
SUM AND PRODUCT KERNEL REGULARIZATION NETWORKS
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Abstract

We study the problem of learning from examples by means of function ap-
proximation theory. Based on Aronszajn’s formulation of sum of kernels
and product of kernels, we derive new approximation schemas– Sum Kernel
Regularization Network and Product Kernel RegularizationNetwork. We
demonstrate their performance on experiments. For many tasks our schemas
outperform the classical solutions.

Motivation

The problem oflearning from examplesis a subject of great interest. It
can be formulated as follows. We are given a set of examples{(xi, yi) ∈
Rd × R}N

i=1 that was obtained by random sampling of some real function
f , generally in the presence of noise. Our goal is to recover the functionf

from data, or find the best estimate of it, with respect to generalization.

The problem has been thoroughly studied as a function approximation prob-
lem. Since it is ill-posed, regularization techniques are used. We search for
a solution as a minimum of the functional composed of error and regulariza-
tion part:

H [f ] =
1

N

N∑

i=1

(f (xi) − yi)
2 + γΦ[f ],

Φ is astabilizer, γ > 0 the regularization parameter.

We choose a symmetric, positive semi-definite kernel functionK : Ω×Ω →
R (for Ω ⊆ R

d) and take the corresponding RKHSHK , with norm‖ · ‖K.
We let the stabilizer beΦ(f ) = ‖f‖2

K and get

H [f ] =
1

N

N∑

i=1

(f (xi) − yi)
2 + γ‖f‖2

K . (1)

Derivation of the shape of the solution, known as the Representer theorem,
has been shown already in [PS03, GJP95,Š04]. All the proofs are based on
the idea that a minimum of a function can exist in an interior point only if
first derivative equals zero.

Employing the Representer theorem we obtain the solution inthe form:

f (x) =

N∑

i=1

wiK(xi,x), (2)

wherexi are the data points andK(·, ·) the corresponding kernel. The
weightswi are given by the linear system

(NγI + K)w = y, whereKij = K(xi,xj). (3)

Such function corresponds to a neural network with one hidden layer, called
Regularization Network(RN)(see Fig. 1).

FIGURE 1: Regularization Network schema

Sum and Product Kernels

The choice of the kernel functionK is crucial for successful application
of the RN. We proposed composite types of kernel functions that may bet-
ter reflect the data, particularly in cases when the data are heterogenous
(have attributes of different types or qualities, differ indifferent parts of in-
put space).

Theorem 1 ([Aro50]) Let Fi (for i = 1, 2) be RKHSs andKi and‖.‖i the
corresponding kernels and norms. LetF = {f | f (x) = f1(x) + f2(x), fi ∈
Fi, f1 6= −f2} and let the norm be‖f‖2 = ‖{g′(f ), g′′(f )}‖2 = ‖g′(f )‖2

1 +

‖g′′(f )‖2
2. Then

K(x,y) = K1(x,y) + K2(x,y) (4)

is the kernel corresponding toF .
The claim holds also forF defined as class of all functionsf = f1 + f2
with fi ∈ Fi and norm‖f‖2 = min(‖f1‖

2
1 + ‖f2‖

2
2) minimum taken for all

decompositionsf = f1 + f2 with fi in Fi.

The kernel function obtained in the theorem 1 we callSum Kerneland cor-
responding approximation schemaSum Kernel Regularization Network.

FIGURE 2: An unit realizing sum kernel and an example of such kernel.

Theorem 2 ([Aro50]) For i = 1, 2 let Fi be an RKHS onΩi with kernelKi.
Then the productF = F1⊗F2 = comp{f | f =

∑n
k=1 f1,k(x1)f2,k(x2); n ∈

N, fi,k ∈ Fi} onΩ1 × Ω2 is an RKHS with kernel given by

K((x1,x2), (y1,y2)) = K1(x1,y1)K2(x2,y2) , (5)

wherex1,y1 ∈ Ω1, x2,y2 ∈ Ω2.

The kernel function from the theorem 2 we callProduct Kerneland corre-
sponding approximation schemaProduct Kernel Regularization Network.

FIGURE 3: An unit realizing a product kernel and an example of such
kernel.

Experiments

Described networks were compared on the Proben1 data repository([Pre94]).
PKRN was also applied on the prediction of the flow rate on the Czech river
Ploǔcnice.

As Product and Sum Kernels we used products and sums of two Gaussian
functions with different widths. The error was always normalized:

E = 100
1

N

N∑

i=1

||yi − f (xi)||
2.

The LAPACK library was used for linear system solving.
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FIGURE 4: Comparison of Sum Kernel and Gaussian kernel: train set
error.
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FIGURE 5: Comparison of Sum Kernel and Gaussian kernel: test set
error.

PKRN CP
Etrain 0.057 0.093
Etest 0.048 0.054

FIGURE 6: Error on the training setEtrain and error on the testing set
Etest for prediction of flow rate on the river Ploučnice.
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FIGURE 7: Prediction of flow rate by PKRN.

Conclusion

We have shown how to use results of Aronszajn on sums and products of
RKHSs to obtain the Sum and Product Regularization Networks.

We compared proposed PKRN and SKRN to classical RN on benchmarks,
our SKRN achieved lowest errors in most cases. PKRN was applied on
prediction of flow rate on the river Ploučnice and it outperforms the Conser-
vative Predictor.

Our future work should be focused on the application of othertypes of ker-
nel functions.
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