Learning with kernels and SVM

Šámalova chata, 23. května, 2006

Petra Kudová

Outline

Introduction

Binary classification

Learning with Kernels

Support Vector Machines

Demo

Conclusion

Learning from data

- find a general rule that explains data given only as a sample of limited size
- data may contain measurement errors or noise
- supervised learning

Introduction

- data are sample of input-output pairs
- find input-output mapping
- prediction, classification, function approximation, etc.
- unsupervised learning
 - data are sample of objects
 - find some structure
 - clustering, etc.

Learning methods

- wide range of methods available
- statistical approaches
- neural networks
 - originally biological motivation
 - Multi-layer perceptrons, RBF networks
 - Kohonen maps
- kernel methods
 - modern and popular
 - SVM

Trends in machine learning

Articles on machine learning found by Google

Source: http://yaroslavvb.blogspot.com/

Trends in machine learning

Articles on neural networks found by Google

Source: http://yaroslavvb.blogspot.com/

Šámalka, 23. 5. 2006

Trends in machine learning

Articles on suport vector machine found by Google

Source: http://yaroslavvb.blogspot.com/

Binary classification

Training set

$$\{(\mathbf{x}_i, y_i)\}_{i=1}^m \\ \mathbf{x}_i \in \mathcal{X} \\ y_i \in \{-1, 1\}$$

- find classifier
- generalization

Simple Classifier

Suppose: $\mathcal{X} \subset \mathbb{R}^n$, classes linearly separable

$$\mathbf{c}_{+} = \frac{1}{m_{+}} \sum_{\{i | y_{i} = +1\}} \mathbf{x}_{i}$$

$$\mathbf{c}_{-} = \frac{1}{m_{-}} \sum_{\{i | y_{i} = -1\}} \mathbf{x}_{i}$$

•
$$\mathbf{c} = \frac{1}{2}(\mathbf{c}_+ + \mathbf{c}_-)$$

$$y = sgn(\langle (\mathbf{x} - \mathbf{c}), \mathbf{w} \rangle)$$

$$= sgn(\langle (\mathbf{x} - (\mathbf{c}_{+} + \mathbf{c}_{-})/2), ((\mathbf{c}_{+} + \mathbf{c}_{-}) \rangle)$$

$$= sgn(\langle \mathbf{x}, \mathbf{c}_{+} \rangle - \langle \mathbf{x}, \mathbf{c}_{-} \rangle + b)$$

$$b = \frac{1}{2}(||\mathbf{c}_-||^2 - ||\mathbf{c}_+||^2)$$

Mapping to the feature space

- life is not so easy, not all problems are linearly separable
- ullet what to do if ${\mathcal X}$ is not dot-product space?
- choose a mapping to some (high dimensional) dot-product space - feature space

$$\Phi: \mathcal{X} \to \mathcal{H}$$
 input space feature space Φ

If a symmetric function $K(\mathbf{x}, \mathbf{y})$ satisfies

$$\sum_{i,j=1}^{M} a_i a_j K(\mathbf{x}_i, \mathbf{x}_j) \geq 0$$

for all $M \in \mathbb{N}$, \mathbf{x}_i , and $a_i \in \mathbb{R}$, there exists a mapping function Φ that maps \mathbf{x} into the dot-product feature space and

$$K(\mathbf{x}, \mathbf{y}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle$$

and vice versa.

Function K is called kernel.

Examples of kernels

Linear Kernels

$$K(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$$

Polynomial Kernels

$$K(\mathbf{x},\mathbf{y}) = (\langle \mathbf{x},\mathbf{y} \rangle + 1)^d$$

for d = 2 and 2-dimensional inputs

$$K(\mathbf{x}, \mathbf{y}) = 1 + 2x_1y_1 + 2x_2y_2 + 2x_1y_1x_2y_2 + x_1^2y_1^2 + x_2^2y_2^2$$

= $\langle \Phi(\mathbf{x}), \Phi(\mathbf{x}) \rangle$
 $\Phi(\mathbf{x}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, x_1^2x_2^2)^T$

Examples of kernels

RBF Kernels

$$K(\mathbf{x}, \mathbf{y}) = \exp(-\frac{||\mathbf{x} - \mathbf{y}||^2}{d^2})$$

Other kernels

- kernels on various objects, such as graphs, strings, texts, etc.
- enable us to use dot-product algorithms
- measure of similarity

