys ∈ I employs the saturated-
linear function σs(ξ) = σ(ξ) where

σ(ξ) =


1 for ξ ≥ 1
ξ for 0 < ξ < 1
0 for ξ ≤ 0 ,

(6)

6

In this way, the new network state y(t+1) ∈ {0, 1}s−1 × I is determined at
time t+ 1.

The computational power of NNs has been studied analogously to the
traditional models of computations [9] so that the network is exploited as an
acceptor of formal language L ⊆ Σ∗ over a finite alphabet Σ = {λ1, . . . λq}
composed of q letters (symbols). For the finite 1ANN N , we use the following
online input/output protocol employing its special binary neurons X ⊂ Ṽ
and nxt, out ∈ Ṽ . An input word (string) x = x1 . . . xn ∈ Σn of arbitrary
length n ≥ 0, is sequentially presented to the network, symbol after symbol,
via the first q < s so-called input neurons X = {1, . . . , q} ⊂ Ṽ , at the time
instants 0 < τ1 < τ2 < · · · < τn after queried by N . The neuron nxt ∈ Ṽ is
used by N to prompt a user to enter the next input symbol. Thus, once the
prefix x1, . . . , xk−1 of x for 1 ≤ k ≤ n, has been read, the next input symbol
xk ∈ Σ is presented to N at the time instant τk that is one computational
step after N activates the neuron nxt ∈ Ṽ . This means that N signals

y
(t−1)
nxt =

{
1 if t = τk
0 otherwise

for k = 1, . . . , n . (7)

We employ the popular one-hot encoding of alphabet Σ where each letter
λi ∈ Σ is represented by one input neuron i ∈ X which is activated when
the symbol λi is being read while, at the same time, the remaining input
neurons j ∈ X \ {i} do not fire. Namely, the states of input neurons i ∈ X,
which represent a current input symbol xk ∈ Σ at the time instant τk, are
thus externally set as

y
(t)
i =

{
1 if xk = λi and t = τk
0 otherwise

for i ∈ X and k = 1, . . . , n . (8)

At the same time, N carries out its computation deciding about each
prefix of the input word x whether it belongs to L, which is indicated by the
output neuron out ∈ Ṽ when the next input symbol is presented which is
one step after the neuron nxt is active according to (7):

y
(τk+1)
out =

{
1 if x1 . . . xk ∈ L
0 if x1 . . . xk /∈ L

for k = 0, . . . , n , (9)

where τn+1 > τn is the time instant when the input word x is decided (e.g.
formally define xn+1 to be any symbol from Σ to ensure the consistency with

7

the input protocol (8) for k = n + 1). For instance, y
(τ1)
out = 1 iff the empty

word ε belongs to L. We assume the online protocol where τk+1 − τk ≤ δ for
every k = 0, . . . , n (formally τ0 = 0), is bounded by some integer constant
δ > 0, which ensures N halts on every input word x ∈ Σ∗. We say that
a language L ⊆ Σ∗ is accepted (recognized) by 1ANN N , which is denoted as
L = L(N), if for any input word x ∈ Σ∗, N accepts x iff x ∈ L.

3. Technical Properties of 1ANNs

In this section, we will prove two lemmas about technical properties of
1ANNs that will be used in Section 4 for implementing the reduction of L# to
any DCFL′ by a 1ANN. Namely, Lemma 1 shows that for any time constant
T > 0, the state domain I of the only analog unit of a 1ANN N can be
partitioned into finitely many subintervals so that the binary states during
T consecutive computational steps by N are invariant to any initial analog
state within each subinterval of this partition. Thus, one can extrapolate any
computation by N for the next T computational steps only on the basis of
information to which subinterval the initial analog state belongs. Lemma 2
then shows that such an extrapolation can be evaluated by a binary neural
network, which ensures that the class of 1ANNs is in fact closed under the
(right) quotient with a word.3

Lemma 1 Let N be a 1ANN of size s neurons, which can be exploited as
an acceptor of languages over an alphabet Σ for different initial states of N .
Then for every integer T > 0, there exists a partition I1 ∪ I2 ∪ · · · ∪ Ip = I
of the unit interval I = [0, 1] into p = O

(
s2sT

)
intervals such that for

any input word u ∈ Σ∗ of length n = |u| that meets τn+1 ≤ T accord-
ing to the input/output protocol (7)–(9) for N , the binary states ỹ(t) =(
y
(t)
1 , . . . , y

(t)
s−1

)
= ỹ′(t) ∈ {0, 1}s−1 at any time instant t ∈ {0, 1, . . . , τn+1}

coincide for any two initial states y(0),y′(0) ∈ {0, 1}s−1 × I with the same

binary values ỹ(0) = ỹ′(0) ∈ {0, 1}s−1 and with analog values y
(0)
s , y

′(0)
s ∈ Ir

from the same interval Ir for some index r ∈ {1, . . . , p}.

Proof. Let T > 0 be an integer, y(0) ∈ {0, 1}s−1 × I be an initial state of
N , and u ∈ Σ∗ of length n = |u| be an input word that meets τn+1 ≤ T

3The (right) quotient of language L with a word u is the language L/u = {x | x·u ∈ L}.

