Adversarial examples - vulnerability of
machine learning methods and prevention

Petra Vidnerova

Institute of Computer Science
The Czech Academy of Sciences

2018

Q

Outline

Introduction
Works on adversarial examples

Our work

@ Genetic algorithm
@ Experiments on MNIST

Ways to robustness to adversarial examples
Deep RBF networks

Introduction

@ Applying an imperceptible non-random perturbation to an
input image, it is possible to arbitrarily change the machine
learning model prediction.

+.007 x

57.7% Panda 99.3% Gibbon

Figure from Explaining and Harnessing Adversarial Examples by Goodfellow et al.

@ Such perturbed examples are known as adversarial
examples. For human eye, they seem close to the original
examples.

@ They represent a security flaw in classifier.

Introduction

@ Adversarial Examples for Semant/c Segmentat/on and
Object Detection.
2017, Cihang Xie et al.

Works on adversarial examples I.

@ Intriguing properties of neural networks.
2014,Christian Szegedy et al.

correct +distort ostrich correct +distort ostrich

@ Perturbations are found by optimising the input to
maximize the prediction error (L-BFGS).

Works on adversarial examples |.

Learning

X1 ——p ——> vl
X2 —»! —> y2
flw)

—

e model fz : R" — R™

e error func.: E(w) =

@ learning: min E(w)
w

SN ey (), i) = SN (F(6) — vi)?

Finding adversarial example
e w is fixed, X is optimized
@ minimize ||r||2 subjectto f(x +r) =/and (x +r) € [0, 1]™
@ abox-constrained L-BFGS

Works on adversarial examples |l.

@ Deep Neural Networks are Easily Fooled: High Confidence
Predictions for Unrecognizable Images
2015,Anh Nguyen, Jason Yosinski, Jeff Clune

~ A
electric guitar

[desvicovier)

NN NN

$ 3
king penguin baseball J

oon
oon

18000000801
18000000001

000

fiaoppBanti
AR R AR R

Ll

oY PRERIINTS N
freight car ‘l

peacock " African grey

remote control ”

@ evolutionary generated images

Works on adversarial examples Il

Compositional pattern-producing network (CPPN)

@ similar structure to neural networks
e takes (x, y) as an input, outputs pixel value
@ nodes: sin, sigmoid, Gaussian, and linear

1 State-of-the-art DNNs can recognize 2 But DNNs are also easily fooled: images can be produced that are unrecognizable
real images with high confidence to humans, but DNNs believe with 99.99% certainty are natural objects
Input
Mutation
. Evolved images [/\
Ry
1 \ s
; = 4] / Evolutionary Crossover
g Algorithm
Guitar Penguin Guitar Penguin R &
: ‘ e
98.90% 99.99% 99.99% 99.99% S lr—r— ~_
Selection

Output

Works on adversarial examples .

@ Explaining and Harnessing Adversarial Examples
2015,Goodfellow et al.

@ linear behaviour in high dimensional spaces is sufficent to
cause adversarial examples

X=Xx+n

X, X belong to the same class if ||7||- < €

wix=wix+wly

for n = esign(w) activation increases emn
[In]|o does not grow with dimensionality, but emn does

a in large dimensions small changes of the input cause large
change to the output

Works on adversarial examples .

@ nonlinear models: parameters 6, input x, target y, cost
function J(0, x, y)

@ we can linearize the cost function around 6 and obtain
optimal perturbation

n = esign(VxJ(0, X, y))

@ adding small vector in the direction of the sign of the
derivation — fast gradient sign method

o

. &= -
= sign(V.J(8, 2, y)) esign(Vy J (8, 2, y))
“panda” “nematode™ “gibbon"
57.7% confidence 8.2% confidence 99.3 % confidence

Fast Gradient Sign Method on MNIST

72104144679
PLTOYT LKL D
PLF YT EIREF

Original test examples and corresponding adversarial examples
crafted by FGSM with € 0.2, 0.3, and 0.4.

Works on adversarial examples IV.

