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Abstract The kernel function obtained in the theorem 1 we &l Kernelnd cor- T e —
responding approximation scherSam Kernel Regularization Network. 16 | -
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We study the problem of learning from examples by means daftian ap-
proximation theory. Based on Aronszajn’s formulation omsaf kernels 12t -
and product of kernels, we derive new approximation schensasn Kernel §
Regularization Network and Product Kernel Regularizatisetwork. We = 0T ]
demonstrate their performance on experiments. For maky tag schemas fg o L ]
outperform the classical solutions. Lg;
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The problem oflearning from exampless a subject of great interest. It Data set
can be formulated as follows. We are given a set of examfglesy;) < | |
Rd X R}i\il that was Obtained by random Sampling Of some real functio h . I b . h k I FIGURE 5: Compal’lson Of Sum Kel‘nel and GaUSS|an kel‘ne|2 test set
f, generally in the presence of noise. Our goal is to recovefithction f Theorehm 2 ([AroS0]) For ¢ = 1,2 let £ be an RI%HS ofl; wit eme_ K. error.
from data, or find the best estimate of it, with respect to gaimation. Thenthe produck” = @) = compr f | f =) 5y f1p(@1) for(z2)in €
N, fi € F;} on€)y x €9 is an RKHS with kernel given by
. . . PKRN CP
The problem has been thoroughly studied as a function appation prob- 7 0057 5093
lem. S_mce It is |II_—posed, regularlzat_|on techniques aeds We searc_h for K((x1,%x2), (y1,y2)) = K1(x1,y1)K2(x32,y2), (5) B, 0048 0.054
a solution as a minimum of the functional composed of errdrragulariza-
tion part:
wherexq,yq € {21, x2,y2 € {b. FIGURE 6: Error on the training sef;,.,;,, and error on the testing set
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1 Fiest Tor prediction of flow rate on the river Plguice.
H|f] ZNZ(f(Xz') — y;)* +70[f]. |
1 The kernel function from the theorem 2 we cRloduct Kerneland corre-
& is astabilizer v > 0 the regularization parameter. sponding approximation scherRaoduct Kernel Regularization Network. prediction of flow rate on the river Ploucnice
0.5 I T T T T | |
real data
We choose a symmetric, positive semi-definite kernel fmchi : (2 x () — 0.45 |- _
R (for Q@ C RY) and take the corresponding RKHS;, with norm|| - || & T
We let the stabilizer bé(f) = || f||% and get A ]
0.35 .
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H(f] = 5 > (fGxi) = i) + 71 fll% (1) -
=t K, 0.25 |- | -
Derivation of the shape of the solution, known as the Repites¢heorem, 0ol ]
has been shown already in [PS03, GIFR®}]. All the proofsarebasedon] { X A4 N C{ XP
the idea that a minimum of a function can exist in an interioinponly if Cfﬂ N X oaoT fl ]
first derivative equals zero. 0.1} | ﬂ | ﬂ _
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Employing the Representer theorem we obtain the solutidinarfiorm: kernel. e Ny e -
N ° 0 &;0 1|oo 1|50 2|oo 2|50 3loo 3|50 400
X) = w; K (x4, X), 2 o
fx) ; i35, %) @) FIGURE 7: Prediction of flow rate by PKRN.

wherex; are the data points anf(-,-) the corresponding kernel. The
Such function corresponds to a neural network with one mdalger, called

. . Described networks were compared on the Probenl data tepyggtre94|).
Regularization NetworkRN)(see Fig. 1). PKRN was also applied on the prediction of the flow rate on thedd river

Plownice. We have shown how to use results of Aronszajn on sums and ¢sodé

RKHSs to obtain the Sum and Product Regularization Networks

As Product and Sum Kernels we used products and sums of twesi{aau

functions with different widths. The error was always nolized: We compared proposed PKRN and SKRN to classical RN on ben&sma

our SKRN achieved lowest errors in most cases. PKRN was expoin
prediction of flow rate on the river Plgnice and it outperforms the Consetr-
vative Predictor.

N
1
B =100 Y Ilyi — f )
i=1 Our future work should be focused on the application of otiipes of ker-
nel functions.

The LAPACK library was used for linear system solving.
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