8

according to the input/output protocol (7)–(9) for N . Assume that

0 < ξ(t−1)s < 1 for every t = 1, . . . , τ − 1 (10)

for some τ such that 0 ≤ τ < τn+1, which implies y
(t)
s = ξ

(t−1)
s for every

t = 1, . . . , τ − 1, according to (4) and (6), and hence, for τ > 0,

ξ(τ−1)s =
s−1∑
i=0

wsiy
(τ−1)
i + wssy

(τ−1)
s

=
s−1∑
i=0

wsiy
(τ−1)
i + wss

(
s−1∑
i=0

wsiy
(τ−2)
i + wssy

(τ−2)
s

)

. . . =
τ−1∑
t=0

(
s−1∑
i=0

wsiy
(t)
i

)
wτ−t−1ss + wτssy

(0)
s . (11)

Note that formula (11) reduces to

ξ(τ−1)s =
s−1∑
i=0

wsiy
(τ−1)
i , (12)

when wss = 0.
First assume 0 < ξ

(τ−1)
s < 1 when τ > 0, which implies

y(τ)s = ξ(τ−1)s =
τ−1∑
t=0

(
s−1∑
i=0

wsiy
(t)
i

)
wτ−t−1ss + wτssy

(0)
s (13)

according to (4), (6), and (11). For any binary neuron j ∈ Ṽ , we have

y
(τ+1)
j = 1 iff ξ

(τ)
j =

s−1∑
i=0

wjiy
(τ)
i + wjsy

(τ)
s ≥ 0 (14)

according to (4) and (5). By plugging (13) into (14), we obtain

y
(τ+1)
j = 1 iff

s−1∑
i=0

wjiy
(τ)
i +wjs

τ−1∑
t=0

(
s−1∑
i=0

wsiy
(t)
i

)
wτ−t−1ss +wjsw

τ
ssy

(0)
s ≥ 0 ,

(15)

9

which can be rewritten for wss 6= 0 and wjs 6= 0 as

y
(τ+1)
j = 1 iff

τ−1∑
t=0

(
−

s−1∑
i=0

wsi
wss

y
(t)
i

)
w−tss −

s−1∑
i=0

wji
wjs

y
(τ)
i w−τss

{
≥ y

(0)
s if wjsw

τ
ss < 0

≤ y
(0)
s if wjsw

τ
ss > 0 .

(16)

For wss = 0 and τ > 0, condition (15) reduces to

y
(τ+1)
j = 1 iff

s−1∑
i=0

wjiy
(τ)
i + wjs

(
s−1∑
i=0

wsiy
(τ−1)
i

)
≥ 0 (17)

which means the state y
(τ+1)
j depends in fact only on the binary states ỹ(τ)

and ỹ(τ−1) where ỹ(t) =
(
y
(t)
1 , . . . , y

(t)
s−1

)
∈ {0, 1}s−1. Similarly, for wjs = 0,

we have

y
(τ+1)
j = 1 iff

s−1∑
i=0

wjiy
(τ)
i ≥ 0 (18)

when the state y
(τ+1)
j depends only on the binary states ỹ(τ).

For the case when either ξ
(τ−1)
s ≤ 0 or ξ

(τ−1)
s ≥ 1 for wss 6= 0 and τ > 0,

we have

y(τ)s = 0 iff
τ−1∑
t=0

(
−

s−1∑
i=0

wsi
wss

y
(t)
i

)
w−tss

{
≥ y

(0)
s if wτss > 0

≤ y
(0)
s if wτss < 0

(19)

y(τ)s = 1 iff
1

wτss
+

τ−1∑
t=0

(
−

s−1∑
i=0

wsi
wss

y
(t)
i

)
w−tss

{
≥ y

(0)
s if wτss < 0

≤ y
(0)
s if wτss > 0 ,

(20)

respectively, according to (4), (6), and (11).
Altogether, for any ` ∈ V such that w`s 6= 0, and ỹ = (y1, . . . , ys−1) ∈

{0, 1}s−1, we denote

ζ` (ỹ) = −
s−1∑
i=0

w`i
w`s

yi , (21)

and

z` (ỹ0, ỹ1, . . . , ỹm) =
m−1∑
t=0

ζs (ỹt)w
−t
ss + ζ` (ỹm)w−τss , (22)

10

for any ỹ0, ỹ1, . . . , ỹm ∈ {0, 1}s−1 where m ≥ 0, which reduces conditions
(16) and (19), (20) with wss 6= 0 to

y
(τ+1)
j = 1 iff zj

(
ỹ(0), ỹ(1), . . . , ỹ(τ)

){ ≥ y
(0)
s if wjsw

τ
ss < 0

≤ y
(0)
s if wjsw

τ
ss > 0

(23)

for j ∈ Ṽ such that wjs 6= 0, and

y(τ)s = 0 iff zs
(
ỹ(0), ỹ(1), . . . , ỹ(τ−1)){ ≥ y

(0)
s if wτss > 0

≤ y
(0)
s if wτss < 0

(24)

y(τ)s = 1 iff
1

wτss
+ zs

(
ỹ(0), ỹ(1), . . . , ỹ(τ−1)){ ≥ y

(0)
s if wτss < 0

≤ y
(0)
s if wτss > 0 ,

(25)

for τ > 0, respectively.
We define the set

Z =
(
Z ′ ∩ (I× {−1, 1})

