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Learning from data

e find a general rule that explains data given only as a
sample of limited size

e data may contain measurement errors or noise

@ supervised learning

@ data are sample of input-output pairs

@ find input-output mapping

@ prediction, classification, function approximation, etc.
@ unsupervised learning

@ data are sample of objects

@ find some structure

@ clustering, etc.
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Learning methods

@ wide range of methods available

e statistical approaches

@ neural networks

@ originally biological motivation
@ Multi-layer perceptrons, RBF networks
@ Kohonen maps

@ kernel methods

@ modern and popular
a SVM
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Trends in machine learning

Articles on machine learning found by Google
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Trends in machine learning

Articles on neural networks found by Google

0.

0.35

0.30

0.25

1985 1990 1995 2000

Source: http:/lyaroslavvb.blogspot.com/ 4//7-/
Samalka, 23. 5. 2006 &



Introduction Binary classification Learning with Kernels Support Vector Machines Demo Conclusion

Trends in machine learning

Articles on suport vector machine found by Google
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Binary classification

@ Training set

{xi,yi)Hy
Xj € X
yi € {-1,1}

e find classifier

@ generalization
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Simple Classifier

Suppose: X C R", classes linearly separable

A
_ 1 .
@ Co = i D fiy=r1} i
_ 1 .
& Co = mn D=1 Xi

@ C= %(C++C_)

e y =sgn(((x —c),w))
=sgn(((x — (c+ +¢-)/2),((c+ +c-)))
=sgn({x,c4) — (x,c_) +b)

@ b= 3(lc_|P - [lc4]P)
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Mapping to the feature space

a life is not so easy, not all problems are linearly separable
e whatto do if X' is not dot-product space?

@ choose a mapping to some (high dimensional) dot-product
space - feature space

b: X —-H
\ input space feature space
@) *
*
............ -
@ s \
(@] @) o
O
(@)
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Mercer’s condition and Kernels

If a symmetric function K (x,y) satisfies
M
Z aiajK(xi,xj) >0
ij=1

for all M € N, x;, and a; € R, there exists a mapping function ¢
that maps x into the dot-product feature space and

K(x,y) = (®(x), ®(y))

and vice versa.

Function K is called kernel.
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Examples of kernels

@ Linear Kernels
KX, y) = (X,y)
@ Polynomial Kernels
K(x,y) = ((x,y) + 1)

for d = 2 and 2-dimensional inputs

K(X,Y) = 1+42X1y1 + 2X2Y2 + 2X1y1XaY2 + X{Y + X5Y5
(®(x), ®(x))
O(x) = (1,V2xq, V2Xz, V2x1%2,x2x3)T
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Examples of kernels

@ RBF Kernels

X — 2
K(x.y) = exp(~ X Y10

@ Other kernels
@ kernels on various objects, such as graphs, strings, texts,
etc.
@ enable us to use dot-product algorithms
@ measure of similarity
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Simple Classifier - kernel version

Suppose: X C R", classes linearly separable

A
_ 1 .
@ Co = i D fiy=r1} i
_ 1 .
& Co = mn D=1 Xi

@ C= %(C++C_)

e y =sgn(((x —c),w))
=sgn(((x — (c+ +¢-)/2),((c+ +c-)))
=sgn({x,c4) — (x,c_) +b)

@ b= 3(lc_|P - [lc4]P)
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Simple Classifier - kernel version

Suppose: X is any set, ® : X — H corresponding to kernel K

@ Ch =y Lgily—1y Xi
@ o= Xy=n X

@ c=3(cy+co)

@ y =sgn({(x —c),w))
— Sgn(<(X — (C+ + C,)/Z), ((C+ + C*)>)
=sgn((x,c4) — (X,c_) +b)

e b=3(lc |12~ llc4?)
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Simple Classifier - kernel version

Suppose: X is any set, ® : X — H corresponding to kernel K

y—Sgn Z K(x,xi) — Z K(x,X;) + b)
* lily=+1} ~ {ilyi=—1}
1,1 1
b=2(— > Kx)-— > Kxix))
~ A{iilyi=yi=-1} * {ijlyi=y;=+1}

Statistical approach Bayes classifier - special case

/K(x,y)dx:l YWeX;, b=0
X
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Simple Classifier - kernel version

Suppose: X is any set,  : X — 'H corresponding to kernel K

y=son(- 3 Keox) - Y K@xx)+0)

* filyi=+1)  {ilyi=—1}
= p+(x) =p_(x)
Parzen windows

Statistical approach Bayes classifier - special case

/K(x,y)dx:l YWwedXx; b=0
X
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Separating hyperplane

@ classifier in a form
y(x) = sgn({w, x) + b)
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Separating hyperplane

