
Vulnerability of machine learning models to

adversarial examples

Petra Vidnerová Roman Neruda

Institute of Computer Science
Academy of Sciences of the Czech Republic

ITAT 2016

Introduction

Applying an imperceptible non-random perturbation to an

input image, it is possible to arbitrarily change the machine

learning model prediction.

57.7% Panda 99.3% Gibbon

Figure from Explaining and Harnessing Adversarial Examples by Goodfellow et al.

Such perturbed examples are known as adversarial

examples. For human eye, they seem close to the original

examples.

They represent a security flaw in classifier.

Works on adversarial examples I.

Intriguing properties of neural networks.

2014,Christian Szegedy et al.

Perturbations are found by optimising the input to

maximize the prediction error (L-BFGS).

Works on adversarial examples II.

Deep Neural Networks are Easily Fooled: High Confidence

Predictions for Unrecognizable Images

2015,Anh Nguyen, Jason Yosinski, Jeff Clune

evolutionary generated images

Works on adversarial examples III.

Explaining and Harnessing Adversarial Examples

2015,Goodfellow et al.

adding small vector in the direction of the sign of the

derivation

linear behaviour in high dimensional spaces is sufficent to

cause adversarial examples

Our work

genetic algorihms used to search for adversarial examples

tested various machine learning models including both

deep and shallow architectures

Machine learnig models I.

Shallow architectures

RBF network — feedforward network with one hidden layer,

linaer output layer. Local units realizing Gaussian function.

SVM — one hidden layer of kernel units, linear output

layer. Learning is based on searching for a separating

hyperplane with the highest margin.
Commonly used kernels:

linear 〈x , x ′〉
polynomial (γ〈x , x ′〉+ r)d

Gaussian exp(−γ|x − x ′|2)
sigmoid tanh(γ〈x , x ′〉+ r).

Decision tree

Machine learning models II.

Deep architectures

Deep neural networks are feedforward neural networks with

multiple hidden layers between the input and output layer. The

layers typically have different units depending on the task.

MLP

Perceptron units with sigmoid function

Rectified linear unit (ReLU): y(z) = max(0, z).

CNN

Convolutional units perform a simple discrete convolution

operation which for 2-D data can be represented by a

matrix multiplication.

max pooling layers that perform an input reduction by

selecting one of many inputs, typically the one with maximal

value

Search for adversarial images

To obtain an adversarial example for the trained machine

learning model, we need to optimize the input image with

respect to model output.

For this task we employ a GA – robust optimisation method

working with the whole population of feasible solutions.

The population evolves using operators of selection,

mutation, and crossover.

The machine learning model and the target output are

fixed.

Black box approach

genetic algorithms to generate adversarial examples

machine learning method is a blackbox

applicable to all methods without the need to acess models

parameters (weights)

Genetic algorithm

Individual: image encoded as a vector of pixel values:

I = {i1, i2, . . . , iN},

where ii ∈< 0, 1 > are levels of grey and N is a size of

flatten image.

Crossover: operator performs a two-point crossover.

Mutation: with the probability pmutate_pixel each pixel is

changed:

ii = ii + r ,

where r is drawn from Gaussian distribution.

Selection: 3−tournament

GA fitness

The fitness function should reflect the following two criteria:

the individual should resemble the target image

if we evaluate the individual by our machine learning model,

we would like to obtain a target output (i.e. misclassify it).

Thus, in our case, a fitness function is defined as:

f (I) = −(0.5 ∗ cdist(I, target_image) (1)

+ 0.5 ∗ cdist(model(I), target_answer)), (2)

where cdist is an Euclidean distance.

Experiments

Dataset

MNIST dataset

70000 images of handwritten digits

28 × 28 pixels

60000 for training, 10000 for testing

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

Overview of models I.

KERAS library, two models from examples

MLP — three fully connected layers, two hidden layers have

512 ReLUs each, using dropout; the output layer has 10

softmax units.

CNN — two convolutional layers with 32 filters and ReLUs,

each, max pooling layer, fully connected layer of 128

ReLUs, and a fully connected output softmax layer.

Ensemble — 10 MLPs

Overview of models II.

models from SCIKIT learn library

SVM — SVM with Gaussian kernel (SVM-rbf),

polynomial kernel of grade 2 and 4 (SVM-poly2 and

SVM-poly4),

sigmoidal kernel (SVM-sigmoid),

and linear kernel (SVM-linear).

DT — Decision Tree.

our iplementation

RBF — RBF network with 1000 Gaussian units

grid search and crossvalidation used to tune

metaparameters

Classification Acurracy

model trainset testset

MLP 1.00 0.98

CNN 1.00 0.99

RBF 0.96 0.96

SVM-rbf 0.99 0.98

SVM-poly2 1.00 0.98

SVM-poly4 0.99 0.98

SVM-sigmoid 0.87 0.88

SVM-linear 0.95 0.94

DT 1.00 0.87

Experimental Setup

GA setup

population of 50 individuals

10 000 generations

crossover probability 0.6

mutation probability 0.1

DEAP framework

Images

for 10 first images from training set

target: classify as zero

Evolved Adversarial Examples I.