)
∪
{

(0,−1), (0, 1), (1,−1), (1, 1)
}

=
{

(a1, b1), (a2, b2), . . . , (ap+1, bp+1)
}
⊂ I× {−1, 1} (26)

where

Z ′ =

(zj (ỹ0, . . . , ỹτ) ,−sgn (wjsw
τ
ss)
) ∣∣∣∣∣∣

j ∈ Ṽ s.t. wjs 6= 0
ỹ0 . . . , ỹτ ∈ {0, 1}s−1

0 ≤ τ < T


⋃ {(

zs (ỹ0, . . . , ỹτ−1) , sgn (wτss)
) ∣∣∣∣ ỹ0 . . . , ỹτ−1 ∈ {0, 1}s−1

0 < τ < T

}
(27)

⋃ {(
1

wss
+ zs (ỹ0, . . . , ỹτ−1) ,−sgn (wτss)

) ∣∣∣∣ ỹ0 . . . , ỹτ−1 ∈ {0, 1}s−1
0 < τ < T

}
and sgn : R → {−1, 0, 1} is the signum function. The set Z includes the
p + 1 pairs (ar, br) ∈ I × {−1, 1} for r = 1, . . . , p + 1, which encode all the
possible closed half-lines with the finite endpoints ar ∈ I = [0, 1], either
[ar,+∞) if br = −1, or (−∞, ar] if br = 1, that may occur in conditions

(23)–(25) determining the binary outputs y
(τ+1)
j , y

(τ)
s ∈ {0, 1} for the analog

state y
(0)
s ∈ I. Clearly, the number |Z| = p + 1 of these half-lines can be

bounded as

p+ 1 ≤ (s− 1)
(

2s−1 +
(
2s−1

)2
+ · · ·+

(
2s−1

)T)
+2
((

2s−1
)2

+ · · ·+
(
2s−1

)T−1)
+ 4 = O

(
s2sT

)
. (28)

11

We also assume that the elements of Z are lexicographically sorted as

(a1, b1) < (a2, b2) < · · · < (ap+1, bp+1) (29)

which is used in the definition of the partition of the unit interval I = [0, 1] =
I1 ∪ I2 ∪ . . . ∪ Ip into p intervals:

Ir =


[ar, ar+1) if br = −1 & br+1 = −1
[ar, ar+1] if br = −1 & br+1 = 1
(ar, ar+1) if br = 1 & br+1 = −1
(ar, ar+1] if br = 1 & br+1 = 1

for r = 1, . . . , p . (30)

Note that if ar = ar+1 for some r ∈ {1, . . . , p}, then we know −1 =
br < br+1 = 1 due to Z is lexicographically sorted, which produces the
degenerate interval Ir = [ar, ar]. Thus, I1 = [0, 0] and Ip = [1, 1] because
(0,−1), (0, 1), (1,−1), (1, 1) ∈ Z according to (26).

We will show that for any initial binary states ỹ(0) ∈ {0, 1}s−1, the binary

output y
(τ)
j ∈ {0, 1} from any neuron j ∈ Ṽ after the next τ computational

steps of N where 0 ≤ τ ≤ τn+1 ≤ T , is the same for all initial analog

values y
(0)
s within the whole interval Ir, which means ỹ(τ) depends only on

ỹ(0) and r ∈ {1, . . . , p} such that y
(0)
s ∈ Ir. We proceed by induction on

τ = 0, . . . , τn+1 satisfying (10). The base case is trivial since ỹ(0) does not

depend on y
(0)
s at all. Thus assume in the induction step that the statement

holds for ỹ(0), ỹ(1), . . . , ỹ(τ) that meet (10), where 0 ≤ τ < τn+1.

Consider first the case when either τ = 0 or 0 < ξ
(τ−1)
s < 1 for τ > 0

which ensures (13) and extends the validity of condition (10) for τ replaced
by τ + 1 in the next inductive step. Further assume wss 6= 0 and let j ∈ Ṽ
be any binary neuron. For wjs = 0, the state y

(τ+1)
j is clearly determined

only by ỹ(τ) according to (18). For wjs 6= 0, the binary state y
(τ+1)
j ∈ {0, 1}

depends on whether the initial analog output y
(0)
s ∈ I lies on the corre-

sponding half-line from Z with the endpoint zj(ỹ
(0), ỹ(1), . . . , ỹ(τ)), according

to (23), which holds within the whole interval Ir 3 y(0)s , since the endpoints
zj (ỹ0, ỹ1, . . . , ỹτ) of all the possible half-lines in condition (23) for 0 ≤ τ < T ,
are taken into account in the definition (26), (27) determining the partition
(30) of the analog state domain I. Thus, ỹ(τ+1) depends only on ỹ(τ) and Ir
containing y

(0)
s , and hence, only on ỹ(0) and r ∈ {1, . . . , p} such that y

(0)
s ∈ Ir,

by induction hypothesis. For wss = 0, we know that ỹ(τ+1) depends only on
ỹ(τ) and ỹ(τ−1) according to (17), which proves the assertion for τ > 0 by

12

induction hypothesis, while for τ = 0 the argument is the same as for wss 6= 0
since condition (23) makes still sense for τ = 0. This completes the induction

step for τ = 0 or 0 < ξ
(τ−1)
s < 1 for τ > 0.