@ classifier in a form
y(x) = sgn({w, x) + b)

v

1 fory;=1

W, Xj)+b
< l <-1 foryj=-1
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Separating hyperplane

@ classifier in a form
y(x) = sgn({w, x) + b)

>1 fory; =1

w, Xj)+b
< ) {g—l fory; = -1

@ each hyperplane

D(x) = (w,x)+b=c, —1<c < 1isseparating

@ optimal separating hyperplane - the one with the maximal
margin
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Classifier with maximal margin

|{X|<W;X>+b="1‘}| Note:
LY

<W X >+b=+1

@ <W X,>+b=—1

=  <w(x—x,= 2

= _ w ~_ 2
yi=-1, => iwil* 17 %)= i

\ \
\ AY
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Classifier with maximal margin

y(x) = sgn((w,x) +b) |

where w and b are solution of

1

min Q(w), Q(w) = EHWHZ

with respect to constraints

yi((w,xj) +b)>1, fori=1,...,M

@ quadratic programming problem
@ linear separability — solution exists

@ no local minima %
(n
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Classifier with maximal margin

@ constrained optimization problem
1 2 .
min E||w|| subject to y;((w,x;) +b) > 1

@ can be handled by introducing Lagrange multipliers o; > 0

L(w,b,0) = /Wl — > ai(yi((w. ) +b) 1)
i=1

@ minimize with respecttow and b
@ maximize with respect to ¢;
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Samalka, 23. 5. 2006 ¥r



Introduction Binary classification Learning with Kernels Support Vector Machines Demo Conclusion

Classifier with maximal margin
1 m
L(w,b,a) = EHWH2 = > ai(yi(w,x) +b) — 1)
i=1

@ minimize with respect to w, b; maximize with respect to «
@ Karush-Kuhn-Tucker (KKT) conditions

oL(w,b,a) 0 oL(w,b,a) 0
ow N ob N
@ we get w = erll a;YiXi Z|m:1 ajyj =0
e yi((w,xj)+b)>1—a;=0x; irrelevant
e Vyi((w,xj)+b)=1— a; #0X; support vector
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Dual problem

@ by substitution to L we get

m m
1
maxW (a) = > ai— > > aiogyiy; (Xi, )
@c i—1 ij=1
subject to
m
aj >0 Z ajyi =0
i=1
@ resulting classifier - (hard margin) support vector machine
(SVM)

f(x) = sgn(D_ yiai (X, xi) +b),

i=1

b= Yi — <W7Xi> _
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Support Vector Machine

@ work in feature space and use kernels

a classifier .
f(x) =sgn(D _yieiK(x, %) + b)
i=1
m 1 m
max W (a) = D o - > D aiggyiyK (xi, )
ac i—1 ij=1
subject to
m
a; >0 Zaiy, =0
i=1
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Soft margin SVM

@ separating hyperplane may not exists (high level of noise,
overlap of classes, etc.)

Optimal hyperplane

Xr
‘ a5 P
d
Maximum
/
margin,
4
o)
0

X

Samalka, 23. 5. 2006



Support Vector Machines

Soft margin SVM

@ separating hyperplane may not exists (high level of noise,
overlap of classes, etc.)

@ introduce slack variables &
Yi({w, ®(x)i) +b) > 1 ¢
@ minimize
l m
Q(w. &) = Slw[*+C ) ¢
i=1

@ C > 0 trade-off between maximization of margin and
minimization of training error (depands on noise level) %/
/!
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Soft margin SVM

@ solution has a form

f(x) = sgn(zm: yiaiK (X, Xi) + b)
i—1

5“]
(TG%W(a) Iz: ——Jz:lmaj)/l)ﬁ( (Xi, X)) + E)
subject to
m
a; >0 Zaiyl =0
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SVM - summary

input points are mapped to the feature space

dot product computed by means of kernel function
classification via separating hyperplane with maximal
margin

such hyperplane is determined by support vectors

other training samples are irrelevant

data not separable in feature space (noise, etc.) - use soft
margin

control trade-of between maximal margin and minimum

training error (C)
7
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SVM vs. Neural Networks

+ maximization of generalization ability
+ no local minima

extension to multiclass problems
long training time
- number of variables same as number of data points
- not necessarily true - many techniques to reduce time exists

selection of parameters

- kernel function
- C

%
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Conclusion

Software

@ SVMIib (by Chih-Chung Chang and Chih-Jen Lin)
http://ww. csie.ntu.edu.tw ~cjlin/libsvm

@ Matlab toolbox (by S. Gunn)
http://ww. isis.ecs.soton. ac. uk/ resources/ svm nf o/
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