Simple Classifier - kernel version

Suppose: $\mathcal{X} \subset \mathbb{R}^n$, classes linearly separable

c
$$\mathbf{c}_{+} = \frac{1}{m_{+}} \sum_{\{i | y_{i} = +1\}} \mathbf{x}_{i}$$

$$\mathbf{c}_{-} = \frac{1}{m_{-}} \sum_{\{i | y_{i} = -1\}} \mathbf{x}_{i}$$

•
$$\mathbf{c} = \frac{1}{2}(\mathbf{c}_{+} + \mathbf{c}_{-})$$

$$\begin{aligned} & \mathbf{v} = sgn(\langle (\mathbf{x} - \mathbf{c}), \mathbf{w} \rangle) \\ & = sgn(\langle (\mathbf{x} - (\mathbf{c}_{+} + \mathbf{c}_{-})/2), ((\mathbf{c}_{+} + \mathbf{c}_{-}) \rangle) \\ & = sgn(\langle \mathbf{x}, \mathbf{c}_{+} \rangle - \langle \mathbf{x}, \mathbf{c}_{-} \rangle + b) \end{aligned}$$

$$b = \frac{1}{2}(||\mathbf{c}_-||^2 - ||\mathbf{c}_+||^2)$$

Simple Classifier - kernel version

Suppose: $\mathcal X$ is any set, $\Phi:\mathcal X\to\mathcal H$ corresponding to kernel K

e
$$\mathbf{c}_{+} = \frac{1}{m_{+}} \sum_{\{i | y_{i} = +1\}} \mathbf{x}_{i}$$

e
$$\mathbf{c}_{-} = \frac{1}{m_{-}} \sum_{\{i | y_{i} = -1\}} \mathbf{x}_{i}$$

•
$$c = \frac{1}{2}(c_+ + c_-)$$

$$\mathbf{v} = sgn(\langle (\mathbf{x} - \mathbf{c}), \mathbf{w} \rangle)$$

$$= sgn(\langle (\mathbf{x} - (\mathbf{c}_{+} + \mathbf{c}_{-})/2), ((\mathbf{c}_{+} + \mathbf{c}_{-}) \rangle)$$

$$= sgn(\langle \mathbf{x}, \mathbf{c}_{+} \rangle - \langle \mathbf{x}, \mathbf{c}_{-} \rangle + b)$$

$$b = \frac{1}{2}(||\mathbf{c}_-||^2 - ||\mathbf{c}_+||^2)$$

Simple Classifier - kernel version

Suppose: \mathcal{X} is any set, $\Phi: \mathcal{X} \to \mathcal{H}$ corresponding to kernel K

$$y = sgn(\frac{1}{m_{+}} \sum_{\{i|y_{i}=+1\}} K(\mathbf{x}, \mathbf{x}_{i}) - \frac{1}{m_{-}} \sum_{\{i|y_{i}=-1\}} K(\mathbf{x}, \mathbf{x}_{i}) + b)$$

$$b = \frac{1}{2} \left(\frac{1}{m_{-}^{2}} \sum_{\{i,j|y_{i}=y_{j}=-1\}} K(\mathbf{x}_{i},\mathbf{x}_{j}) - \frac{1}{m_{+}^{2}} \sum_{\{i,j|y_{i}=y_{j}=+1\}} K(\mathbf{x}_{i},\mathbf{x}_{j}) \right)$$

Statistical approach Bayes classifier - special case

$$\int_{\mathcal{X}} K(\mathbf{x}, \mathbf{y}) d\mathbf{x} = 1 \qquad \forall \mathbf{y} \in \mathcal{X}; \quad b = 0$$

Suppose: \mathcal{X} is any set, $\Phi: \mathcal{X} \to \mathcal{H}$ corresponding to kernel K

$$y = sgn(\frac{1}{m_{+}} \sum_{\{i|y_{i}=+1\}} K(\mathbf{x}, \mathbf{x}_{i}) - \frac{1}{m_{-}} \sum_{\{i|y_{i}=-1\}} K(\mathbf{x}, \mathbf{x}_{i}) + 0)$$
$$= \rho_{+}(\mathbf{x}) \qquad = \rho_{-}(\mathbf{x})$$

Parzen windows

Statistical approach Bayes classifier - special case

$$\int_{\mathcal{X}} K(\mathbf{x}, \mathbf{y}) d\mathbf{x} = 1 \qquad \forall \mathbf{y} \in \mathcal{X}; \quad b = 0$$

Separating hyperplane

classifier in a form

$$y(\mathbf{x}) = sgn(\langle \mathbf{w}, \mathbf{x} \rangle + b)$$

$$\langle \mathbf{w}, \mathbf{x}_i \rangle + b \begin{cases} > 0 & \text{for } y_i = 1 \\ < 0 & \text{for } y_i = -1 \end{cases}$$

each hyperplane

$$D(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b = c, -1 < c < 1$$
 is separating

 optimal separating hyperplane - the one with the maximal margin

Separating hyperplane

• classifier in a form $y(\mathbf{x}) = sgn(\langle \mathbf{w}, \mathbf{x} \rangle + b)$

$$\langle \mathbf{w}, \mathbf{x}_i \rangle + b \begin{cases} \geq 1 & \text{for } y_i = 1 \\ \leq -1 & \text{for } y_i = -1 \end{cases}$$

each hyperplane

$$D(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b = c, -1 < c < 1$$
 is separating

 optimal separating hyperplane - the one with the maximal margin

Separating hyperplane

• classifier in a form $y(\mathbf{x}) = sgn(\langle \mathbf{w}, \mathbf{x} \rangle + b)$

$$\langle \mathbf{w}, \mathbf{x}_i \rangle + b$$
 $\begin{cases} \geq 1 & \text{for } y_i = 1 \\ \leq -1 & \text{for } y_i = -1 \end{cases}$

each hyperplane

$$D(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b = c, -1 < c < 1$$
 is separating

 optimal separating hyperplane - the one with the maximal margin

Classifier with maximal margin

Classifier with maximal margin

$$y(\mathbf{x}) = sgn(\langle \mathbf{w}, \mathbf{x} \rangle + b)$$

where w and b are solution of

min
$$Q(\mathbf{w})$$
, $Q(\mathbf{w}) = \frac{1}{2}||\mathbf{w}||^2$

with respect to constraints

$$y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \geq 1$$
, for $i = 1, \dots, M$