In the case when either ξ
(τ−1)
s ≤ 0 or ξ

(τ−1)
s ≥ 1 for τ > 0, we know

the analog output y
(τ)
s ∈ {0, 1} is, in fact, binary, satisfying (24) or (25)

when wss 6= 0, respectively, which means y
(0)
s ∈ I lies on the corresponding

half-line from Z with the endpoint zs(ỹ
(0), ỹ(1), . . . , ỹ(τ−1)). This holds within

the whole interval Ir 3 y(0)s , since the endpoints zs (ỹ0, ỹ1, . . . , ỹτ−1) of all the
possible half-lines in conditions (24) and (25) for 0 < τ < T , are taken into ac-
count in the definition (26), (27) determining the partition (30). For wss = 0,

the state y
(τ)
s ∈ {0, 1} depends only on ỹ(τ−1) according to (12). Thus, ỹ(τ+1)

is determined by the binary state y(τ) ∈ {0, 1}s that is guaranteed for the

whole interval Ir containing y
(0)
s , and hence, ỹ(τ+1) depends only on ỹ(0) and

r ∈ {1, . . . , p} such that y
(0)
s ∈ Ir, by induction hypothesis. In addition, the

same holds for the subsequent binary states ỹ(τ+2), ỹ(τ+3), . . . , ỹ(τn+1) which
are also determined by the binary state y(τ) ∈ {0, 1}s at the time instant τ ,
which completes the proof of Lemma 1. �

Lemma 2 Let N be a 1ANN which recognizes the language L = L(N) ⊆ Σ∗

over an alphabet Σ by using the online input/output protocol (7)–(9) sat-
isfying τk+1 − τk ≤ δ for every k ≥ 0 and some integer constant δ > 0.
Let u1,u2 ∈ Σ+ be two nonempty strings which define the (right) quotients
L1 = L/u1 and L2 = L/(u2 ·u1) of L with u1 and u2 ·u1, respectively, where
L/u = {x ∈ Σ∗ | x · u ∈ L}. Then there exists a 1ANN N ′ that accepts
L(N ′) = L2 \ L1 respectively L(N ′) = L1 \ L2, with the delay of 3 computa-

tional steps, that is, the output protocol (9) is modified for N ′ as y
(τk+1+3)
out′ = 1

iff x1 . . . xk ∈ L(N ′), where out′ ∈ Ṽ ′ is the binary output neuron of N ′.

Proof. We will construct the 1ANN N ′ such that L(N ′) = L2 \L1 respec-
tively L(N ′) = L1 \ L2 for the delayed output protocol, which contains N
with s neurons as its subnetwork including the analog unit s ∈ V shared
by N ′, that is, V ⊂ V ′ = Ṽ ′ ∪ {s} for the corresponding sets of (binary)
neurons. The architecture of N ′ is schematically depicted in Figure 2. Let
I1∪I2∪· · ·∪Ip = I be the partition of the state domain I = [0, 1] of the analog
unit s ∈ V in N into p intervals according to Lemma 1 for T = δ ·(|u2u1|+1).
We encode these intervals by the p + 1 pairs (ar, br) ∈ I × {−1, 1} for
r = 1, . . . , p + 1, according to (30) where ar ∈ I is the left endpoint of

13

Figure 2: The 1ANN N ′ that, with the delay of 3 steps, accepts L(N ′) = L2 \ L1 respec-
tively L(N ′) = L1 \ L2, where L1 = L(N)/u1 and L2 = L(N)/(u2 · u1).

Ir and br = 1 if Ir is left-open, while br = −1 if Ir is left-closed, which are
lexicographically sorted according to (29).

For each pair (ar, br) where r ∈ {1, . . . , p + 1}, we introduce one binary
neuron αr ∈ Ṽ ′ in N ′ to which the analog unit s ∈ V is connected so that
y
(t0+1)
αr = 1 iff

y(t0)s

{
≥ ar for br = −1
≤ ar for br = 1

(31)

iff brar − bry
(t0)
s ≥ 0, for any time instant t0 ≥ 0. According to (3)–(5),

the bias and the corresponding weight of αr ∈ Ṽ ′ from s are thus defined
as w′αr,0 = brar and w′αr,s = −br, respectively (see Figure 2). Clearly,