@ The Limitations of Deep Learning for Adversarial Settings
2016, Papernot et al.

argmin ||9x|| such that F(X + 0x) = Y*
Ox

@ adversarial saliency maps - identify features of the input
that most significantly impact output classifications

@ Motivation:
F(X) = xjandx, 5';)((2() (forward derivative)

Works on adversarial examples IV.

Saliency Map

e misclasify X such that it is assigned a target class
t # label(X)
e F¢(X) must increase, while F;(X), # t decrease

. 0|f5F’()<Ooij¢, gt)>o
S(X)[]: 5Ft(X
() 5 T

Works on adversarial examples IV.

Crafting algorithm based on Saliency Map

Input: X, Y*, F, T(maximal distortion), f(change)

1. XX

2. T={1...X|}

3. while F(X*) # Y* and ||0x|| < T do

4. Compute forward derivative V F(X*)

5. S <« saliency_map(V F(X*),I',Y*)

6. modify X; by 0, imax = argmax; S(X, Y*)[/]
7. ox + X* =X

8. end while

9.

return X*

Saliency Map Method on MNIST

7L/ 04 4 A9
Y% P8 F9YKI 2

Taxonomy of Threat Models in Deep Learning

o
23
S :,éf“&
o &
& o &
& & &
& S e.b(o w2
@ =l LG @'
& o & &
%
& N a2 o T
. A ADVERSARIAL GOALS compiexity
Architecture
& Training Tools L]] L]]
FTec g
i B N\ 131 3
Architecture 1; ® ® 291 [13] [38]
Flz *
S .
Trainingdata [© o . & -
TI|=
2
Oracle | o ™ ™ °
XY §
Samples
L] [] L] L]
{(XY)}
A\ 4 .
Deereasing Inereasing
knowledge attack difficulty

from Papernot, et al. The Limitations of Deep Learning in Adversarial Settings.

Works on Adversarial Examples V.

Practical Black-Box Attacks against Deep Learning
Systems using Adversarial Examples
2016, Papernot et al.

black-box - adversaries need not know internal details of
a system to compromise it

train a local substitute DNN with a synthetic dataset

The algorithm:

1. create initial collection of data samples S
2. select architecture for the substitute model
3. substitute model training
e labeling
e training
e augmentation: S,1 = {X + Asgn(JF[O(X)]) : X € S,} U S,
4. use the substitute model to craft adversarial samples

Our work

genetic algorihms used to search for adversarial examples

tested various machine learning models including both
deep and shallow architectures

Vidnerova, Neruda. Vulnerability of Machine Learning
Models to Adversarial Examples. 2016

Vidnerova, Neruda. Evolutionary Generation of Adversarial
Examples for Deep and Shallow Machine Learning
Models. 2016

Search for adversarial images

To obtain an adversarial example for the trained machine
learning model, we need to optimize the input image with
respect to model output.

For this task we employ a GA — robust optimisation method
working with the whole population of feasible solutions.

The population evolves using operators of selection,
mutation, and crossover.

The machine learning model and the target output are
fixed.

Black box approach

@ genetic algorithms to generate adversarial examples
@ machine learning method is a blackbox

a applicable to all methods without the need to acess models
parameters (weights)

Targat

>

Target output: 0

\4

¥

GA

example

MACHINE LEARNING
P MODEL

vector of class

v

>

probabilities

adversarial
example

Genetic algorithm

Individual: image encoded as a vector of pixel values:
I = {i17i27"'7iN}7

where j; €< 0,1 > are levels of grey and N is a size of

flatten image.

Crossover: operator performs a two-point crossover.
Mutation: with the probability pmytate pixer €ach pixel is
changed:

i=1+r,
where r is drawn from Gaussian distribution.
Selection: 3—tournament

GA fitness

@ The fitness function should reflect the following two criteria:

@ the individual should resemble the target image
@ if we evaluate the individual by our machine learning model,
we would like to obtain a target output (i.e. misclassify it).

Thus, in our case, a fitness function is defined as:

f(l)y=—(0.5 x cdist(!, target_image) (1)
+ 0.5« cdist(model(l), target_answer)), (2)

where cdist is an Euclidean distance.