- quadratic programming problem
- linear separability → solution exists
- no local minima

constrained optimization problem

$$\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2$$
 subject to $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1$

ullet can be handled by introducing Lagrange multipliers $\alpha_i \geq 0$

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^m \alpha_i (y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1)$$

- minimize with respect to w and b
- ullet maximize with respect to α_i

we get

Classifier with maximal margin

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^m \alpha_i (y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1)$$

- \bullet minimize with respect to **w**, b; maximize with respect to α
- Karush-Kuhn-Tucker (KKT) conditions

$$\frac{\delta L(\mathbf{w}, b, \alpha)}{\delta \mathbf{w}} = 0 \qquad \frac{\delta L(\mathbf{w}, b, \alpha)}{\delta b} = 0$$

$$\mathbf{w} = \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i \qquad \sum_{i=1}^{m} \alpha_i y_i = 0$$

$$\mathbf{Q} \ \mathbf{y}_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) > 1 \rightarrow \alpha_i = 0 \ \mathbf{x}_i$$

$$\mathbf{Q} \ \mathbf{y}_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) = 1 \rightarrow \alpha_i \neq 0 \ \mathbf{x}_i$$

irrelevant

support vector

Dual problem

by substitution to L we get

$$\max_{\alpha \in \mathbb{R}^n} W(\alpha) = \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

subject to

$$\alpha_i \geq 0$$

$$\sum_{i=1}^m \alpha_i y_i = 0$$

 resulting classifier - (hard margin) support vector machine (SVM)

$$f(\mathbf{x}) = sgn(\sum_{i=1}^{m} y_i \alpha_i \langle \mathbf{x}, \mathbf{x}_i \rangle + b),$$

$$b = y_i - \langle \mathbf{w}, \mathbf{x}_i \rangle$$

Support Vector Machine

- work in feature space and use kernels
- classifier

$$f(\mathbf{x}) = sgn(\sum_{i=1}^{m} y_i \alpha_i K(\mathbf{x}, \mathbf{x}_i) + b)$$

$$\max_{\alpha \in \mathbb{R}^n} W(\alpha) = \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,i=1}^m \alpha_i \alpha_i y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$

subject to

$$\alpha_i \geq 0$$

$$\sum_{i=1}^m \alpha_i y_i = 0$$

Šámalka, 23, 5, 2006

Soft margin SVM

 separating hyperplane may not exists (high level of noise, overlap of classes, etc.)

Soft margin SVM

- separating hyperplane may not exists (high level of noise, overlap of classes, etc.)
- introduce slack variables ξ_i

$$y_i(\langle \mathbf{w}, \Phi(\mathbf{x})_i \rangle + b) \geq 1 - \xi_i$$

minimize

$$Q(\mathbf{w}, \xi) = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{m} \xi_i^2$$

ho C > 0 trade-off between maximization of margin and minimization of training error (depands on noise level)

Soft margin SVM

solution has a form

$$f(\mathbf{x}) = sgn(\sum_{i=1}^{m} y_i \alpha_i K(\mathbf{x}, \mathbf{x}_i) + b)$$

$$\max_{\alpha \in \mathbb{R}^n} W(\alpha) = \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j y_i y_j \left(K(\mathbf{x}_i, \mathbf{x}_j) + \frac{\delta_{i,j}}{C} \right)$$

subject to

$$\alpha_i \geq 0$$

$$\sum_{i=1}^m \alpha_i y_i = 0$$

- input points are mapped to the feature space
- dot product computed by means of kernel function
- classification via separating hyperplane with maximal margin
- such hyperplane is determined by support vectors
- other training samples are irrelevant
- data not separable in feature space (noise, etc.) use soft margin
- control trade-of between maximal margin and minimum training error (C)

Conclusion

SVM vs. Neural Networks

- + maximization of generalization ability
- + no local minima
- extension to multiclass problems
- long training time
 - number of variables same as number of data points
 - · not necessarily true many techniques to reduce time exists
- selection of parameters
 - kernel function
 - · C

References

- Support Vector Machines for Pattern Classification
 Shigoe Abe, Springer 2005
- Learning with Kernels Bernhard Schölkopf and Alex Smola MIT Press, Cambridge, MA, 2002 Source of "sheep vectors" illustrations.
- Learning kernel classifiers
 Ralf Herbrich
 MIT Press, Cambridge, MA, 2002
- http://www.kernel-machines.org/

Software

- SVMlib (by Chih-Chung Chang and Chih-Jen Lin) http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- Matlab toolbox (by S. Gunn) http://www.isis.ecs.soton.ac.uk/resources/syminfo/

Questions?