14

the binary states y
(t0+1)
α =

(
y
(t0+1)
α1 , . . . , y

(t0+1)
αp+1

)
∈ {0, 1}p+1 of neurons in

α = {α1, . . . , αp+1} ⊂ Ṽ ′ at time t0 + 1 determine uniquely the index

r ∈ {1, . . . , p + 1} such that y
(t0)
s ∈ Ir. In addition, for the synchroniza-

tion purpose, we introduce the set β = {β1, . . . , βs−1} ⊂ Ṽ ′ of s − 1 bi-
nary neurons in N ′ that, at the time instant t0 + 1, copy the binary states

ỹ(t0) =
(
y
(t0)
1 , . . . , y

(t0)
s−1

)
∈ {0, 1}s−1 of N from the time instant t0, which

means y
(t0+1)
β =

(
y
(t0+1)
β1

, . . . , y
(t0+1)
βs−1

)
= ỹ(t0). This can implemented by the

biases w′βi,0 = −1 and weights w′βi,i = 1 for every i = 1, . . . , s− 1, according
to (3)–(5).

For any input word x ∈ Σ∗ of length n = |x|, let t0 ≥ 0 be a time instant
when x has been read and still not decided by N , that is, τn ≤ t0 < τn+1

according to the input protocol (7)–(8). According to Lemma 1, for the
state y(t0) ∈ {0, 1}s−1 × I that is considered as an initial state of N and for
any nonempty suffix string u ∈ Σ+ added to x such that δ(|u| + 1) ≤ T ,
which is presented to N as an input since the time instant t0, the binary

states ỹ(t0+τ) =
(
y
(t0+τ)
1 , . . . , y

(t0+τ)
s−1

)
∈ {0, 1}s−1 at any time instant t0 + τ ≥

t0 of the ongoing computation of N over u, are uniquely determined by

the binary states y
(t0+1)
β = ỹ(t0) =

(
y
(t0)
1 , . . . , y

(t0)
s−1

)
∈ {0, 1}s−1 of N and

y
(t0+1)
α ∈ {0, 1}p+1 due to y

(t0+1)
α is unique for Ir 3 y(t0)s . In particular, the

binary state y
(τn+|u|)
out ∈ {0, 1} of the output neuron out ∈ V in N after the

suffix u has been read, where t0 < τn+|u| ≤ t0 +T , is uniquely determined by

the binary states y
(t0+1)
α and y

(t0+1)
β , according to the output protocol (9).

In other words, there is a Boolean function fu : {0, 1}p+s → {0, 1}
such that fu

(
y
(t0+1)
α ,y

(t0+1)
β

)
= 1 iff x · u ∈ L(N) iff x ∈ L/u. We de-

fine the Boolean function f : {0, 1}p+s → {0, 1} as the conjunction f =
¬fu1 ∧ fu2·u1 where ¬ denotes the negation, or f = fu1 ∧ ¬fu2·u1 which

satisfies f
(
y
(t0+1)
α ,y

(t0+1)
β

)
= 1 iff x ∈ L2 \ L1 or x ∈ L1 \ L2, respec-

tively. The Boolean function f can be computed by a binary-state two-
layered neural network Nf that implements e.g. the disjunctive normal form
of f . As depicted in Figure 2, the network Nf is integrated into N ′ so
that the neurons α ∪ β ⊂ Ṽ ′ create the input layer to Nf , while the output
of Nf represents the output neuron out′ ∈ Ṽ ′ of N ′ which thus produces

y
(t0+3)
out = f

(
y
(t0+1)
α ,y

(t0+1)
β

)
. Hence, N ′ recognizes L(N ′) = L2 \ L1 re-

15

spectively L(N ′) = L1 \ L2 with the delay of 3 computational steps, which
completes the proof of Lemma 2. �

4. Separation of 1ANNs by DCFL′s

In this section, we will show the main result that any non-regular de-
terministic context-free language (DCFL′) cannot be recognized online by
a binary-state 1ANN with one extra analog unit, which gives the stronger
separation DCFL′s = (DCFLs \ REG) ⊂ (2ANNs \ 1ANNs) in the ANH,
implying 1ANNs ∩ DCFLs = 0ANNs = REG. The class DCFL′s is thus con-
tained in 2ANNs with rational weights and has the empty intersection with
1ANNs, as depicted in Figure 1. For the proof, we will exploit the following
fact that at least one DCFL′ cannot be recognized by any 1ANN, which has
been shown in our previous work:

Theorem 1 [1, Theorem 1] The non-regular deterministic context-free lan-
guage L# = {0n1n |n ≥ 1} ⊂ {0, 1}∗ over the binary alphabet cannot be
recognized by any 1ANN with one extra analog unit having real weights.

In order to generalize Theorem 1 to all DCFL′s, we have shown that L#

is in some sense the simplest DCFL′ which is contained in every DCFL′, as
is formalized in the following Theorem 2.