Dataset for our experiments

MNIST dataset
@ 70000 images of handwritten digits
@ 28 x 28 pixels
@ 60000 for training, 10000 for testing

SHIA N3

Machine learning models overview

@ Shallow architectures
@ SVM — support vector machine
@ RBF — RBF network

@ DT — decision tree

@ Deep architectures
@ MLP — multilayer perceptron network
@ CNN — convolutional network

hidden layer 1 hidden layer 2 hidden layer 3
input layer

Support Vector Machines (SVM)

@ popular kernel method

@ learning based on searching for a separating hyperplane
with highest margin

@ one hidden layer of kernel units, linear output layer

Kernels used in experiments:

e linear (x, x")

e polynomial (y(x,x’) + r)?, grade 2 and 4
e Gaussian exp(—y|x — x'|?)

@ sigmoid tanh(~(x, x") + r).

Implementation: SCIKIT-learn library

RBF network

a feedforward network with one hidden layer, linear output
layer

@ local units (typically Gaussian functions)

@ our own implementation
@ 1000 Gaussian units

Decision Tree (DT)

@ a non-parametric supervised learning method

‘]

Implementation: SCIKIT-learn

Deep neural networks

a feedforward neural networks with multiple hidden layers
between the input and output layer

Multilayer perceptrons (MLP)

@ Perceptron units with sigmoid function
e Rectified linear unit (ReLU): y(z) = max(0, z).

Implementation:
@ KERAS library
@ MLP — three fully connected layers, two hidden layers have
512 RelLUs each, using dropout; the output layer has 10
softmax units.

Convolutional Networks (CNN)

@ Convolutional units perform a simple discrete convolution
operation which for 2-D data can be represented by a
matrix multiplication.

@ max pooling layers that perform an input reduction by
selecting one of many inputs, typically the one with
maximal value

Implementation:
@ KERAS library
@ CNN — two convolutional layers with 32 filters and ReLUs,
each, max pooling layer, fully connected layer of 128
ReLUs, and a fully connected output softmax layer.

Baseline Classification Acurracy

model trainset testset
MLP 1.00 0.98
CNN 1.00 0.99
RBF 0.96 0.96
SVM-rbf 0.99 0.98
SVM-poly2 1.00 0.98
SVM-poly4 0.99 0.98
SVM-sigmoid 0.87 0.88
SVM-linear 0.95 0.94

DT 1.00 0.87

Experimental Setup

GA setup

@ population of 50 individuals
a 10 000 generations

@ crossover probability 0.6

e mutation probability 0.1

@ DEAP framework

Images

e for 10 images from training set (one representant for each
class)

a target: classify as zero, one, ..., nine

Evolved Adversarial Examples — CNN (90/90)

Fyrvryrvye sl
B o By o Bg By N o [
CR R Fo
asswswslive s
PR B
FRECENCSEIEE
mmmilmmmmmm
1 EE TR RS
S ECELEL BT
Foa000900D9 9

Evolved Adversarial Examples — DT (83/90)

vyl
Do Be B Do Vo B Do % [%
AR R R
SOOI IR
minininnlln nn
¥ TSR3 555
m mEBEMmmm mm
X o o
-4 Bl 1L

B 999990990999

Evolved Adversarial Examples — MLP (82/90)

ey
Bs Do Do Do B Bo B e [%
k&
swwweswel] ww
nihnin [l
S ETEEEET S
mmmill mm mm
R B R R R R
SPESSNS S SNSSN NN

B 8 ©9 9o

Evolved Adversarial Examples — SVM siamoid (57/90)

& AN v o [
T B By By By]
T B
© seeswll o we
W W W
§ ESEEEEST
m m@ ™ ™
s % %
SEH> S NS
A%

W 9

2

Evolved Adversarial Examples — SVM poly (50/90)

%
-/..f ~ N B
Q

o & Y& Nd |
RN N L]
do i
s vl w e
nin [l "
SElEEFE T
mE ™ m M
%

L

Evolved Adversarial Examples — SVM poly4 (50/90)

vy [l
U O]

bk o
S ws 9wl o
win [l g

% EEESTTErE
mil ™ m
« W %
B Ss NN

N 99 © Q

Evolved Adversarial Examples — SVM linear (43/90)

