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Our approach is based on the model called regu- Common elementary kernel functions: We deploy genetic algorithm (GA) to search for op-
larization network (RN). RNs benefit from a good linear K(Z,9) =x'y polynomial K (Z,%) = (az'y+1r)% a >0 timal composite kernels. It works with population
theoretical background, they has been proved to be Gaussian K (Z,v) = exp(—al|Z — 7]|*),a > 0 sigmoid K(Z,1) = tanh(az’ i + r) of possible kernels (individuals) and evolves them
the solution of the problem of learning from exam- o, d and r are parameters of the kernel. using operators selection, crossover and mutation.
ples when formulated as a regularized minimiza- Motivation for multi-kernel approach stems from the multi-modal nature of data. Each set of features may Individual Encoding

tion problem [1, 2]. require a different notion of similarity (i.e., a different kernel). Instead of building a specialized kernel for | | Elementary kernel function: I = { K, p,v},.

The key step of the RN learning is a choice of kernel such applications, it is possible to define just one kernel for each of these modes, and combine them. Product kernel: I = {Ko,po, K1,p1,%1,---,%n, 7},
function. Different kernel functions are suitable for It this work, two types of composite kernels are considered: Example:

different data types, but data are often heteroge- Product kernels K; and K are some kernel functions defined on R"* and R"*, n; +n9o = n. Then, a product
neous. We proposed the composite kernel functions kernel is defined: K (Z,y) = K(21,Z2,y1,vy2) = K1(Z1, y1) K2 (T2, 92).

that reflect better the character of data. Such ap- Sum kernels K (Z,vy) = K1(%,y) + K2(Z,y), where K; and K, are kernel functions.

proach can be ranked among the so called multi- We can combine different kernel functions or two kernel functions of the same type but with different 0,0,1,0,1,1,1,1],v = 0.2}.
kernel models. parameters, such as two Gaussians of different widths (but the same centre).

I ={Gaussian, (.84,

Inverse_Multiquadric,1.58,

Crossover and Mutation Crossover on elemen-
tary kernels generates new values in the interval
formed by the parents, i.e. v = (1 — r)vy1 + 772,
where r € (0, 1) is a random number, v; and 7, are
parents’ values.

Crossover on composite kernels swaps the subker-
nels (and in case of product kernels runs one-point
crossover on attribute vectors).

Tournament Selection Use the kernel to create a
network. Compute the crossvalidation error. The
winner is the one with the lower error.

Learning problem formulation Data set: a real-world data from the area of sensor networks for air pollution | | s
Given the data set {(1,y:) € R" x R};L,, obtained monitoring [3]. Tens of thousands measurements of gas multi-sensor devices |
by random sampling of a unknown function f, our | | recording concentrations of several gas pollutants for every hour.

goal is to find the function [ or its approximation. 5 input sensors and 3 target values( CO, NO3, and NOx concentrations). )
Regularization Network Methodology: GA was run for 300 generations, with 20 individuals, elite .|
Minimize H|f] = % Zf\;l (f(Z5) — y;)* + y®@[f], size 2. For fitness evaluation, the 10 folds crossvalidation was used.

where ¢ is some stabilizer and v > 0. E =100+ 27],\;1 i — f(Z;)|]?, each computation was repeated 10 times.
The solution is unique and has the form

(@) =N wiKz (F),  (NyI[+ K)@ =7,

The training data con- . . . S The whole time period = s s v g onngers

where [ is the identity matrix, K is the matrix sists of 4 samples per | LT was split into five inter- | el , e B T i
Ki,j = K (33_;, CE—;)/ and g — (ylv ey YN ) Meta- day, the rest (Values IN-  oef - VaIS, one for training, the T " ] 1 ] '
parameters 7, and a type of kernel K are given. between) is then used for | | | rest for testing. Consider- | |1 . k | 1
Kernel function testing. Errors for CO - .. ' ing mean values, impr()ve- 038 | _
The choice of the kernel function K is an important (right), NO2 and NOx ..| | | ment was achieved mainly L . E R T
part of the learning. It corresponds to the choice of . = on train errors. Minimal -—— - —
a stabilizer and reflects our prior knowledge of the errors of product kernels e
problem. are more promising, the N = | e

GA should be improved. - s ) s "

The resulting product ker- | ’ | Bl

nels are mainly combi- | ! \ | | .
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