Theorem 2 [21, Theorem 1] Let L ⊆ Σ∗ be a non-regular deterministic
context-free language over an alphabet Σ. Then there exist nonempty words
v1,v2,v3,v4,v5 ∈ Σ+ and a language L′ ∈ {L,L} which is either L or its
complement L = Σ∗ \ L, such that for all m ≥ 0 and n > 0,(

v1v
m
2 v3v

n−1
4 v5 /∈ L′ and v1v

m
2 v3v

n
4v5 ∈ L′

)
iff m = n . (32)

This theorem is the basis for the novel concept of so-called DCFL′-simple
problems, which has been inspired by this study of ANH and represents an
interesting contribution to the formal language theory. Namely, the DCFL′-
simple problem L# can be reduced to every DCFL′ by the truth-table (Tur-
ing) reduction using oracle Mealy machines [21]. We will prove in the fol-
lowing Theorem 3 that this reduction can be implemented by 1ANNs, which
generalizes Theorem 1 to any DCFL′s providing the stronger separation of
1ANNs in the ANH.

16

We outline the main idea of the proof. Suppose for a contradiction we
have a 1ANN acceptor N for a DCFL′ L = L(N) ⊂ Σ∗. Theorem 2 pro-
vides v1,v2,v3,v4,v5 ∈ Σ+ and L′ ∈ {L,L} for this L. By Lemma 2,
there is a 1ANN N ′ that accepts L(N ′) = L2 \ L1 if L′ = L, or L(N ′) =
L1 \ L2 if L′ = L, where L1 = L/v5 and L2 = L/(v4 · v5). A Mealy ma-
chine transforming an input 0m1n to v1v

m
2 v3v

n−1
4 can be implemented by

a binary-state NN. This NN is integrated in a bigger 1ANN N# containing
N ′ as its subnetwork which implements an oracle for deciding the condition
(v1v

m
2 v3v

n−1
4 v5 /∈ L′ and v1v

m
2 v3v

n
4v5 ∈ L′). According to (32), this means

that the 1ANN N# recognizes L#, which is a contradiction to Theorem 1.

Theorem 3 Any non-regular deterministic context-free language L ⊂ Σ∗

over an alphabet Σ cannot be recognized online by any 1ANN with one extra
analog unit having real weights.

Proof. Let L ⊂ Σ∗ be a non-regular deterministic context-free language
over an alphabet Σ including q > 0 symbols. On the contrary assume that
there is a 1ANN N that accepts L = L(N). Let v1,v2,v3,v4,v5 ∈ Σ+

be the nonempty words and L′ ∈ {L,L} be the language guaranteed by
Theorem 2 for L, which satisfy condition (32). For any integer constant
c > 0, we can assume without loss of generality that the strings vi have the
length at least c, that is, |vi| ≥ c for every i = 1, . . . , 5, since otherwise we can
replace v1,v2,v3,v4,v5 by v1v

c
2,v

c
2,v

c
2v3v

c
4,v

c
4,v

c
4v5, respectively. According

to Lemma 2 for L1 = L/v5 and L2 = L/(v4 · v5), there is a 1ANN N ′ that
accepts L(N ′) = L2 \L1 if L′ = L, or L(N ′) = L1 \L2 if L′ = L, respectively,
with the delay of 3 computational steps. It follows from (32) that for every
m ≥ 0 and n > 0,

v1v
m
2 v3v

n−1
4 ∈ L(N ′) iff m = n , (33)

which will be used in the construction of a bigger 1ANN N# including N ′ as
its subnetwork, that recognizes the language L# = {0n1n |n ≥ 1} over the
binary alphabet {0, 1}. The architecture of N# is schematically depicted in
Figure 3. We denote Ṽ ′ ⊂ Ṽ# to be the corresponding sets of binary neurons
in N ′ and N#, respectively, while N# shares the only analog unit with N ′.

Namely, an input x = x1 . . . xr ∈ {0, 1}∗ to N# of the valid form 0m1n is
translated to the string v1v

m
2 v3v

n−1
4 ∈ Σ∗ and presented to its subnetwork

N ′ which decides online whether m = n according (33). The result is used
by N# for deciding whether x ∈ L#. For this purpose, N# contains a finite

17

Figure 3: The reduction of L# to a non-regular DCFL L.

buffer memory B organized as the queue of current input symbols from Σ∗,
which are presented online, one by one, to N ′ through its q input neurons
X ′ ⊂ Ṽ ′ by using the one-hot encoding of Σ, when queried by nxt′ ∈ Ṽ ′

according to the input protocol (7) and (8) for N ′.
At the beginning, B is initialized with the nonempty string v1 ∈ Σ+

and N# queries on the first input bit x1 ∈ {0, 1}, that is, y
(0)
nxt#

= 1 where

nxt# ∈ Ṽ#, according to the input protocol (7) and (8) for N#. Thus, at the
time instant τ1 = 1, N# reads the first input bit x1 through its two input
neurons X# ⊂ Ṽ# by using the one-hot encoding of {0, 1}. If x1 = 1, then
x = 1x′ /∈ L# is further rejected for any suffix x′ ∈ {0, 1}∗ by clamping the

18

state y
(t)
out#

= 0 of the output neuron out# ∈ Ṽ# in N# whereas y
(t)
nxt#

= 1,
for every t > 1. If x1 = 0, then N# writes the string v2 ∈ Σ+ to B. At
the same time, the computation of N ′ proceeds while reading its input from
the buffer B when needed which is indicated by the neuron nxt′ ∈ Ṽ ′ one
computational step beforehand. Every time before B becomes empty, N#

reads the next input bit xk ∈ {0, 1} for k > 1 and writes the string v2 ∈ Σ+

to B if xk = 0, so that N ′ can smoothly continue in its computation. This is
repeated until N# reads the input bit xm+1 = 1 for m ≥ 1, which completes
the first phase of the computation by N#. In the course of this first phase,
each prefix 0k /∈ L# of the input word x, which is being read online by N#, is

rejected by putting the state y
(τk+1)
out#

= 0 of its output neuron out# for every
k = 1, . . . ,m, according to the output protocol (9) for N#.