Evolved Adversarial Examples — SVM rbf (43/90)

Evolved Adversarial Examples — RBF (22/90)

[]
[]

/B 4 S A ¢

By 3 b 4

[] E
] 4
[]
[]

/[A 5 N g

2 o + 7

Experimental Results

@ CNN, MLP, and DT were fooled in all or almost all cases

@ RBF network was the most resistant model, but in 22
cases it was fooled too

e from SVMs the most vulnerable is SVM_sigmoid, most
resistant is SVM_rbf and SVM_linear

Generalization

@ some adversarial examples generated for one model are
also missclassified by other models

Evolved against SVM-poly

20

25

RBF

MLP

CNN

ENS
SVM-rbf
SVM-poly
SVM-poly4
SVM-sigmoid
SVM:-linear
DT

0
0.32
0.00
0.00
0.00
0.00
0.87
0.38
0.55
0.71
0.00

1
0.02
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.00

2
0.17
0.00
0.00
0.00
0.00
0.02
0.11
0.04
0.02
0.00

3
0.86
1.00
1.00
1.00
0.99
0.04
0.23
0.19
0.06
1.00

4
-0.01
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.00

5
-0.09
0.00
0.00
0.00
0.00
0.00
0.02
0.05
0.02
0.00

6
-0.09
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.00

7
-0.03
0.00
0.00
0.00
0.00
0.00
0.02
0.01
0.01
0.00

8
-0.12
0.00
0.00
0.00
0.00
0.04
0.15
0.13
0.15
0.00

9
0.01
0.00
0.00
0.00
0.00
0.02
0.04
0.02
0.01
0.00

Generalization

Evolved against SVM_sigmoid

0 1 2 3 4 5 6 7 8 9
1 CNN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
MLP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
{ SVM_sigmoid 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.85 0.11
SVM_rbf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.01
4 SVM_poly 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.98 0.02
SVM_poly4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.01
1 SVM_linear 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
RBF 0.01 0.01 0.09 0.09 -0.10 0.06 0.07 -0.02 0.44 0.41
DT 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Generalization Summary

MLP CNN SVM SVM SVM SVM SVM RBF DT
sigmoid poly poly4 linear rbf

E CHEIET L _‘-.-.. . .' "o
MLP x = | L 'J.-
E . -. ..
CNN J‘_j_
" b

1
==

]

-

roenr - -| YTy

SVM_sigmoid =1 i LLY BLILLELLIL .~ = =f
1| REERmEEn

SVM_poly — L — ﬁ E.h L

SVM_polyd L "a" 1 - "k —

i f f ' . =1

SVM_linear - L - T

1o I o e = D

SVM_rbf

" P L '-ﬁ
RBF s LI =1s

il

r
P
A

2]

DT

Generalization — Summary

@ adversarial example evolved for CNN was misclassified by
other models only in few cases, and CNN never
misclassified other adversarial examples than those
evolved for the CNN;

@ adversarial example evolved for DT was never
misclassified by other models, however DT sometimes
misclassifies the adversarial examples evolved for other
models

@ adversarial examples are often shared between various
SMVs

Adversarial vs. noisy data

@ We tried to learn a classifier to distinguish between
adversarial examples and examples that are only noisy.

0600
00go

Figure: Digit zero —adversarials examples (top), noisy examples
(bottom). Noisy examples were classified as zero by the MLP,
adversarial examples as other class.