Adversarial examples evolved for MLP:

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

Adversarial examples evolved for CNN:

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

Adversarial examples evolved for ensamble of MLPs:

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

Evolved Adversarial Examples II.

Adversarial examples evolved for SVM-poly2:

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

Adversarial examples evolved for SVM-poly4:

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

Adversarial examples evolved for SVM-sigmoid:

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

Evolved Adversarial Examples III.

Adversarial examples evolved for decision tree:

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

No adversarial examples found for:

RBF network

SVM-rbf

SVM-linear

Experimental Results

MLP, CNN, ensemble of MLPs, SVM-sigmoid, and DT

were always misclassifying the best individuals

RBF network, SVM-rbf, and SVM-linear; never

misclassified, i.e. the genetic algorithm was not able to find

adversarial example for these models;

SVM-poly2 and SVM-poly4 were resistant to finding

adversarial examples in 2 and 5 cases, respectively.

Generalization

some adversarial examples generated for one model are

also missclassified by other models

0 5 10 15 20 25

0

5

10

15

20

25

Evolved against MLP

0 1 2 3 4 5 6 7 8 9

RBF 0.30 0.04 0.17 0.75 0.02 -0.03 -0.04 -0.01 -0.07 -0.00
MLP 0.96 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01
CNN 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
ENS 0.86 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.01 0.08
SVM-rbf 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.01
SVM-poly 0.04 0.00 0.01 0.91 0.00 0.00 0.00 0.00 0.02 0.02
SVM-poly4 0.03 0.00 0.01 0.93 0.00 0.00 0.00 0.00 0.01 0.01
SVM-sigmoid 0.49 0.00 0.03 0.30 0.00 0.04 0.00 0.01 0.10 0.02
SVM-linear 0.25 0.02 0.10 0.30 0.02 0.05 0.02 0.03 0.18 0.06
DT 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Generalization

0 5 10 15 20 25

0

5

10

15

20

25

Evolved against SVM-poly

0 1 2 3 4 5 6 7 8 9

RBF 0.32 0.02 0.17 0.86 -0.01 -0.09 -0.09 -0.03 -0.12 0.01
MLP 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
CNN 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
ENS 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
SVM-rbf 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00
SVM-poly 0.87 0.00 0.02 0.04 0.00 0.00 0.00 0.00 0.04 0.02
SVM-poly4 0.38 0.01 0.11 0.23 0.01 0.02 0.01 0.02 0.15 0.04
SVM-sigmoid 0.55 0.01 0.04 0.19 0.01 0.05 0.01 0.01 0.13 0.02
SVM-linear 0.71 0.01 0.02 0.06 0.01 0.02 0.01 0.01 0.15 0.01
DT 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Generalization — Summary

adversarial example evolved for CNN was never

misclassified by other models, and CNN never

misclassified other adversarial examples than those

evolved for the CNN;

adversarial example evolved for DT was never

misclassified by other models, and DT misclassified other

adversarial examples only in 4 cases

adversarial examples evolved for MLP are misclassified

also by ensemble of MLPs (all cases except two) and

adversarial examples evolved for ensemble of MLPs are

misclassified by MLP (all cases);

Generalization — Summary

adversarial examples evolved by the SVM-sigmoid model

are misclassified by SVM-linear (all cases except two);

adversarial examples for the SVM-poly2 model are often (6

cases) misclassified by other SVMs (SVM-poly4,

SVM-sigmoid, SVM-linear), and in 4 cases also by the

SVM-rbf. In three cases it was also missclasified by MLP

and ensemble of MLPs, in one case, the adversarial

example for SVM-poly2 is misclassified by all models but

CNN (however, this example is quite noisy);

Generalization — Summary

adversarial example for the SVM-poly4 model is in two

cases misclassified by all models but CNN, and DT; in

different case by all but the CNN and RBF models, and in

one case by all but CNN, RBF, DT, and SVM-rbf models;

RBF network, SVM-rbf, and SVM-linear were resistant to

adversarial examples by genetic algorithm, however they

sometimes misclassify adversarial examples of other

models. These examples are already quite noisy, however

by human they would still be classified correctly.

Summary

We have proposed a GA for generating adversarial

examples for machine learning models by applying minimal

changes to the existing patterns.

Our experiment showed that many machine models suffer

from vulnerability to adversarial examples.

Models with local units (RBF networks and SVMs with RBF

kernels) are quite resistant to such behaviour.

The adversarial examples evolved for one model are

usually quite general – often misclassified also by other

models.

Thank you! Questions?