At the beginning of the subsequent second phase when the input bit
xm+1 = 1 has been read, N# writes the string v3v4 ∈ Σ+ to B and continues
uninterruptedly in the computation of N ′ over the input being read from
the buffer B when required. Every time before B becomes empty which will
precisely be specified below, N# reads the next input bit xm+n ∈ {0, 1} for
n > 1 and writes the string v4 ∈ Σ+ to B if xm+n = 1, so that N ′ can
smoothly carry out its computation. If xm+n = 0, then x = 0m1n−10x′ /∈ L#

is further rejected for any suffix x′ ∈ {0, 1}∗ by clamping the states y
(t)
out#

= 0

and y
(t)
nxt#

= 1 since that.
It follows that in the second phase, N ′ decides online for each n > 0

whether the input word v1v
m
2 v3v

n−1
4 ∈ Σ+ of length ` = |v1v3| + m · |v2| +

(n−1)·|v4| belongs to L(N ′), where the result is indicated through its output
neuron out′ ∈ Ṽ ′ at the time instant τ ′`+1+3 with the delay of 3 computational
steps after the next symbol subsequent to v1v

m
2 v3v

n−1
4 is read, according to

the delayed output protocol (9) for N ′. For sufficiently large length |v4| > 3,
the output neuron out′ thus signals whether v1v

m
2 v3v

n−1
4 ∈ L(N ′), while still

reading the next string v4 corresponding to the last input bit xm+n = 1 of the
current input 0m1n to N#. At the next time instant τm+n+1 = τ ′`+1 +4, when
the subsequent input bit xm+n+1 ∈ {0, 1} is presented toN#, which is queried

by N# via the state y
(τm+n+1−1)
nxt#

= 1 of the neuron nxt# one step beforehand,
the output neuron out# of N# copies the state of out′, providing the result
of the computation by N# over the input word x ∈ {0, 1}∗ according to the

output protocol (9) for N#. Namely, y
(τm+n+1)
out#

= 1 iff v1v
m
2 v3v

n−1
4 ∈ L(N ′)

iff m = n iff 0m1n ∈ L# according to (33), which ensures L(N#) = L#.
The preceding online reduction of any input 0m1n for N# to the input

19

v1v
m
2 v3v

n−1
4 for N ′ can clearly be realized by a finite automaton, including

the implementation of the finite buffer memory B. This finite automaton
can further be implemented by a binary-state neural network by using the
standard constructions [3, 4, 5, 7], which is wired to the 1ANN N ′ in order
to create the 1ANN N# recognizing the language L(N#) = L# online, as
described above. In particular, the synchronization of these two networks
is controlled by their input/output protocols, while the operation of N ′ can
suitably be slowed down for sufficiently large length of strings vi. However,
we know by Theorem 1 that there is no 1ANN that accepts L#, which is a
contradiction completing the proof of Theorem 3. �

5. Conclusion

In this paper, we have refined the analysis of the computational power of
discrete-time binary-state recurrent neural networks αANNs extended with
α analog-state neurons by proving a stronger separation 1ANNs $ 2ANNs in
the ANH depicted in Figure 1. Namely, we have shown that the class DCFL′s
is contained in 2ANNs \ 1ANNs, which implies 1ANNs ∩ DCFLs = 0ANNs
= REG. For this purpose, we have reduced the DCFL′ L# = {0n1n |n ≥ 1},
which is known to be not in 1ANNs [1], to any DCFL′.

It follows that L# is in some sense the simplest language in the class
DCFL′s. This is by itself an interesting contribution to computability the-
ory, which has inspired the novel concept of a DCFL′-simple problem that
can be reduced to any DCFL′ by the truth-table (Turing) reduction using
oracle Mealy machines [21]. The present proof of the stronger separation
1ANNs $ 2ANNs thus represents the first non-trivial application of this con-
cept. We believe that this approach can open a new direction of research
aiming towards the existence of the simplest problems in traditional com-
plexity classes as a methodological counterpart to the hardest problems in
a class (such as NP-complete problems in NP) to which all the problems in
this class are reduced. This could provide new proof techniques of extending
a lower-bound result known for one problem to the whole class of prob-
lems. We conjecture that our separation result can further be strengthen to
nondeterministic context-free languages (CFLs) by showing that L# is even
CFL′-simple, which would give 1ANNs ∩ CFL′s = 0ANNs where CFL′s =
CFLs \ REG. We note the interesting fact that L# cannot be CSL′-simple
since we know 1ANNs accept some non-regular CSLs (CSL′s) outside CFLs
such as (1).