Adversarial vs. noisy data: results

@ The data contains 22500 noisy examples and 19901
adversarial examples, and are randomly divided to training
and test data (20% for test).

precision recall
SVM-rbf 0.888 0.843
MLP 0.923 0.912
CNN 0.964 0.925

New adversarial examples (for MLP)

ryrvryrvre s}
LSRN NI L NEUNE N RN
dhdddd o
S wweswlesww
mninnin [l i
o Blat] ke buelco Ry
m mB mm mm
S P
J.....ff.ff/.f.ff

B S99989 99

Towards approaches robust to adversarial examples

@ Towards Deep Neural Network Architectures Robust To
Adversarial Examples.
2015, Shixiang Gu, Luca Rigazio

@ noise injection, Gaussian blur
@ autoencoder
@ deep contractive network

Gaussian blur of the input

@ a recovery strategy based on additional corruption
@ decrease error on adversarial data but not enough

Test error rates

clean data adversarial data
blur kernel size — 5 11 — 5 11

N100-100-10 1.8 2.6 11.3 99.9 435 628
N200-200-10 1.6 2.5 14.38 99.9 47.0 655
ConvNet 09 1.2 40 100 53.8 43.8

Autoencoder

@ a three-hidden-layer autoencoder (784-256-128-256-784
neurons)

e trained to map adversarial examples back to the original
data and original data back to itself

@ autoencoders recover at least 90% of adversarial errors

| N-100-100-10 N200-200-10 ConvNet

N-100-100-10 | 2.3% 2.4% 5.2%
N-200-200-10 | 2.3% 2.2% 5.4%
ConvNet 7.7% 7.6% 2.6%

@ drawback: autoencoder and classifier can be stacked to
form a new feed-forward network, new adversarial
examples can be generated

Deep Contractive Network

@ layer-wise penalty approximately minimizing the network
outputs variance with respect to perturbations in the inputs

@ Deep Contractive Network (DNC) — generalization of the
contractive autoencoder

m

Jone(6) = 3 (Lt y 1) + A|| ,)Hz)

i=1
m H+A1 h(f)

Jone(0) = (L(tD, y) + Z >\/H ||2

i=1

Deep Contractive Network — Experimental Results

DCN

original
model error adv. distortion error adv. distortion
N100-100-10 2.3% 0.107 1.8% 0.084
N200-200-10 2.0% 0.102 1.6% 0.087
ConvNet 1.2% 0.106 0.9% 0.095

Defence to Adversarial Perturbations by Distillation

a Distillation as a Defence to Adversarial Perturbations
against Deep Neural Networks, Papernot et al., 2016

a distillation — training procedure using knowledge
transferred from a different DNN (originally to reduce
computational complexity)

@ used to improve resilience to adversarial samples
a distillation temperature — high temperature — probability
vectors with large values for each class

a output softmax layer:

F(X) =

e2(X)/T]
SN 20T
=0 eZ/(X)/T i€0...N—1

Defence to Adversarial Perturbations by Distillation

|

|

0.02 |

%o Probability Vector Predictions F(X) I
o0

7y !

|

)
|
)
)
1
|
)
|
:
: DNN F trained at temperature T I
j
]
i
i)
)
|
|
|
1
|
)
)

oo
‘333 Probability Vector Predictions F*(X) I
b
A

A A

03 ?
% Training Data X lg:ﬁ Training Labels F(X)
- 0.02

I Initial Network I Distilled Network

A A

I Training Data X

5
IL Training Labels Y
o

1

1
I 1
I 1
I 1
I 1
I 1
| 1
I 1
I 1
B :
: DNN F*(X) trained at temperature T | 1
I 1
| | !
| 1
I 1
I 1
I 1
| !
I 1
I 1
, i
! i

adversarial success rate
original DNN distilled DNN
MNIST 95.89 1.34
CIFAR10 89.90 16.76

Denoising input samples

N4 Q
> &
XS 2
OJ\Q’Q @6\ ib@ <Z> Q)‘b(\
¢ &£ g & &
M € & F T

legitimate 98.35 98.13 97.67 97.72 97.95 98.28 98.34
FGSM 2.87 3.83 6.94 8.11 6.25 452 534
Saliency Map 39.07 90.13 78.06 74.17 68.93 43.93 64.34

@
< N N
CNN ® E R

legitimate 98.94 98.42 98.38 98.48 98.70 98.89 98.92
FGSM 14.80 21.52 23.17 25.65 22.53 17.86 18.54
Saliency Map 0.10 68.21 65.25 48.45 43.54 5.18 2.17

Denoising GA adversarial examples

F &
o L & \ g
> S
Q \ é’\ ‘(\(b’ @ \Q}(b ((\Q’(b.
& & b DA CAEIN
I\ & & Q7 N O Q7

MLP 98.49 98.27 98.14 98.16 98.26 98.41 98.44
MLP 0.00 68.15 70.77 81.35 84.41 88.04 93.74
CNN 98.77 98.20 98.35 98.50 98.59 98.71 98.75
CNN 0.00 14.29 2857 2143 21.43 21.43 14.29
DT 8754 87.77 3793 21.02 23.71 6052 87.28
DT 0.00 2793 17.06 12.32 1517 20.63 17.07
SVMIlin 9487 9441 93.96 94.14 9440 94.78 94.85
SVM lin 0.00 7.58 4253 69.47 5453 6295 67.16

Denoising GA adversarial examples

NS
S
O &
£ £ & & F
¢ £ ¥ § & ¥
NN F N

SVMpoly 98,20 97,99 97,40 97,42 97,72 98,16 98,21
SVM poly 0,00 21,23 44,39 58,95 53,33 72,46 55,79

SVM poly4 98,35 97,98 97,06 97,07 97,54 98,20 98,28
SVM poly4 0,00 10,49 28,39 44,67 36,17 65,46 49,19

SVM rbf 98,57 98,33 96,52 96,90 97,52 98,39 98,53
SVM rbf 0,00 1,08 16,20 36,29 31,97 61,56 51,62

SVM sigmoid 89,11 88,81 89,84 89,62 89,94 89,28 89,17
SVM sigmoid 0,00 0,00 3,26 21,61 10,12 57,80 30,36

Deep Networks and RBF Networks

@ combinations of Deep Networks and RBF Networks
@ RBF layers can be also included in evolution

@ RBF networks less vulnerable to adversarial examples

@ Does add RBF layers to deep network help to prevent
adversarial examples?

“wl/A\

X1 /‘f (O .
.‘m“"” :”“3' WOR/O
4‘ i 'n’
.v,“hlr‘\“’l:‘\“g’::‘b ’ . »

J ”,‘\b.d“ ,,'\ _ .A. y3
AT Af”
R

x3

x4

RBF Networks

feed-forward neural networks with one hidden layer of RBF
units

local units alternative to MLP
RBF unit:
y=0(&): &=plIX-¢|P
where ¢ : R — R is suitable activation function, typically
Gaussian ¢(z) = e,
the network computes the function f : R” — R :

fo(X) = > Wisp <”)_(;jcj‘>

RBF Networks Learning

@ wide range of methods

Three Step Learning

1. set the centers - approximate the distribution of training
samples

@ random or uniform samples, various clustering methods
2. set the widths - cover the input space by unit’s fields

@ heuristics (k-neighbours)
3. compute the output weights

@ linear system, pseudoinverse

Gradient Learning

@ analogous to backpropagation for MLP

Proposed architecture DNNRBF

a stacking deep neural network and RBF network

e M\
x1{
u-r ‘:
»‘*? f?

4

DNNRBF learning

1. train the DNN

. set the centers of RBF randomly, drawn from uniform
distribution on (0, 1.0)

. set the parameters 3 to the constant value
. init the weights of RBF output layer to random small values
. retrain the whole network DNNRBF (by back propagation)

Experiments

Architectures

e MLP

@ dense layer of 512 RelLU
@ dense layer of 512 ReLU
@ dense layer of 10 softmax units

e CNN

@ convolutional layer with 32 3x3 filters and ReLU activation
convolutional layer with 32 3x3 filters and ReLU activation
2x2 max pooling layer

dense layer of 128 RelLU

Q
Q
Q
@ dense layer of 10 softmax units

Experiments

Implementation

@ FGSM for crafting adversarial examples
Cleverhans library: cleverhans v2.0.0: an adversarial machine learning
library, Nicolas Papernot, et al., arXiv preprint arXiv:1610.00768, 2017
@ Keras for MLP and CNN
Keras, Francois Chollet, https://github.com/fchollet/keras,
2015
@ our implementation of RBF Keras layers
http://github.com/PetravVidnerova/rbf_keras

http://github.com/PetraVidnerova/rbf_tests

https://github.com/fchollet/keras
http://github.com/PetraVidnerova/rbf_keras
http://github.com/PetraVidnerova/rbf_tests