20

Moreover, it is an open question whether there is a non-context-sensitive
language that can be accepted offline by a 1ANN, which does not apply to an
online input/output protocol since we know online 1ANNs ⊂ CSLs. Another
important challenge for future research is the separation 2ANNs $ 3ANNs
of the second level in the ANH and the relation between 2ANNs and CFLs,

e.g. the issue of whether 2ANNs ∩ CFLs
?
= DCFLs.

Acknowledgments

The presentation of this paper benefited from valuable suggestions of
anonymous reviewers. The research was done with institutional support
RVO: 67985807 and partially supported by the grant of the Czech Science
Foundation No. GA19-05704S.

References

[1] J. Š́ıma, Analog neuron hierarchy, Neural Networks 128 (2020) 199–218.

[2] N. Alon, A. K. Dewdney, T. J. Ott, Efficient simulation of finite au-
tomata by neural nets, Journal of the ACM 38 (2) (1991) 495–514.

[3] B. G. Horne, D. R. Hush, Bounds on the complexity of recurrent neural
network implementations of finite state machines, Neural Networks 9 (2)
(1996) 243–252.

[4] P. Indyk, Optimal simulation of automata by neural nets, in: Proceed-
ings of the STACS 1995 Twelfth Annual Symposium on Theoretical
Aspects of Computer Science, Vol. 900 of LNCS, LNCS, Springer, 1995,
pp. 337–348.

[5] M. Minsky, Computations: Finite and Infinite Machines, Prentice-Hall,
Englewood Cliffs, 1967.

[6] J. Š́ıma, Energy complexity of recurrent neural networks, Neural Com-
putation 26 (5) (2014) 953–973.

[7] J. Š́ıma, J. Wiedermann, Theory of neuromata, Journal of the ACM
45 (1) (1998) 155–178.

[8] H. T. Siegelmann, E. D. Sontag, On the computational power of neural
nets, Journal of Computer System Science 50 (1) (1995) 132–150.

21

[9] J. Š́ıma, P. Orponen, General-purpose computation with neural net-
works: A survey of complexity theoretic results, Neural Computation
15 (12) (2003) 2727–2778.

[10] J. Schmidhuber, Deep learning in neural networks: An overview, Neural
Networks 61 (2015) 85–117.

[11] S. A. Korsky, R. C. Berwick, On the computational power of RNNs,
arXiv:1906.06349 (2019).

[12] W. Merrill, Sequential neural networks as automata, arXiv:1906.01615
(2019).

[13] G. Weiss, Y. Goldberg, E. Yahav, On the practical computational power
of finite precision RNNs for language recognition, in: Proceedings of the
ACL 2018 Fifty-Sixth Annual Meeting of the Association for Compu-
tational Linguistics, Vol. 2, Association for Computational Linguistics,
2018, pp. 740–745.

[14] A. A. Mali, A. G. Ororbia, C. L. Giles, A neural state pushdown au-
tomata, IEEE Transactions on Artificial Intelligence 1 (3) (2020) 193–
205.

[15] J. Stogin, A. A. Mali, C. L. Giles, Provably stable interpretable en-
codings of context free grammars in RNNs with a differentiable stack,
arXiv:2006.03651 (2020).

[16] M. Suzgun, S. Gehrmann, Y. Belinkov, S. M. Shieber, Memory-
augmented recurrent neural networks can learn generalized Dyck lan-
guages, arXiv:1911.03329 (2019).

[17] X. Yu, N. T. Vu, J. Kuhn, Learning the Dyck language with attention-
based seq2seq models, in: Proceedings of the BlackboxNLP@ACL 2019
Second ACL 2019 Workshop on Analyzing and Interpreting Neural Net-
works for NLP, Association for Computational Linguistics, 2019, pp.
138–146.

[18] W. Merrill, Formal language theory meets modern NLP, arXiv:2102.
10094 (2021).

22

[19] J. Š́ıma, Subrecursive neural networks, Neural Networks 116 (2019) 208–
223.

[20] J. Š́ıma, P. Savický, Quasi-periodic β-expansions and cut languages,
Theoretical Computer Science 720 (2018) 1–23.

[21] P. Jančar, J. Š́ıma, The simplest non-regular deterministic context-free
language, in: Proceedings of the MFCS 2021 Forty-Sixth International
Symposium on Mathematical Foundations of Computer Science, Vol.
202 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021,
pp. 63:1–63:18.

[22] J. Š́ıma, M. Plátek, One analog neuron cannot recognize deterministic
context-free languages., in: Proceedings of the ICONIP 2019 Twenty-
Sixth International Conference on Neural Information Processing of the
Asia-Pacific Neural Network Society, Part III, Vol. 11955 of LNCS, 2019,
pp. 77–89.

[23] P. Jančar, F. Mráz, M. Plátek, J. Vogel, On monotonic automata with a
restart operation, Journal of Automata, Languages and Combinatorics
4 (4) (1999) 287–311.

[24] P. Orponen, Computing with truly asynchronous threshold logic net-
works, Theoretical Computer Science 174 (1-2) (1997) 123–136.

23