Experiments Results- MLP

Legitimate samples

Adversarial samples

model mean std min max mean std min max
MLP 98.35 0.12 98.04 98.59 195 0.41 1.30 2.86
MLPRBF(0.01) 97.62 2.43 88.44 98.65 256 2.09 1.16 10.71
MLPRBF(0.1) 88.61 8.56 69.91 98.36 10.04 6.45 1.71 23.10
MLPRBF(1.0) 98.23 0.10 98.08 98.48 81.77 7.84 64.18 94.06
MLPRBF(2.0) 98.19 0.14 97.91 98.38 89.21 5.03 66.28 94.83
MLPRBF(3.0) 98.18 0.14 97.88 98.45 81.66 4.38 70.13 87.23
MLPRBF(5.0) 97.64 2.09 89.34 98.36 69.47 13.26 13.01 81.95

MLPRBF(10.0) 80.94

11.82 58.57 98.33

21.49

16.32 2.48 65.11

on legitimate data

eeeee

Experiments Results - CNN

model

Legitimate samples
mean std min max

Adversarial samples
mean std min max

CNN

98.97 0.07 98.84 99.13

8.49 3.52 3.11 16.43

CNNRBF(0.01) 98.36 1.73 89.12 99.01

1
CNNRBF(0.1)
CNNRBF(1.0)
CNNRBF(2.0)
CNNRBF(3.0)
CNNRBF(5.0)

94.19 8.21 58.88 98.92
98.83 0.13 98.46 99.04
98.85 0.13 98.38 99.09
98.82 0.14 98.55 99.10
98.74 0.11 98.49 98.94

CNNRBF(10.0) 97.86 2.24 89.33 98.84

15.60 4.28 10.26 28.44
18.58 6.42 6.01 31.29
57.09 9.23 33.39 78.99
74.57 7.69 53.07 84.67
68.65 7.77 44.36 80.13
62.35 7.04 48.03 77.04
64.71 8.32 46.61 79.89

100 on legitimate data fueroe accreces on adver
a0 a0
60 60|
i 0|
2 20|
5 a =& & & & & 5 & =

rsarial data

model

eeeee

Experiments Results

model Accuracy on adversarial data
e=0.2 e=0.3 e=04
avg std avg std avg std
CNN 33.85 7.58 8.49 3.52 4.34 1.71
CNNRBF 76.88 6.25 74.57 7.69 73.51 8.08
MLP 3.01 0.69 1.95 0.41 1.66 0.38
MLPRBF 90.14 4.82 89.21 5.03 88.27 5.14

Deep RBF Networks — | don’t know scenario |.

e if maximal output < threshold answer | don’t know
e threshold = 0.75
legitimate data
correct |don’t know wrong

baseline CNN 98.20 1.31 0.49
CNN + RBF 95.39 4.25 0.36

adversarial data
correct |don’'t know wrong
baseline CNN 11.45 47.22 41.34
CNN + RBF 1.32 92.46 6.22

Deep RBF Networks — | don’t know scenario |l.

@ threshold = 0.9

legitimate data
correct |don’'t know wrong
baseline CNN 97.24 2.50 0.26
CNN + RBF 89.24 10.57 0.19

adversarial data
correct |don’tknow wrong
baseline CNN 7.85 67.40 24.75
CNN + RBF 0.39 97.91 1.70

Summary

We have proposed a GA for generating adversarial
examples for machine learning models by applying minimal
changes to the existing patterns.

Our experiment showed that many machine models suffer
from vulnerability to adversarial examples.

Models with local units (RBF networks and SVMs with RBF
kernels) are quite resistant to such behaviour.

The adversarial examples evolved for one model are
usually quite general — often misclassified also by other
models.

Defenses against adversarial examples are succsessfull
only to some extend.

Thank you! Questions?

